Gotowa bibliografia na temat „Glass transition temperature”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Glass transition temperature”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Glass transition temperature"
CONIGLIO, ANTONIO. "FRACTALS IN THE GLASS TRANSITION". Fractals 04, nr 03 (wrzesień 1996): 349–54. http://dx.doi.org/10.1142/s0218348x96000467.
Pełny tekst źródłaOuyang, L. F., J. Shen, Y. Huang, Y. H. Sun, H. Y. Bai i W. H. Wang. "Strong-to-fragile transition in a metallic-glass forming supercooled liquid associated with a liquid–liquid transition". Journal of Applied Physics 133, nr 8 (28.02.2023): 085105. http://dx.doi.org/10.1063/5.0137847.
Pełny tekst źródłaReis, Ana Karoline dos, Francisco Maciel Monticelli, Roberta Motta Neves, Luis Felipe de Paula Santos, Edson Cocchieri Botelho i Heitor Luiz Ornaghi Jr. "Creep behavior of polyetherimide semipreg and epoxy prepreg composites: Structure vs. property relationship". Journal of Composite Materials 54, nr 27 (22.05.2020): 4121–31. http://dx.doi.org/10.1177/0021998320927774.
Pełny tekst źródłaHeireche, M. M., L. Heireche i M. Belhadji. "Thermal stability and glass transition kinetics in GeTeSb glasses by using non-isothermal measurement". Chalcogenide Letters 19, nr 10 (3.11.2022): 735–41. http://dx.doi.org/10.15251/cl.2022.1910.735.
Pełny tekst źródłaZHOU, BO, YAN-JU LIU, XIN LAN, JIN-SONG LENG i SUNG-HO YOON. "A GLASS TRANSITION MODEL FOR SHAPE MEMORY POLYMER AND ITS COMPOSITE". International Journal of Modern Physics B 23, nr 06n07 (20.03.2009): 1248–53. http://dx.doi.org/10.1142/s0217979209060762.
Pełny tekst źródłaSu, Ming Horng, i Hung Chang Chen. "A Molecular Dynamics Investigation into the Cooling Characteristics of Ni and Cu Alloys at High Pressure". Materials Science Forum 505-507 (styczeń 2006): 1093–98. http://dx.doi.org/10.4028/www.scientific.net/msf.505-507.1093.
Pełny tekst źródłaJin, H. J., i K. Lu. "An indirect approach to measure glass transition temperature in metallic glasses". International Journal of Materials Research 97, nr 4 (1.04.2006): 388–94. http://dx.doi.org/10.1515/ijmr-2006-0065.
Pełny tekst źródłaVerma, Arvind Kumar, Anchal Srivastava, R. K. Shukla i K. C. Dubey. "Thermal Behavior of Chalcogenide glasses Te90Se10 and Se90Te10". SAMRIDDHI : A Journal of Physical Sciences, Engineering and Technology 7, nr 02 (25.12.2015): 113–18. http://dx.doi.org/10.18090/samriddhi.v7i2.8636.
Pełny tekst źródłaLuque, Patricia, i Antonio Heredia. "Glassy State in Plant Cuticles during Growth". Zeitschrift für Naturforschung C 49, nr 3-4 (1.04.1994): 273–75. http://dx.doi.org/10.1515/znc-1994-3-419.
Pełny tekst źródłaKRASNOV, K. V., N. M. CHALAYA i V. S. OSIPCHIK. "Research of technological properties of mixed compositions based on polyolefin thermoplastic elastomers". Plasticheskie massy 1, nr 1-2 (30.03.2022): 14–15. http://dx.doi.org/10.35164/0554-2901-2022-1-2-14-15.
Pełny tekst źródłaRozprawy doktorskie na temat "Glass transition temperature"
Berglund, Peter. "The glass transition in high-temperature superconductors". Thesis, KTH, Skolan för informations- och kommunikationsteknik (ICT), 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-26388.
Pełny tekst źródłaGuan, Qing. "Sodium diffusion in soda-lime-silicate glass around the glass transition temperature /". The Ohio State University, 1991. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487687115926219.
Pełny tekst źródłaZhang, Yuwei. "A study of the measurement of glass transition temperature". Thesis, University of Bristol, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.508077.
Pełny tekst źródłaHsu, Chuan-liang. "Influence of cooling rate on glass transition temperature and starch retrogradation during low temperature storage /". free to MU campus, to others for purchase, 1998. http://wwwlib.umi.com/cr/mo/fullcit?p9924889.
Pełny tekst źródłaJuang, Yi-Je. "Polymer professing and rheological analysis near the glass transition temperature". The Ohio State University, 2001. http://rave.ohiolink.edu/etdc/view?acc_num=osu1302020366.
Pełny tekst źródłaJuang, Yi-Je. "Polymer processing and rheological analysis near the glass transition temperature /". The Ohio State University, 2001. http://rave.ohiolink.edu/etdc/view?acc_num=osu1486398195327065.
Pełny tekst źródłaArab, B., A. Shokuhfar i S. Ebrahimi-Nejad. "Glass Transition Temperature of Cross-Linked Epoxy Polymers: a Molecular Dynamics Study". Thesis, Sumy State University, 2012. http://essuir.sumdu.edu.ua/handle/123456789/35102.
Pełny tekst źródłaSingh, Lovejeet. "Effect of Nanoscale Confinement on the Physical Properties of Polymer Thin Films". Diss., Georgia Institute of Technology, 2004. http://hdl.handle.net/1853/4822.
Pełny tekst źródłaMlynarczyk, Paul John. "The nature and determination of the dynamic glass transition temperature in polymeric liquids". Kansas State University, 2014. http://hdl.handle.net/2097/17782.
Pełny tekst źródłaDepartment of Chemical Engineering
Jennifer L. Anthony
A polymer has drastically different physical properties above versus below some characteristic temperature. For this reason, the precise identification of this glass transition temperature, T[subscript]g, is critical in evaluating product feasibility for a given application. The objective of this report is to review the behavior of polymers near their T[subscript]g and assess the capability of predicting T[subscript]g using theoretical and empirical models. It was determined that all polymers begin to undergo structural relaxation at various temperatures both nearly above and below T[subscript]g, and that practical assessment of a single consistent T[subscript]g is successfully performed through consideration of only immediate thermal history and thermodynamic properties. It was found that the best quantitative structure-property relationship (QSPR) models accurately predict T[subscript]g of polymers of theoretically infinite chain length with an average error of less than 20 K or about 6%, while T[subscript]g prediction for shorter polymers must be done by supplementing these T[subscript]g (∞) values with configurational entropy or molecular weight relational models. These latter models were found to be reliable only for polymers of molecular weight greater than about 2,000 g/mol and possessing a T[subscript]g (∞) of less than about 400 K.
Bouscarrat, David. "Time-dependent damage in woven-ply thermoplastic composites above glass transition temperature Influence of time-dependent phenomena on translaminar fracture of woven-ply C/PPS laminates above the glass transition temperature". Thesis, Normandie, 2019. http://www.theses.fr/2019NORMIR29.
Pełny tekst źródłaIn fiber-reinforced polymer matrix composite materials, the coupling between viscous behaviour (viscoelasticity, viscoplasticity) and damage mechanisms is very little studied at the mesoscopic scale and is mainly limited to port-mortem analyses. For high-temperature aeronautical applications (e.g., aircraft engine nacelle), the problem is even more complex within high performance thermoplastic matrix laminates PPS (Polyphenylene Sulfide) reinforced with carbon fiber fabrics. Indeed, these materials are characterized by matrix-rich zones whose viscous behaviors are exacerbated for service temperatures (i.e., 120°C) higher than the matrix glass transition temperature (about 95°C). It is therfore necessary to develop specific experimental procedures to highlight and quantify the viscous damage when the behaviour of C/PPS laminates is driven by the mechanical response of the matrix. In order to provide answers to this problem, one can evaluate : (1) the influence of the matrix viscosity on the translaminar fracture behaviour - (2) the time-dependent damage during creep-type loading. These two lines of study are based on the development of experimental protocols adapted to high temperature mechanical testing. Thus, the originality of this work is to combine different complementary techniques (acoustic emission, edge replication, fractographic analysis, tomography) which allow in-situ and in real time analyses of the damage mechanisms that coexist and interact during the different loading phases. Using the protocol developed under conditions of temperature higher than the Tg of the material, these techniques provide information to quantify and dissociate the different material behaviours (viscoelasticity, viscoplasticity, damage) as well as structural effects (fibre rotation). Image analyses based on dilatation/erosion algorithms implemented in Matlab allow the evaluation of the surface cracking density (intra- and inter-strand) from edge replicas. On a macroscopic scale, the thermomechanical response of C/PPS is little influenced by the viscous behaviour of C/PSS, whether for quasi-isotropic laminates (behaviour mainly driven by 0°fibres) or with oriented plies (behaviour mainly driven by the PPS matrix). Finally, the ductile translaminar fracture is characterized by the evolution of the cumulative acoustic energy as a function of the energy restitution rate. The instability of the translaminar fracture does not allow the quantification of the influence of viscous effects on the mode I toughness of the material at initiation. At micro and mesoscopic scales, the results obtained clearly show time-dependent damage within oriented plies C/PPS laminates subjected to creep loadings at T > Tg. By implementing this protocol, the demonstrated relevance/complementarity of the acoustic emission associated with the quantification of the cracking density allows the study of the coupling between viscous effects and damage within C/PPS laminates subjected to high temperature loading. This problem is essential from the point of view of the durability of composite structures in an engine environment
Książki na temat "Glass transition temperature"
Models of agglomeration and glass transition. London: Imperial College Press, 2007.
Znajdź pełny tekst źródłaF, Gratz Roy, i United States. National Aeronautics and Space Administration., red. Structure-to-glass transition temperature relationships in high temperature stable condensation polyimides. [Washington, DC]: National Aeronautics and Space Administration, 1985.
Znajdź pełny tekst źródłaF, Gratz Roy, i United States. National Aeronautics and Space Administration., red. Structure-to-glass transition temperature relationships in high temperature stable condensation polyimides. [Washington, DC]: National Aeronautics and Space Administration, 1985.
Znajdź pełny tekst źródłaHasling, Peter David. The improvement of the glass transition temperature of Poly(Methyl Methacrylate). Manchester: University of Manchester, 1995.
Znajdź pełny tekst źródłaGrenoble) International Workshop on Dynamics in Confinement (2000 Institute Laue-Langevin. International Workshop on Dynamics in Confinement: Institut Laue-Langevin, Grenoble, France, January 26-29, 2000. Les Ulis cedex A, France: EDP Sciences, 2000.
Znajdź pełny tekst źródłaInternational Workshop on Complex Systems (5th 2007 Sendai-shi, Miyagi-ken, Japan). Complex systems: 5th International Workshop on Complex Systems, Sendai, Japan, 25-28 September 2007. Redaktorzy Tokuyama Michio, Oppenheim Irwin i Nishiyama Hideya. Melville, N.Y: American Institute of Physics, 2008.
Znajdź pełny tekst źródłaF, Gratz Roy, i United States. National Aeronautics and Space Administration., red. 3F condensation polyimides: Review and update. [Washington, DC: National Aeronautics and Space Administration, 1989.
Znajdź pełny tekst źródłaJ, Liu Andrea, i Nagel Sidney R, red. Jamming and rheology: Constrained dynamics on microscopic and macroscopic scales. London: Taylor & Francis, 2001.
Znajdź pełny tekst źródłaUnited States. National Aeronautics and Space Administration., red. Correlations of norbornenyl crosslinked polymide resin structures with resin thermo-oxidative stability, resin glass transition temperature and composite initial mechanical properties. [Washington, D.C.]: National Aeronautics and Space Administration, 1988.
Znajdź pełny tekst źródłaCenter, Goddard Space Flight, red. Thermomechanical properties of polymeric materials and related stresses. Greenbelt, Md: National Aeronautics and Space Administration, Goddard Space Flight Center, 1990.
Znajdź pełny tekst źródłaCzęści książek na temat "Glass transition temperature"
Gooch, Jan W. "Glass-Transition Temperature". W Encyclopedic Dictionary of Polymers, 341. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_5521.
Pełny tekst źródłaMishra, Munmaya, i Biao Duan. "Glass Transition Temperature". W The Essential Handbook of Polymer Terms and Attributes, 68–69. Boca Raton: CRC Press, 2024. http://dx.doi.org/10.1201/9781003161318-66.
Pełny tekst źródłaJansen, Johannes Carolus. "Glass Transition Temperature Depression". W Encyclopedia of Membranes, 1. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-40872-4_268-1.
Pełny tekst źródłaCrompton, T. R. "Glass Transition Temperature and Other Transitions". W Practical Polymer Analysis, 595–629. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4615-2874-6_12.
Pełny tekst źródłaJansen, Johannes Carolus. "Glass Transition Temperature (T g )". W Encyclopedia of Membranes, 1–3. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-40872-4_267-1.
Pełny tekst źródłaKühn, Klaus-Dieter. "Glass Transition Temperature of PMMA cements". W PMMA Cements, 231–42. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-41536-4_15.
Pełny tekst źródłaFeller, Steve. "Density, Thermal Properties, and the Glass Transition Temperature Ofglasses". W Modern Glass Characterization, 1–31. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2015. http://dx.doi.org/10.1002/9781119051862.ch1.
Pełny tekst źródłaOkuma, S., i H. Hirai. "The Vortex-Glass Transition in Low-Temperature Superconductors". W Advances in Superconductivity VIII, 541–44. Tokyo: Springer Japan, 1996. http://dx.doi.org/10.1007/978-4-431-66871-8_119.
Pełny tekst źródłaLang, X. Y., i Qing Jiang. "Size Effect on Glass Transition Temperature of Nanopolymers". W Solid State Phenomena, 1317–20. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/3-908451-30-2.1317.
Pełny tekst źródłaTarumi, R., H. Ogi, M. Hirao, T. Ichitsubo, Eiichiro Matsubara i Junji Saida. "Elastic Properties of Cu-Based Bulk Metallic Glass around Glass Transition Temperature". W THERMEC 2006, 1932–36. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-428-6.1932.
Pełny tekst źródłaStreszczenia konferencji na temat "Glass transition temperature"
Rosenstein, Baruch, Dingping Li i Valery M. Vinokur. "Glass Transition in Vortex Matter". W LOW TEMPERATURE PHYSICS: 24th International Conference on Low Temperature Physics - LT24. AIP, 2006. http://dx.doi.org/10.1063/1.2354981.
Pełny tekst źródłaBel, Golan, i Baruch Rosenstein. "Dynamics of the Vortex-Glass Transition". W LOW TEMPERATURE PHYSICS: 24th International Conference on Low Temperature Physics - LT24. AIP, 2006. http://dx.doi.org/10.1063/1.2354963.
Pełny tekst źródłaAksan, Alptekin, i Mehmet Toner. "Glass Formation During Room Temperature, Isothermal Drying". W ASME 2003 International Mechanical Engineering Congress and Exposition. ASMEDC, 2003. http://dx.doi.org/10.1115/imece2003-43049.
Pełny tekst źródłaYunfei Li, Ying Liu, Lihua Song i Da-Wen Sun. "Influence of Annealing Treatment on Glass Transition Temperature". W 2002 Chicago, IL July 28-31, 2002. St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2002. http://dx.doi.org/10.13031/2013.9795.
Pełny tekst źródłaBusek, David, i Pavel Mach. "Study of glass transition temperature of electrically conductive adhesives". W 2012 IEEE 18th International Symposium for Design and Technology in Electronic Packaging (SIITME). IEEE, 2012. http://dx.doi.org/10.1109/siitme.2012.6384364.
Pełny tekst źródłaOsterfeld, Martin, R. Thielmann, Hilmar Franke, P. Ambrovic i M. D. Lechner. "Glass transition temperature of polymer films forming polymeric lightguides". W San Diego '92, redaktor Roger A. Lessard. SPIE, 1993. http://dx.doi.org/10.1117/12.139178.
Pełny tekst źródłaChippy, L., C. Harikuttan Unnithan, S. Jayakumar, P. Predeep, Mrinal Thakur i M. K. Ravi Varma. "Investigation of Glass Transition Temperature of Binary Tellurite Glasses". W OPTICS: PHENOMENA, MATERIALS, DEVICES, AND CHARACTERIZATION: OPTICS 2011: International Conference on Light. AIP, 2011. http://dx.doi.org/10.1063/1.3643597.
Pełny tekst źródłaInoue, T. "Electric Birefringence Of Amorphous Polymers Around The Glass Transition Temperature". W SLOW DYNAMICS IN COMPLEX SYSTEMS: 3rd International Symposium on Slow Dynamics in Complex Systems. AIP, 2004. http://dx.doi.org/10.1063/1.1764130.
Pełny tekst źródłaWang, Yibin, Fang Fang, Jing Wu, Kaixuan Lin, Tingting Xu, Weiqing Liang i Luqiao Yin. "Failure Analysis of Glass Transition Temperature of LED Insulation Layer". W 2019 16th China International Forum on Solid State Lighting & 2019 International Forum on Wide Bandgap Semiconductors China (SSLChina: IFWS). IEEE, 2019. http://dx.doi.org/10.1109/sslchinaifws49075.2019.9019815.
Pełny tekst źródłaRumela Bhadra, Kurt A Rosentrater i K Muthukumarappan. "Effects of Varying CDS, Drying and Cooling Temperatures on Glass Transition Temperature of DDGS". W 2010 Pittsburgh, Pennsylvania, June 20 - June 23, 2010. St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2010. http://dx.doi.org/10.13031/2013.29964.
Pełny tekst źródłaRaporty organizacyjne na temat "Glass transition temperature"
Riley, Brian J., i John D. Vienna. Glass Transition Temperature- and Specific Volume- Composition Models for Tellurite Glasses. Office of Scientific and Technical Information (OSTI), wrzesień 2017. http://dx.doi.org/10.2172/1379447.
Pełny tekst źródłaReams, Josiah T., Andrew J. Guenthner, Kevin R. Lamison i Joseph M. Mabry. Glass Transition Temperature Measurement for Undercured Cyanate Ester Networks: Challenges, Tips, and Tricks (Briefing Charts). Fort Belvoir, VA: Defense Technical Information Center, styczeń 2014. http://dx.doi.org/10.21236/ada610982.
Pełny tekst źródłaClark, E., i M. Marie Kane. EFFECTS OF TRITIUM GAS EXPOSURE ON THE GLASS TRANSITION TEMPERATURE OF EPDM ELASTOMER AND ON THE CONDUCTIVITY OF POLYANILINE. Office of Scientific and Technical Information (OSTI), grudzień 2008. http://dx.doi.org/10.2172/950027.
Pełny tekst źródłaMorrill, Jason A., Robert E. Jensen, Phillip H. Madison i Cary F. Chabalowski. Prediction of the Formulation Dependence of the Glass Transition Temperature for Amine-Epoxy Copolymers Using a Quantitative Structure-Property Relationship Based on the AM1 Method. Fort Belvoir, VA: Defense Technical Information Center, luty 2004. http://dx.doi.org/10.21236/ada420986.
Pełny tekst źródłaSpera, Frank. Mesoscale Molecular Dynamics of Geomaterials: the Glass Transition, Long-Range Structure of Amorphous Silicates and Relation between Structure, Dynamics and Properties of geomaterials at elevated Temperature and Pressure. Office of Scientific and Technical Information (OSTI), lipiec 2006. http://dx.doi.org/10.2172/888469.
Pełny tekst źródłaMarra, J. C., i J. R. Harbour. Measurement of the volatility and glass transition temperatures of glasses produced during the DWPF startup test program. Office of Scientific and Technical Information (OSTI), październik 1995. http://dx.doi.org/10.2172/527436.
Pełny tekst źródła