Gotowa bibliografia na temat „Glass Network Structure”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Glass Network Structure”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Glass Network Structure"
Nanba, T., A. Osaka, J. Takada, Y. Miura, H. Inoue, Y. Akasaka, H. Hagihara i I. Yasui. "Network structure of AlF3BaF2CaF2 glass". Journal of Non-Crystalline Solids 140 (styczeń 1992): 269–74. http://dx.doi.org/10.1016/s0022-3093(05)80780-x.
Pełny tekst źródłada Silva, Antônio Carlos, S. C. Santos i Sonia Regina Homem de Mello-Castanho. "Transition Metals in Glass Formation". Materials Science Forum 727-728 (sierpień 2012): 1496–501. http://dx.doi.org/10.4028/www.scientific.net/msf.727-728.1496.
Pełny tekst źródłaLiu, Hao, Xi Tang Wang, Zhou Fu Wang i Bao Guo Zhang. "Effects of Al2O3 on the Structure and Properties of Calcium-Magnesium-Silicate Glass Fiber". Advanced Materials Research 450-451 (styczeń 2012): 42–45. http://dx.doi.org/10.4028/www.scientific.net/amr.450-451.42.
Pełny tekst źródłaHuang, Shoujia, Wenzhi Wang, Hong Jiang, Huifeng Zhao i Yanping Ma. "Network Structure and Properties of Lithium Aluminosilicate Glass". Materials 15, nr 13 (28.06.2022): 4555. http://dx.doi.org/10.3390/ma15134555.
Pełny tekst źródłaOgiwara, Yusuke, Kimiko Dejima, Toru Kyomen i Minoru Hanaya. "Composition Dependence of the Glass Network Structure in Li+-ion Conducting Glasses of (LiCl)x(LiPO3)1-x Studied by 31P MAS NMR". Key Engineering Materials 596 (grudzień 2013): 31–34. http://dx.doi.org/10.4028/www.scientific.net/kem.596.31.
Pełny tekst źródłaHou, Zhao Xia, Zhao Lu Xue, Shao Hong Wang, Xiao Dan Hu, Hao Ran Lu, Chang Lei Niu, Hao Wang, Cai Wang i Yin Zhou. "Thermal Stability and Structure of Tellurite Glass". Key Engineering Materials 512-515 (czerwiec 2012): 994–97. http://dx.doi.org/10.4028/www.scientific.net/kem.512-515.994.
Pełny tekst źródłaYan, Tingnan, Weijun Zhang, Haijun Mao, Xingyu Chen i Shuxin Bai. "The effect of CaO/SiO2 and B2O3 on the sintering contraction behaviors of CaO-B2O3-SiO2 glass-ceramics". International Journal of Modern Physics B 33, nr 09 (10.04.2019): 1950070. http://dx.doi.org/10.1142/s021797921950070x.
Pełny tekst źródłaOladele, Isiaka Oluwole, Oluwaseun Temilola Ayanleye, Adeolu Adesoji Adediran, Baraka Abiodun Makinde-Isola, Anuoluwapo Samuel Taiwo i Esther Titilayo Akinlabi. "Characterization of Wear and Physical Properties of Pawpaw–Glass Fiber Hybrid Reinforced Epoxy Composites for Structural Application". Fibers 8, nr 7 (3.07.2020): 44. http://dx.doi.org/10.3390/fib8070044.
Pełny tekst źródłaRenlund, Gary M., Svante Prochazka i Robert H. Doremus. "Silicon oxycarbide glasses: Part II. Structure and properties". Journal of Materials Research 6, nr 12 (grudzień 1991): 2723–34. http://dx.doi.org/10.1557/jmr.1991.2723.
Pełny tekst źródłaFedderly, Jeffry J., Gilbert F. Lee, John D. Lee, Bruce Hartmann, Karel Dušek, Miroslava Dušková-Smrčková i Ján Šomvársky. "Network structure dependence of volume and glass transition temperature". Journal of Rheology 44, nr 4 (lipiec 2000): 961–72. http://dx.doi.org/10.1122/1.551122.
Pełny tekst źródłaRozprawy doktorskie na temat "Glass Network Structure"
Lu, Xiaonan. "Effects of Transition Metal Oxide and Mixed-Network Formers on Structure and Properties of Borosilicate Glasses". Thesis, University of North Texas, 2018. https://digital.library.unt.edu/ark:/67531/metadc1404587/.
Pełny tekst źródłaChen, Ping. "Intermediate phases, boson and floppy modes, and demixing of network structures of binary As-S and As-Se glasses". University of Cincinnati / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1250689099.
Pełny tekst źródłaDash, Shreeram J. "Aging of Selenium glass probed by MDSC and Raman Scattering Experiments: Growth of inter-chain structural correlations leading to network compaction". University of Cincinnati / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1490354472387536.
Pełny tekst źródłaPumlianmunga. "Influence of local structure and network connectivity on the electrical switching of some Te-based chalcogenide glasses". Thesis, 2018. https://etd.iisc.ac.in/handle/2005/5425.
Pełny tekst źródłaLu, Linghong. "Structural principles for dynamics of glass networks". Thesis, 2008. http://hdl.handle.net/1828/900.
Pełny tekst źródłaKsiążki na temat "Glass Network Structure"
Lyons, Andrew C. Customer-Driven Supply Chains: From Glass Pipelines to Open Innovation Networks. London: Springer London, 2012.
Znajdź pełny tekst źródłaPapailiou, Konstantin O. Silicone Composite Insulators: Materials, Design, Applications. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.
Znajdź pełny tekst źródłaPapailiou, Konstantin O., i Frank Schmuck. Silicone Composite Insulators: Materials, Design, Applications. Springer, 2016.
Znajdź pełny tekst źródłaPapailiou, Konstantin O., i Frank Schmuck. Silicone Composite Insulators: Materials, Design, Applications. Springer, 2012.
Znajdź pełny tekst źródłaCzęści książek na temat "Glass Network Structure"
Salmon, Philip S., i Anita Zeidler. "The Atomic-Scale Structure of Network Glass-Forming Materials". W Molecular Dynamics Simulations of Disordered Materials, 1–31. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15675-0_1.
Pełny tekst źródłaJančíková, Zora, Pavel Koštial, Soňa Rusnáková, Petr Jonšta, Ivan Ružiak, Jiří David, Jan Valíček i Karel Frydrýšek. "Artificial Neural Network Modelling of Glass Laminate Sample Shape Influence on the ESPI Modes". W Advanced Structured Materials, 61–69. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-31497-1_3.
Pełny tekst źródłaOleinik, Eduard F. "Epoxy-aromatic amine networks in the glassy state structure and properties". W Advances in Polymer Science, 49–99. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/3-540-16423-5_12.
Pełny tekst źródłaXu, Jing, Jian Wang, Dongpo Wang i Zheng Chen. "Measurement of Velocity and Particle Size in Shock Wave Area Generated by Experimental Granular Flow Impacting on a Cylinder Based on Image Processing Methods". W Advances in Frontier Research on Engineering Structures, 275–86. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-8657-4_25.
Pełny tekst źródłaLi, Peixian, Gecheng Yuan, Zhenghua Lu, Qian Li i Qiguang Wu. "Network Structures and Thermal Characteristics of Bi2O3–SiO2–B2O3 Glass Powder by Sol-Gel". W Springer Proceedings in Physics, 227–37. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-5947-7_24.
Pełny tekst źródłaMartin, James D. "Amorphous Materials Engineering: Designing Structure in Liquid and Glassy Metal-Halide Networks". W Ceramic Transactions Series, 57–67. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118408063.ch5.
Pełny tekst źródłaLi, Peixian, Gecheng Yuan, Zhenghua Lu, Qian Li i Qiguang Wu. "Correction to: Network Structures and Thermal Characteristics of Bi2O3–SiO2–B2O3 Glass Powder by Sol-Gel". W Springer Proceedings in Physics, C1. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-5947-7_25.
Pełny tekst źródłaUSUKI, T., K. NAKAJIMA, T. FURUKAWA, T. NASU, M. SAKURAI i S. KOHARA. "GLASS NETWORK STRUCTURE IN NOBLE METAL CHALCOHALIDE GLASSES". W Solid State Ionics, 835–42. WORLD SCIENTIFIC, 2004. http://dx.doi.org/10.1142/9789812702586_0093.
Pełny tekst źródłaFinney, John. "4. Water as a liquid—and as glass(es)". W Water: A Very Short Introduction, 46–76. Oxford University Press, 2015. http://dx.doi.org/10.1093/actrade/9780198708728.003.0004.
Pełny tekst źródła"Structures of Glasses". W Introduction to Glass Science and Technology, 74–114. Wyd. 3. The Royal Society of Chemistry, 2020. http://dx.doi.org/10.1039/bk9781839161414-00074.
Pełny tekst źródłaStreszczenia konferencji na temat "Glass Network Structure"
Hobbs, Linn W. "What Can Topological Models Tell Us About Glass Structure and Properties?" W Bragg Gratings, Photosensitivity, and Poling in Glass Fibers and Waveguides. Washington, D.C.: Optica Publishing Group, 1997. http://dx.doi.org/10.1364/bgppf.1997.jsua.2.
Pełny tekst źródłaLiegong, Wu, Xin Qiming i Robert E. Parks. "The Surface Structure of Machined Optical Glass". W Science of Optical Finishing. Washington, D.C.: Optica Publishing Group, 1990. http://dx.doi.org/10.1364/sciof.1990.sma7.
Pełny tekst źródłaFletcher, Luke B., Jon J. Witcher, Denise M. Krol i Richard K. Brow. "The Role of Metaphosphate Glass Composition on Changes to the Glass Network Structure After Modification by Femtosecond Laser Pulses". W Femtosecond Laser Microfabrication. Washington, D.C.: OSA, 2009. http://dx.doi.org/10.1364/lm.2009.lmtub4.
Pełny tekst źródłaLin, Yilei, Ting He, Shiqiang Wang, Kevin Chan i Stephen Pasteris. "Looking Glass of NFV: Inferring the Structure and State of NFV Network from External Observations". W IEEE INFOCOM 2019 - IEEE Conference on Computer Communications. IEEE, 2019. http://dx.doi.org/10.1109/infocom.2019.8737393.
Pełny tekst źródłaXu, Jin-Sha, Chen-Huai Tang, Yi Chen, Fa-Cai Ren, Jun Si, Ju Ding, Pu-Gen Zhang, Yu-Qing Yang, Yan-Nan Du i Shou-Peng Han. "Effect of Glaze Composition on the Corrosion Resistance of Glass Lining of Glass-Lined Pressure Vessels". W ASME 2020 Pressure Vessels & Piping Conference. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/pvp2020-21153.
Pełny tekst źródłaTaheri, B., A. Munoz F., R. C. Powell, D. H. Blackburn i D. C. Cranmer. "Effect of structure and composition of the thermal lensing and permanent laser-induced refractive-index changes in glasses". W OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1991. http://dx.doi.org/10.1364/oam.1991.mc3.
Pełny tekst źródłaLi, C. James, i T. Y. Huang. "Automatic Structure and Parameter Training Methods for Modeling of Mechanical System by Recurrent Neural Networks". W ASME 1997 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/imece1997-0402.
Pełny tekst źródłaYEON, JEJOON, SANJIB C. CHOWDHURY, CHAITANYA M. DAKSHA, DONATO BELMONTE, ADRI VAN DUIN i JOHN W. GILLESPIE, JR. "PARAMETERIZATION OF REAXFF POTENTIAL OF MG/AL/SI/O INTERACTION AND INVESTIGATION OF MECHANICAL PROPERTIES FOR S-GLASS". W Thirty-sixth Technical Conference. Destech Publications, Inc., 2021. http://dx.doi.org/10.12783/asc36/35858.
Pełny tekst źródłaFan, Ke, Changan Wang, Yabiao Wang, Chengjie Wang, Ran Yi i Lizhuang Ma. "RFENet: Towards Reciprocal Feature Evolution for Glass Segmentation". W Thirty-Second International Joint Conference on Artificial Intelligence {IJCAI-23}. California: International Joint Conferences on Artificial Intelligence Organization, 2023. http://dx.doi.org/10.24963/ijcai.2023/80.
Pełny tekst źródłaDurkin, Michael K., Morten Ibsen, Richard I. Laming i Valeria Gusmeroli. "Equalisation of Spectral Non-Uniformities in Broad-Band Chirped Fibre Gratings". W Bragg Gratings, Photosensitivity, and Poling in Glass Fibers and Waveguides. Washington, D.C.: Optica Publishing Group, 1997. http://dx.doi.org/10.1364/bgppf.1997.bmg.16.
Pełny tekst źródła