Artykuły w czasopismach na temat „Giant Ferroelectric Polarization”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Giant Ferroelectric Polarization”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Chen, Zibin, Fei Li, Qianwei Huang, Fei Liu, Feifei Wang, Simon P. Ringer, Haosu Luo, Shujun Zhang, Long-Qing Chen i Xiaozhou Liao. "Giant tuning of ferroelectricity in single crystals by thickness engineering". Science Advances 6, nr 42 (październik 2020): eabc7156. http://dx.doi.org/10.1126/sciadv.abc7156.
Pełny tekst źródłaKimura, Tsuyoshi. "Current Progress of Research on Magnetically-induced Ferroelectrics". Acta Crystallographica Section A Foundations and Advances 70, a1 (5.08.2014): C6. http://dx.doi.org/10.1107/s2053273314099938.
Pełny tekst źródłaXie, Lin, Linze Li, Colin A. Heikes, Yi Zhang, Zijian Hong, Peng Gao, Christopher T. Nelson i in. "Giant Ferroelectric Polarization in Ultrathin Ferroelectrics via Boundary-Condition Engineering". Advanced Materials 29, nr 30 (6.06.2017): 1701475. http://dx.doi.org/10.1002/adma.201701475.
Pełny tekst źródłaWei, Lijing, Changliang Li, Jianxin Guo, Li Guan, Yinglong Wang i Baoting Liu. "Giant optical absorption and ferroelectric polarization of BiCoO2S perovskite oxysulfide by first principles prediction". Physical Chemistry Chemical Physics 22, nr 20 (2020): 11382–91. http://dx.doi.org/10.1039/d0cp00057d.
Pełny tekst źródłaZhou, Zhangyang, Zhipeng Gao, Zhengwei Xiong, Gaomin Liu, Ting Zheng, Yuanjie Shi, Mingzhu Xiao i in. "Giant power density from BiFeO3-based ferroelectric ceramics by shock compression". Applied Physics Letters 121, nr 11 (12.09.2022): 113903. http://dx.doi.org/10.1063/5.0102102.
Pełny tekst źródłaBorkar, Hitesh, Vaibhav Rao, M. Tomar, Vinay Gupta, J. F. Scott i Ashok Kumar. "Giant enhancement in ferroelectric polarization under illumination". Materials Today Communications 14 (marzec 2018): 116–23. http://dx.doi.org/10.1016/j.mtcomm.2017.12.004.
Pełny tekst źródłaShimizu, Takao, Hiroshi Funakubo i Naoki Ohashi. "(Invited, Digital Presentation) Materials Aspects of New Ferroelectrics with Simple Crystal Structure". ECS Meeting Abstracts MA2022-02, nr 15 (9.10.2022): 804. http://dx.doi.org/10.1149/ma2022-0215804mtgabs.
Pełny tekst źródłaKumar, Ajay, Dalip Saini i Dipankar Mandal. "3D printed ferroelectret with giant piezoelectric coefficient". Applied Physics Letters 120, nr 18 (2.05.2022): 182901. http://dx.doi.org/10.1063/5.0091808.
Pełny tekst źródłaWang, Zhihong, Xi Xiang Zhang, Xianbin Wang, Weisheng Yue, Jingqi Li, Jianmin Miao i Weiguang Zhu. "Giant Flexoelectric Polarization in a Micromachined Ferroelectric Diaphragm". Advanced Functional Materials 23, nr 1 (14.08.2012): 124–32. http://dx.doi.org/10.1002/adfm.201200839.
Pełny tekst źródłaRouquette, Jerome, Manuel Hinterstein, Julien Haines, Michael Knapp, Julia Glaum, Jurgen Eckert, Hartmud Fuess i Hichem Dammak. "Probing the Giant Piezoelectric response of ferroelectric perovskites". Acta Crystallographica Section A Foundations and Advances 70, a1 (5.08.2014): C150. http://dx.doi.org/10.1107/s2053273314098490.
Pełny tekst źródłaYun, Kwi Young, Dan Ricinschi, Takeshi Kanashima, Minoru Noda i Masanori Okuyama. "Giant Ferroelectric Polarization Beyond 150 µC/cm2in BiFeO3Thin Film". Japanese Journal of Applied Physics 43, No. 5A (16.04.2004): L647—L648. http://dx.doi.org/10.1143/jjap.43.l647.
Pełny tekst źródłaHan, Ding-Chong, Zhi-Xiang Gong, Ning Song, Yu-Hui Tan, Yu-Kong Li, Yun-Zhi Tang, Peng-Kang Du i Hao Zhang. "Ferroelectric properties, narrow band gap and ultra-large reversible entropy change in a novel nonlinear ionic chromium(vi) compound". Chemical Communications 57, nr 85 (2021): 11225–28. http://dx.doi.org/10.1039/d1cc04751e.
Pełny tekst źródłaManley, Michael E., Douglas L. Abernathy, Raffi Sahul, Daniel E. Parshall, Jeffrey W. Lynn, Andrew D. Christianson, Paul J. Stonaha, Eliot D. Specht i John D. Budai. "Giant electromechanical coupling of relaxor ferroelectrics controlled by polar nanoregion vibrations". Science Advances 2, nr 9 (wrzesień 2016): e1501814. http://dx.doi.org/10.1126/sciadv.1501814.
Pełny tekst źródłaBoni, Georgia A., Lucian D. Filip, Cristian Radu, Cristina Chirila, Iuliana Pasuk, Mihaela Botea, Ioana Pintilie i Lucian Pintilie. "Indirect Evaluation of the Electrocaloric Effect in PbZrTiO3 (20/80)-Based Epitaxial Thin Film Structures". Electronic Materials 3, nr 4 (1.11.2022): 344–56. http://dx.doi.org/10.3390/electronicmat3040028.
Pełny tekst źródłaKobayashi, Tomo, Yuji Noguchi i Masaru Miyayama. "Giant Polarization Properties of Ba-Based Bismuth Layer-Structured Ferroelectrics". Key Engineering Materials 301 (styczeń 2006): 3–6. http://dx.doi.org/10.4028/www.scientific.net/kem.301.3.
Pełny tekst źródłaGu, Zongquan, Mohammad A. Islam i Jonathan E. Spanier. "Giant enhancement in the ferroelectric field effect using a polarization gradient". Applied Physics Letters 107, nr 16 (19.10.2015): 162901. http://dx.doi.org/10.1063/1.4933095.
Pełny tekst źródłaZhang, Sirui, Yinlian Zhu, Yunlong Tang, Ying Liu, Shuang Li, Mengjiao Han, Jinyuan Ma i in. "Giant Polarization Sustainability in Ultrathin Ferroelectric Films Stabilized by Charge Transfer". Advanced Materials 29, nr 46 (25.10.2017): 1703543. http://dx.doi.org/10.1002/adma.201703543.
Pełny tekst źródłaPonomarev, B. K., i A. Zhukov. "Magnetic and Magnetoelectric Properties of Rare Earth Molybdates". Physics Research International 2012 (9.05.2012): 1–22. http://dx.doi.org/10.1155/2012/276348.
Pełny tekst źródłaChen, Xin, Vladimir Shvartsman, Doru C. Lupascu i Q. M. Zhang. "Comment on “Giant pyroelectric energy harvesting and a negative electrocaloric effect in multilayered nanostructures” by G. Vats, A. Kumar, N. Ortega, C. R. Bowen and R. S. Katiyar, Energy Environ. Sci., 2016, 9, 1335". Energy & Environmental Science 14, nr 3 (2021): 1612–14. http://dx.doi.org/10.1039/d0ee02548h.
Pełny tekst źródłaDelimova, L. A., E. V. Guschina, V. S. Yuferev, I. V. Grekhov, N. V. Zaiceva, N. V. Sharenkova, D. S. Seregin, K. A. Vorotilov i A. S. Sigov. "Giant Self-Polarization in FeRAM Element Based on Sol-Gel PZT Films". MRS Proceedings 1729 (2015): 87–92. http://dx.doi.org/10.1557/opl.2015.214.
Pełny tekst źródłaWang, F., B. Li, Y. Ou, L. F. Liu, C. Z. Peng, Z. S. Wang i W. Wang. "Giant room temperature elastocaloric effect of PbTiO3 ferroelectric materials with 90° domain structure". RSC Advances 6, nr 74 (2016): 70557–62. http://dx.doi.org/10.1039/c6ra13030e.
Pełny tekst źródłaBlinov, L. M., V. V. Lazarev, S. P. Palto i S. G. Yudin. "Giant quadratic electro-optical effect during polarization switching in ultrathin ferroelectric polymer films". Journal of Experimental and Theoretical Physics 114, nr 4 (kwiecień 2012): 691–97. http://dx.doi.org/10.1134/s1063776112030016.
Pełny tekst źródłaSakai, Hideaki, Koji Ikeura, Mohammad Saeed Bahramy, Naoki Ogawa, Daisuke Hashizume, Jun Fujioka, Yoshinori Tokura i Shintaro Ishiwata. "Critical enhancement of thermopower in a chemically tuned polar semimetal MoTe2". Science Advances 2, nr 11 (listopad 2016): e1601378. http://dx.doi.org/10.1126/sciadv.1601378.
Pełny tekst źródłaKumar, Ashok, i Hitesh Borkar. "Flexoelectricity in Bulk and Nanoscale Polar and Non-Polar Dielectrics". Solid State Phenomena 232 (czerwiec 2015): 213–33. http://dx.doi.org/10.4028/www.scientific.net/ssp.232.213.
Pełny tekst źródłaFan, Zhen, Juanxiu Xiao, Huajun Liu, Ping Yang, Qingqing Ke, Wei Ji, Kui Yao, Khuong P. Ong, Kaiyang Zeng i John Wang. "Stable Ferroelectric Perovskite Structure with Giant Axial Ratio and Polarization in Epitaxial BiFe0.6Ga0.4O3 Thin Films". ACS Applied Materials & Interfaces 7, nr 4 (21.01.2015): 2648–53. http://dx.doi.org/10.1021/am509016w.
Pełny tekst źródłaPan, Tianze, Ji Zhang, Dongxiao Che, Zhengyu Wang, Jiajia Wang, Jing Wang i Yaojin Wang. "Improved capacitive energy storage in sodium niobate-based relaxor antiferroelectric ceramics". Applied Physics Letters 122, nr 7 (13.02.2023): 072902. http://dx.doi.org/10.1063/5.0134282.
Pełny tekst źródłaChen, Peng, i Bang-Gui Liu. "Giant ferroelectric polarization and electric reversal of strong spontaneous magnetization in multiferroic Bi 2 FeMoO 6". Journal of Magnetism and Magnetic Materials 441 (listopad 2017): 497–502. http://dx.doi.org/10.1016/j.jmmm.2017.06.019.
Pełny tekst źródłaCai, Changlong, Deqiang Zhang, Weiguo Liu, Jun Wang, Shun Zhou, Yongming Su, Xueping Sun i Dabin Lin. "Synthesis, Giant Dielectric, and Pyroelectric Response of [001]-Oriented Pr3+ Doped Pb(Mg1/3Nb2/3)O3-PbTiO3 Ferroelectric Nano-Films Grown on Si Substrates". Materials 11, nr 12 (28.11.2018): 2392. http://dx.doi.org/10.3390/ma11122392.
Pełny tekst źródłaMatsuda, Hirofumi, Sachiko Ito i Takashi Iijima. "Giant Ferroelectric Polarization in Polar-Axis-Oriented Bi4-xPrxTi3O12 Polycrystalline Thin Films". Key Engineering Materials 269 (sierpień 2004): 45–48. http://dx.doi.org/10.4028/www.scientific.net/kem.269.45.
Pełny tekst źródłaHöfling, Marion, Xiandong Zhou, Lukas M. Riemer, Enrico Bruder, Binzhi Liu, Lin Zhou, Pedro B. Groszewicz i in. "Control of polarization in bulk ferroelectrics by mechanical dislocation imprint". Science 372, nr 6545 (27.05.2021): 961–64. http://dx.doi.org/10.1126/science.abe3810.
Pełny tekst źródłaNiu, Ruirui, Zhuoxian Li, Xiangyan Han, Zhuangzhuang Qu, Dongdong Ding, Zhiyu Wang, Qianling Liu i in. "Giant ferroelectric polarization in a bilayer graphene heterostructure". Nature Communications 13, nr 1 (21.10.2022). http://dx.doi.org/10.1038/s41467-022-34104-z.
Pełny tekst źródłaQi, He, Tengfei Hu, Shiqing Deng, Hui Liu, Zhengqian Fu i Jun Chen. "Giant dynamic electromechanical response via field driven pseudo-ergodicity in nonergodic relaxors". Nature Communications 14, nr 1 (27.04.2023). http://dx.doi.org/10.1038/s41467-023-38006-6.
Pełny tekst źródłaLee, N., C. Vecchini, Y. J. Choi, L. C. Chapon, A. Bombardi, P. G. Radaelli i S.-W. Cheong. "Giant Tunability of Ferroelectric Polarization inGdMn2O5". Physical Review Letters 110, nr 13 (26.03.2013). http://dx.doi.org/10.1103/physrevlett.110.137203.
Pełny tekst źródłaHuang, Cheng, Xiaojun Wang i Jinbo Zhao. "Large electrocaloric effects induced by multidomain-to-monodomain transition in ferroelectrics with electrical inclusions". Frontiers in Energy Research 11 (28.08.2023). http://dx.doi.org/10.3389/fenrg.2023.1257567.
Pełny tekst źródłaShen, Shiying, Haoqiang Ai, Yandong Ma, Haoyun Bai, Xuejian Du, Feifei Li i Hui Pan. "In-plane ferroelectric monolayer TlNbX4O and its application in bulk photovoltaic effect". Applied Physics Letters 123, nr 5 (31.07.2023). http://dx.doi.org/10.1063/5.0156495.
Pełny tekst źródłaTsukada, Shinya, Yasuhiro Fujii, Akari Kanagawa, Yukikuni Akishige i Kenji Ohwada. "Polarization behavior in a compositionally graded relaxor–ferroelectric crystal visualized by angle-resolved polarized Raman mapping". Communications Physics 6, nr 1 (18.05.2023). http://dx.doi.org/10.1038/s42005-023-01219-8.
Pełny tekst źródłaLee, Jun Hee, i Randy S. Fishman. "Giant Spin-Driven Ferroelectric Polarization inBiFeO3at Room Temperature". Physical Review Letters 115, nr 20 (11.11.2015). http://dx.doi.org/10.1103/physrevlett.115.207203.
Pełny tekst źródłaYin, Jie, Xiaoming Shi, Hong Tao, Zhi Tan, Xiang Lv, Xiangdong Ding, Jun Sun i in. "Deciphering the atomic-scale structural origin for large dynamic electromechanical response in lead-free Bi0.5Na0.5TiO3-based relaxor ferroelectrics". Nature Communications 13, nr 1 (25.10.2022). http://dx.doi.org/10.1038/s41467-022-34062-6.
Pełny tekst źródłaLiu, Zifang, Pengfei Hou, Lizhong Sun, Evgeny Y. Tsymbal, Jie Jiang i Qiong Yang. "In-plane ferroelectric tunnel junctions based on 2D α-In2Se3/semiconductor heterostructures". npj Computational Materials 9, nr 1 (13.01.2023). http://dx.doi.org/10.1038/s41524-022-00953-x.
Pełny tekst źródłaZhang, J. X., Q. He, M. Trassin, W. Luo, D. Yi, M. D. Rossell, P. Yu i in. "Microscopic Origin of the Giant Ferroelectric Polarization in Tetragonal-likeBiFeO3". Physical Review Letters 107, nr 14 (29.09.2011). http://dx.doi.org/10.1103/physrevlett.107.147602.
Pełny tekst źródłaAoyama, T., K. Yamauchi, A. Iyama, S. Picozzi, K. Shimizu i T. Kimura. "Giant spin-driven ferroelectric polarization in TbMnO3 under high pressure". Nature Communications 5, nr 1 (12.09.2014). http://dx.doi.org/10.1038/ncomms5927.
Pełny tekst źródłaLiu, Xitao, Zhenyue Wu, Tong Guan, Haidong Jiang, Peiqing Long, Xiaoqi Li, Chengmin Ji, Shuang Chen, Zhihua Sun i Junhua Luo. "Giant room temperature electrocaloric effect in a layered hybrid perovskite ferroelectric: [(CH3)2CHCH2NH3]2PbCl4". Nature Communications 12, nr 1 (24.09.2021). http://dx.doi.org/10.1038/s41467-021-25644-x.
Pełny tekst źródłaGupta, Reema, Monika Tomar, Vinay Gupta, Yuan Zhou, Anuj Chopra, Shashank Priya, A. S. Bhalla i R. Guo. "Giant Magnetoelectric Effect in PZT Thin Film Deposited on Nickel". Energy Harvesting and Systems 3, nr 2 (1.01.2016). http://dx.doi.org/10.1515/ehs-2015-0010.
Pełny tekst źródłaKang, Lili, Peng Jiang, Hua Hao, Yanhong Zhou, Xiaohong Zheng, Lei Zhang i Zhi Zeng. "Giant tunneling electroresistance in two-dimensional ferroelectric tunnel junctions with out-of-plane ferroelectric polarization". Physical Review B 101, nr 1 (14.01.2020). http://dx.doi.org/10.1103/physrevb.101.014105.
Pełny tekst źródłaGao, Zhaomeng, Weifeng Zhang, Qilan Zhong, Yonghui Zheng, Shuxian Lv, Qiqiao Wu, Yanling Song i in. "Giant electroresistance in hafnia-based ferroelectric tunnel junctions via enhanced polarization". Device, czerwiec 2023, 100004. http://dx.doi.org/10.1016/j.device.2023.100004.
Pełny tekst źródłaKremer, Geoffroy, Julian Maklar, Laurent Nicolaï, Christopher W. Nicholson, Changming Yue, Caio Silva, Philipp Werner i in. "Field-induced ultrafast modulation of Rashba coupling at room temperature in ferroelectric α-GeTe(111)". Nature Communications 13, nr 1 (27.10.2022). http://dx.doi.org/10.1038/s41467-022-33978-3.
Pełny tekst źródłaGrishin, A., S. Khartsev, P. Johnsson i A. Maneikis. "Epitaxial Giant Magnetoresistive/Ferroelectric La0.7Ca0.3MnO.3/PbZr0.52Ti0.48O3 Thin Film Heterostructures". MRS Proceedings 541 (1998). http://dx.doi.org/10.1557/proc-541-673.
Pełny tekst źródłaUrru, Andrea, Francesco Ricci, Alessio Filippetti, Jorge Íñiguez i Vincenzo Fiorentini. "A three-order-parameter bistable magnetoelectric multiferroic metal". Nature Communications 11, nr 1 (1.10.2020). http://dx.doi.org/10.1038/s41467-020-18664-6.
Pełny tekst źródłaResta, R., S. Massidda, M. Posternak i A. Baldereschi. "Polarization, Dynamical Charge, and Bonding in Partly Covalent Polar Insulators". MRS Proceedings 408 (1995). http://dx.doi.org/10.1557/proc-408-9.
Pełny tekst źródłaSannigrahi, J., S. Bhowal, S. Giri, S. Majumdar i I. Dasgupta. "Exchange-striction induced giant ferroelectric polarization in copper-based multiferroic materialα−Cu2V2O7". Physical Review B 91, nr 22 (23.06.2015). http://dx.doi.org/10.1103/physrevb.91.220407.
Pełny tekst źródła