Artykuły w czasopismach na temat „GH10 Xylanases”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „GH10 Xylanases”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Herold, Silvia, Robert Bischof, Benjamin Metz, Bernhard Seiboth i Christian P. Kubicek. "Xylanase Gene Transcription in Trichoderma reesei Is Triggered by Different Inducers Representing Different Hemicellulosic Pentose Polymers". Eukaryotic Cell 12, nr 3 (4.01.2013): 390–98. http://dx.doi.org/10.1128/ec.00182-12.
Pełny tekst źródłaTrong Khoa, Dao, Do Thi Huyen i Truong Nam Hai. "Probe-mining of endo-1,4-beta-xylanase from goats-rumen bacterial metagenomic DNA data". Vietnam Journal of Biotechnology 19, nr 3 (13.10.2021): 519–28. http://dx.doi.org/10.15625/1811-4989/16632.
Pełny tekst źródłaMeng, Dong-Dong, Yu Ying, Xiao-Hua Chen, Ming Lu, Kang Ning, Lu-Shan Wang i Fu-Li Li. "Distinct Roles for Carbohydrate-Binding Modules of Glycoside Hydrolase 10 (GH10) and GH11 Xylanases from Caldicellulosiruptor sp. Strain F32 in Thermostability and Catalytic Efficiency". Applied and Environmental Microbiology 81, nr 6 (9.01.2015): 2006–14. http://dx.doi.org/10.1128/aem.03677-14.
Pełny tekst źródłaŠuchová, Katarína, Nikolaj Spodsberg, Kristian B. R. Mørkeberg Krogh, Peter Biely i Vladimír Puchart. "Non-Specific GH30_7 Endo-β-1,4-xylanase from Talaromyces leycettanus". Molecules 26, nr 15 (30.07.2021): 4614. http://dx.doi.org/10.3390/molecules26154614.
Pełny tekst źródłaNam, Gyeong-Hwa, Myoung-Uoon Jang, Min-Jeong Kim, Jung-Min Lee, Min-Jae Lee i Tae-Jip Kim. "Enzymatic characterization of Paenibacillus amylolyticus xylanases GH10 and GH30 for xylan hydrolysis". Korean Journal of Microbiology 52, nr 4 (31.12.2016): 463–70. http://dx.doi.org/10.7845/kjm.2016.6068.
Pełny tekst źródłaEmami, Kaveh, Tibor Nagy, Carlos M. G. A. Fontes, Luis M. A. Ferreira i Harry J. Gilbert. "Evidence for Temporal Regulation of the Two Pseudomonas cellulosa Xylanases Belonging to Glycoside Hydrolase Family 11". Journal of Bacteriology 184, nr 15 (1.08.2002): 4124–33. http://dx.doi.org/10.1128/jb.184.15.4124-4133.2002.
Pełny tekst źródłaLiang, Fangfang, Yi Mo, Suleman Shah, Ying Xie, Arshad Mehmood, Hesheng Jiang i Yafen Guo. "Characterization of Two Wheat-Derived Glycoside Hydrolase Family-10 Xylanases Resistant to Xylanase Inhibitors". Journal of Food Quality 2022 (5.04.2022): 1–10. http://dx.doi.org/10.1155/2022/9590243.
Pełny tekst źródłaChow, V., D. Shantharaj, Y. Guo, G. Nong, G. V. Minsavage, J. B. Jones i J. F. Preston. "Xylan Utilization Regulon in Xanthomonas citri pv. citri Strain 306: Gene Expression and Utilization of Oligoxylosides". Applied and Environmental Microbiology 81, nr 6 (16.01.2015): 2163–72. http://dx.doi.org/10.1128/aem.03091-14.
Pełny tekst źródłaYang, Jiangke, i Zhenggang Han. "Understanding the Positional Binding and Substrate Interaction of a Highly Thermostable GH10 Xylanase from Thermotoga maritima by Molecular Docking". Biomolecules 8, nr 3 (30.07.2018): 64. http://dx.doi.org/10.3390/biom8030064.
Pełny tekst źródłaGhio, Silvina, Ornella Ontañon, Florencia E. Piccinni, Rubén Marrero Díaz de Villegas, Paola Talia, Daniel H. Grasso i Eleonora Campos. "Paenibacillus sp. A59 GH10 and GH11 Extracellular Endoxylanases: Application in Biomass Bioconversion". BioEnergy Research 11, nr 1 (6.12.2017): 174–90. http://dx.doi.org/10.1007/s12155-017-9887-7.
Pełny tekst źródłaMadan, Bharat, i Sun-Gu Lee. "Sequence and Structural Features of Subsite Residues in GH10 and GH11 Xylanases". Biotechnology and Bioprocess Engineering 23, nr 3 (czerwiec 2018): 311–18. http://dx.doi.org/10.1007/s12257-018-0105-z.
Pełny tekst źródłaXiao, Zhizhuang, Stephan Grosse, Hélène Bergeron i Peter C. K. Lau. "Cloning and characterization of the first GH10 and GH11 xylanases from Rhizopus oryzae". Applied Microbiology and Biotechnology 98, nr 19 (24.04.2014): 8211–22. http://dx.doi.org/10.1007/s00253-014-5741-4.
Pełny tekst źródłaMalgas, Samkelo, Mpho S. Mafa, Brian N. Mathibe i Brett I. Pletschke. "Unraveling Synergism between Various GH Family Xylanases and Debranching Enzymes during Hetero-Xylan Degradation". Molecules 26, nr 22 (9.11.2021): 6770. http://dx.doi.org/10.3390/molecules26226770.
Pełny tekst źródłaThirametoakkhara, Chanakan, Yi-Cheng Hong, Nuttapol Lerkkasemsan, Jian-Mao Shih, Chien-Yen Chen i Wen-Chien Lee. "Application of Endoxylanases of Bacillus halodurans for Producing Xylooligosaccharides from Empty Fruit Bunch". Catalysts 13, nr 1 (25.12.2022): 39. http://dx.doi.org/10.3390/catal13010039.
Pełny tekst źródłaLam, Ming Quan, Nicola C. Oates, Daniel R. Leadbeater, Kian Mau Goh, Adibah Yahya, Madihah Md Salleh, Zaharah Ibrahim, Neil C. Bruce i Chun Shiong Chong. "Genomic Analysis to Elucidate the Lignocellulose Degrading Capability of a New Halophile Robertkochia solimangrovi". Genes 13, nr 11 (17.11.2022): 2135. http://dx.doi.org/10.3390/genes13112135.
Pełny tekst źródłaLu, Lin, Yongwei Liu i Zengyan Zhang. "Global Characterization of GH10 Family Xylanase Genes in Rhizoctonia cerealis and Functional Analysis of Xylanase RcXYN1 During Fungus Infection in Wheat". International Journal of Molecular Sciences 21, nr 5 (6.03.2020): 1812. http://dx.doi.org/10.3390/ijms21051812.
Pełny tekst źródłaNaumoff, D. G., I. S. Kulichevskaya i S. N. Dedysh. "Genetic Determinants of Xylan Utilization in Humisphaera borealis M1803T, a Planctomycete of the Class Phycisphaerae". Microbiology 91, nr 3 (czerwiec 2022): 249–58. http://dx.doi.org/10.1134/s002626172230004x.
Pełny tekst źródłaGlekas, Panayiotis D., Styliani Kalantzi, Anargiros Dalios, Dimitris G. Hatzinikolaou i Diomi Mamma. "Biochemical and Thermodynamic Studies on a Novel Thermotolerant GH10 Xylanase from Bacillus safensis". Biomolecules 12, nr 6 (6.06.2022): 790. http://dx.doi.org/10.3390/biom12060790.
Pełny tekst źródłaTeo, Seng Chong, Kok Jun Liew, Mohd Shahir Shamsir, Chun Shiong Chong, Neil C. Bruce, Kok-Gan Chan i Kian Mau Goh. "Characterizing a Halo-Tolerant GH10 Xylanase from Roseithermus sacchariphilus Strain RA and Its CBM-Truncated Variant". International Journal of Molecular Sciences 20, nr 9 (9.05.2019): 2284. http://dx.doi.org/10.3390/ijms20092284.
Pełny tekst źródłaGrilli, Diego J., Jan Kopečný, Jakub Mrázek, Romana Marinšek-Logar, Sebastián Paez Lama, Miguel Sosa Escudero i Graciela N. Arenas. "Identification of GH10 xylanases in strains 2 and Mz5 of Pseudobutyrivibrio xylanivorans". Folia Microbiologica 59, nr 6 (20.06.2014): 507–14. http://dx.doi.org/10.1007/s12223-014-0329-z.
Pełny tekst źródłaYagi, Haruka, Ryo Takehara, Aika Tamaki, Koji Teramoto, Sosyu Tsutsui i Satoshi Kaneko. "Functional Characterization of the GH10 and GH11 Xylanases from Streptomyces olivaceoviridis E-86 Provide Insights into the Advantage of GH11 Xylanase in Catalyzing Biomass Degradation". Journal of Applied Glycoscience 66, nr 1 (20.02.2019): 29–35. http://dx.doi.org/10.5458/jag.jag.jag-2018_0008.
Pełny tekst źródłaSalas-Veizaga, Daniel Martin, Rodrigo Villagomez, Javier A. Linares-Pastén, Cristhian Carrasco, María Teresa Álvarez, Patrick Adlercreutz i Eva Nordberg Karlsson. "Extraction of Glucuronoarabinoxylan from Quinoa Stalks (Chenopodium quinoa Willd.) and Evaluation of Xylooligosaccharides Produced by GH10 and GH11 Xylanases". Journal of Agricultural and Food Chemistry 65, nr 39 (20.09.2017): 8663–73. http://dx.doi.org/10.1021/acs.jafc.7b01737.
Pełny tekst źródłaBalazs, Yael S., Elina Lisitsin, Oshrat Carmiel, Gil Shoham, Yuval Shoham i Asher Schmidt. "Identifying critical unrecognized sugar-protein interactions in GH10 xylanases fromGeobacillus stearothermophilususing STD NMR". FEBS Journal 280, nr 18 (5.08.2013): 4652–65. http://dx.doi.org/10.1111/febs.12437.
Pełny tekst źródłaHuyen, Do Thi, Nguyen Minh Giang, Nguyen Thu Nguyet i Truong Nam Hai. "Probe design for mining and selection of genes coding endo 1- 4 xylanase from dna metagenome data". TAP CHI SINH HOC 40, nr 1 (25.01.2018): 39–50. http://dx.doi.org/10.15625/0866-7160/v40n1.9200.
Pełny tekst źródłaDenisenko, Yury A., Alexander V. Gusakov, Aleksandra M. Rozhkova, Ivan N. Zorov, Anna V. Bashirova, Veronika Yu Matys, Vitaly A. Nemashkalov i Arkady P. Sinitsyn. "Protein engineering of GH10 family xylanases for gaining a resistance to cereal proteinaceous inhibitors". Biocatalysis and Agricultural Biotechnology 17 (styczeń 2019): 690–95. http://dx.doi.org/10.1016/j.bcab.2019.01.042.
Pełny tekst źródłaMiao, Youzhi, Pan Li, Guangqi Li, Dongyang Liu, Irina S. Druzhinina, Christian P. Kubicek, Qirong Shen i Ruifu Zhang. "Two degradation strategies for overcoming the recalcitrance of natural lignocellulosic xylan by polysaccharides-binding GH10 and GH11 xylanases of filamentous fungi". Environmental Microbiology 19, nr 3 (6.02.2017): 1054–64. http://dx.doi.org/10.1111/1462-2920.13614.
Pełny tekst źródłaTirion, Monique M. "On the sensitivity of protein data bank normal mode analysis: an application to GH10 xylanases". Physical Biology 12, nr 6 (24.11.2015): 066013. http://dx.doi.org/10.1088/1478-3975/12/6/066013.
Pełny tekst źródłaLi, Zhongyuan, Xianli Xue, Heng Zhao, Peilong Yang, Huiying Luo, Junqi Zhao, Huoqing Huang i Bin Yao. "A C-Terminal Proline-Rich Sequence Simultaneously Broadens the Optimal Temperature and pH Ranges and Improves the Catalytic Efficiency of Glycosyl Hydrolase Family 10 Ruminal Xylanases". Applied and Environmental Microbiology 80, nr 11 (21.03.2014): 3426–32. http://dx.doi.org/10.1128/aem.00016-14.
Pełny tekst źródłaGusakov, Alexander V., i Boris B. Ustinov. "ORIGINAL RESEARCH: Assaying sensitivity of fungal xylanases to proteinaceous inhibitors from a rye extract: Two GH10 family xylanases resistant to XIP-like inhibitors". Industrial Biotechnology 5, nr 2 (czerwiec 2009): 104–9. http://dx.doi.org/10.1089/ind.2009.5.104.
Pełny tekst źródłaLai, Ming-Wei, i Ruey-Fen Liou. "Two genes encoding GH10 xylanases are essential for the virulence of the oomycete plant pathogen Phytophthora parasitica". Current Genetics 64, nr 4 (22.02.2018): 931–43. http://dx.doi.org/10.1007/s00294-018-0814-z.
Pełny tekst źródłaLiu, Fuchuan, Yong Xue, Jian Liu, Lihui Gan i Minnan Long. "ACE3 as a master transcriptional factor regulates cellulase and xylanase production in Trichoderma orientalis EU7-22". BioResources 13, nr 3 (23.07.2018): 6790–801. http://dx.doi.org/10.15376/biores.13.3.6790-6801.
Pełny tekst źródłavan Gool, M. P., G. C. J. van Muiswinkel, S. W. A. Hinz, H. A. Schols, A. P. Sinitsyn i H. Gruppen. "Two GH10 endo-xylanases from Myceliophthora thermophila C1 with and without cellulose binding module act differently towards soluble and insoluble xylans". Bioresource Technology 119 (wrzesień 2012): 123–32. http://dx.doi.org/10.1016/j.biortech.2012.05.117.
Pełny tekst źródłaŠuchová, Katarína, Andrej Chyba, Zuzana Hegyi, Martin Rebroš i Vladimír Puchart. "Yeast GH30 Xylanase from Sugiyamaella lignohabitans Is a Glucuronoxylanase with Auxiliary Xylobiohydrolase Activity". Molecules 27, nr 3 (25.01.2022): 751. http://dx.doi.org/10.3390/molecules27030751.
Pełny tekst źródłaRangel Pedersen, Ninfa, Morten Tovborg, Abdoreza Soleimani Farjam i Eduardo Antonio Della Pia. "Multicomponent carbohydrase system from Trichoderma reesei: A toolbox to address complexity of cell walls of plant substrates in animal feed". PLOS ONE 16, nr 6 (4.06.2021): e0251556. http://dx.doi.org/10.1371/journal.pone.0251556.
Pełny tekst źródłaSainz-Polo, María Ángela, Susana Valeria Valenzuela, F. Javier Pastor i Julia Sanz-Aparicio. "Crystallization and preliminary X-ray diffraction analysis of Xyn30D fromPaenibacillus barcinonensis". Acta Crystallographica Section F Structural Biology Communications 70, nr 7 (19.06.2014): 963–66. http://dx.doi.org/10.1107/s2053230x14012035.
Pełny tekst źródłaWang, Ruijun, Zhengchu Liu, Lifeng Cheng, Shengwen Duan, Xiangyuan Feng, Ke Zheng, Yi Cheng i Jie Zeng. "A novel endo-β-1,4-xylanase GH30 from Dickeya dadantii DCE-01: Clone, expression, characterization, and ramie biological degumming function". Textile Research Journal 89, nr 4 (26.12.2017): 463–72. http://dx.doi.org/10.1177/0040517517748511.
Pełny tekst źródłaLiu, Liangwei, Xiaofeng Sun, Pengfei Yan, Linmin Wang i Hongge Chen. "Non-Structured Amino-Acid Impact on GH11 Differs from GH10 Xylanase". PLoS ONE 7, nr 9 (21.09.2012): e45762. http://dx.doi.org/10.1371/journal.pone.0045762.
Pełny tekst źródłaAnye, Valentine, Robert F. Kruger i Wolf-Dieter Schubert. "Structural and biophysical characterization of the multidomain xylanase Xyl". PLOS ONE 17, nr 6 (3.06.2022): e0269188. http://dx.doi.org/10.1371/journal.pone.0269188.
Pełny tekst źródłaMoreno-Sánchez, Ismael, María Dolores Pejenaute-Ochoa, Blanca Navarrete, Ramón R. Barrales i José I. Ibeas. "Ustilago maydis Secreted Endo-Xylanases Are Involved in Fungal Filamentation and Proliferation on and Inside Plants". Journal of Fungi 7, nr 12 (15.12.2021): 1081. http://dx.doi.org/10.3390/jof7121081.
Pełny tekst źródłaHu, Jinguang, i Jack N. Saddler. "Why does GH10 xylanase have better performance than GH11 xylanase for the deconstruction of pretreated biomass?" Biomass and Bioenergy 110 (marzec 2018): 13–16. http://dx.doi.org/10.1016/j.biombioe.2018.01.007.
Pełny tekst źródłaZhu, Weijia, Liqin Qin, Youqiang Xu, Hongyun Lu, Qiuhua Wu, Weiwei Li, Chengnan Zhang i Xiuting Li. "Three Molecular Modification Strategies to Improve the Thermostability of Xylanase XynA from Streptomyces rameus L2001". Foods 12, nr 4 (18.02.2023): 879. http://dx.doi.org/10.3390/foods12040879.
Pełny tekst źródłaValenzuela, Susana Valeria, Pilar Diaz i F. I. Javier Pastor. "Modular Glucuronoxylan-Specific Xylanase with a Family CBM35 Carbohydrate-Binding Module". Applied and Environmental Microbiology 78, nr 11 (23.03.2012): 3923–31. http://dx.doi.org/10.1128/aem.07932-11.
Pełny tekst źródłaDang, Yahui, Mingqi Liu i Xiaoqian Wu. "Recombinant rice xylanase-inhibiting protein inhibits GH11 endo-xylanases through competitive inhibition". Protein Expression and Purification 156 (kwiecień 2019): 17–24. http://dx.doi.org/10.1016/j.pep.2018.12.008.
Pełny tekst źródłaIvaldi, Corinne, Mariane Daou, Laurent Vallon, Alexandra Bisotto, Mireille Haon, Sona Garajova, Emmanuel Bertrand i in. "Screening New Xylanase Biocatalysts from the Mangrove Soil Diversity". Microorganisms 9, nr 7 (12.07.2021): 1484. http://dx.doi.org/10.3390/microorganisms9071484.
Pełny tekst źródłaŠuchová, Katarína, Vladimír Puchart, Nikolaj Spodsberg, Kristian B. R. Mørkeberg Krogh i Peter Biely. "Catalytic Diversity of GH30 Xylanases". Molecules 26, nr 15 (27.07.2021): 4528. http://dx.doi.org/10.3390/molecules26154528.
Pełny tekst źródłaAnand, Deepsikha, Jeya Nasim, Sangeeta Yadav i Dinesh Yadav. "Bioinformatics Insights Into Microbial Xylanase Protein Sequences". Biosciences, Biotechnology Research Asia 15, nr 2 (27.06.2018): 275–94. http://dx.doi.org/10.13005/bbra/2631.
Pełny tekst źródłaDang, Ya-hui, Ming-qi Liu i Qian Wang. "Inhibiting the Catalytic Activity of Family GH11 Xylanases by Recombinant Rice Xylanase-Inhibiting Protein". Catalysis Letters 148, nr 7 (26.05.2018): 2139–48. http://dx.doi.org/10.1007/s10562-018-2431-3.
Pełny tekst źródłaKim, Do Young, Jonghoon Kim, Yung Mi Lee, Jong Suk Lee, Dong-Ha Shin, Bon-Hwan Ku, Kwang-Hee Son i Ho-Yong Park. "Identification and Characterization of a Novel, Cold-Adapted d-Xylobiose- and d-Xylose-Releasing Endo-β-1,4-Xylanase from an Antarctic Soil Bacterium, Duganella sp. PAMC 27433". Biomolecules 11, nr 5 (30.04.2021): 680. http://dx.doi.org/10.3390/biom11050680.
Pełny tekst źródłaSt John, Franz J., Diane Dietrich, Casey Crooks, Edwin Pozharski, Javier M. González, Elizabeth Bales, Kennon Smith i Jason C. Hurlbert. "A novel member of glycoside hydrolase family 30 subfamily 8 with altered substrate specificity". Acta Crystallographica Section D Biological Crystallography 70, nr 11 (23.10.2014): 2950–58. http://dx.doi.org/10.1107/s1399004714019531.
Pełny tekst źródłaKim, Do Young, Mi Kyoung Han, Doo-Sang Park, Jong Suk Lee, Hyun-Woo Oh, Dong-Ha Shin, Tae-Sook Jeong i in. "Novel GH10 Xylanase, with a Fibronectin Type 3 Domain, from Cellulosimicrobium sp. Strain HY-13, a Bacterium in the Gut of Eisenia fetida". Applied and Environmental Microbiology 75, nr 22 (18.09.2009): 7275–79. http://dx.doi.org/10.1128/aem.01075-09.
Pełny tekst źródła