Gotowa bibliografia na temat „Géométrie p-adique”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Géométrie p-adique”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Géométrie p-adique"
Ducros, Antoine. "Variation de la dimension relative en géométrie analytique p-adique". Compositio Mathematica 143, nr 6 (listopad 2007): 1511–32. http://dx.doi.org/10.1112/s0010437x07003193.
Pełny tekst źródłaPoineau, Jérôme. "Noethérianité et privilège en géométrique analytique p-adique". Comptes Rendus Mathematique 343, nr 4 (sierpień 2006): 267–70. http://dx.doi.org/10.1016/j.crma.2006.06.005.
Pełny tekst źródłaChaudouard, Pierre-Henri. "Intégrales orbitales pondérées sur les algèbres de Lie : le cas p-adique". Canadian Journal of Mathematics 54, nr 2 (1.04.2002): 263–302. http://dx.doi.org/10.4153/cjm-2002-009-6.
Pełny tekst źródłaRozprawy doktorskie na temat "Géométrie p-adique"
Mazouz, Abdelhak. "Nombres de Bell généralisés et analyse p-adique". Paris 13, 1994. http://www.theses.fr/1994PA132014.
Pełny tekst źródłaHu, Yongquan. "Autour du programme de Langlands local p-adique et modulo p". Paris 11, 2009. http://www.theses.fr/2009PA112136.
Pełny tekst źródłaLet p be a prime and F be a complete discrete valuation field with a finite residual field of characteristic p. This thesis follows the p-adic and modulo p local Langlands programme which is proposed by Breuil. It consists of three chapters. Suppose moreover that F is of characteristic 0 in the first chapter and F unramified in the third. In the first chapter, we prove a part of a conjecture of Breuil and Schneider on the existence of stable lattices inside certain locally algebraic representations of \GL_n(F). In the second chapter, to an irreducible smooth representation of \GL_2(F) over \overline{\F}_p with a central character, we canonically associate a diagram which determines the isomorphism class of the original representation. In the third chapter, we use the construction of the second chapter to construct new supersingular representations in the cases considered by Breuil and Paskunas
Xu, Daxin. "Correspondances de Simpson p-adique et modulo pⁿ". Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLS133/document.
Pełny tekst źródłaThis thesis is devoted to two arithmetic variants of Simpson's correspondence. In the first part, I compare the p-adic Simpson correspondence with a p-adic analogue of the Narasimhan-Seshadri's correspondence for curves over p-adic fields due to Deninger and Werner. Narasimhan and Seshadri established a correspondence between stable bundles of degree zero and unitary representations of the topological fundamental group for a complex smooth proper curve. Using parallel transport, Deninger and Werner associated functorially to every vector bundle on a p-adic curve whose reduction is strongly semi-stable of degree 0 a p-adic representation of the fundamental group of the curve. They asked several questions: whether their functor is fully faithful; whether the cohomology of the local systems produced by this functor admits a Hodge-Tate filtration; and whether their construction is compatible with the p-adic Simpson correspondence developed by Faltings. We answer positively these questions. The second part is devoted to the construction of a lifting of the Cartier transform of Ogus-Vologodsky modulo pⁿ. Let W be the ring of the Witt vectors of a perfect field of characteristic p, X a smooth formal scheme over W, X' the base change of X by the Frobenius morphism of W, X'_2 the reduction modulo p² of X' and Y the special fiber of X. We lift the Cartier transform of Ogus-Vologodsky relative to X'_2 modulo pⁿ. More precisely, we construct a functor from the category of pⁿ-torsion O_{X'}-modules with integrable p-connection to the category of pⁿ-torsion O_X-modules with integrable connection, each subject to a suitable nilpotence condition. Our construction is based on Oyama's reformulation of the Cartier transform of Ogus-Vologodsky in characteristic p. If there exists a lifting F: X -> X' of the relative Frobenius morphism of Y, our functor is compatible with a functor constructed by Shiho from F. As an application, we give a new interpretation of relative Fontaine modules introduced by Faltings and of the computation of their cohomology
Hernandez, Valentin. "Géométrie p-adique des variétés de Shimura de type P.E.L et familles de formes automorphes". Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066041.
Pełny tekst źródłaIn this thesis we study the p-adic properties of P.E.L. type Shimura varieties which have good reduction at p and for which the ordinary locus is empty. In the first chapter, we construct locally some invariants that cuts out inside the Shimura varieties an open and dense locus, the mu-ordinary locus, and study the geometric properties of these invariants. In the second chapter we extend to the unramified mu-ordinary case the theory of the canonical subgroup. Thus, we construct for ’nearly’ mu-ordinary families of p-divisible groups a canonical filtration of the p^n-torsion. This applies in particular to some strict rigid neighbourhoods of the mu-ordinary locus of the Shimura varieties previously studied. In the third chapter, which is a collaboration with Stéphane Bijakowski, we extend the construction of the invariants of the first chapter to some local integral models of Shimura varieties where the prime p can be ramified in the local datum. Finally, in the last chapter, we use the constructions of the first two chapter to construct a rigid variety, the Eigenvariety, which parametrises the finite slope p-adic families of Picard automorphic forms when the prime p is inert in the quadratic imaginary field of the Picard datum
Le, Bras Arthur-César. "Anneaux de Fontaine et géométrie : deux exemples d'interaction". Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066020.
Pełny tekst źródłaThis PhD thesis contains two chapters. The topics of these two chapters are quite different, but they have in common to draw connections between geometric objects and objects which come from p-adic Hodge theory. The framework of the first chapter is the p-adic Langlands program. We describe the de Rham complex of the étale overings of Drinfeld's p-adic upper half-plane for GL_2(Q_p). Conjectured by Breuil and Strauch, this description gives a geometric realization of the p-adic local Langlands correspondence for certain two-dimensional de Rham representations of the absolute Galois group of Q_p. The second chapter is devoted to the study of the category of Banach-Colmez spaces. Our main result is a precise description of this abelian category in terms of the category of coherent sheaves on the Fargues-Fontaine. Along the way we also prove a few results of independent interest about the pro-étale cohomology and syntomic cohomology of rigid spaces
Bouis, Tess. "On the motivic cohomology of mixed characteristic schemes". Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASM033.
Pełny tekst źródłaIn this thesis, we construct a theory of motivic cohomology for quasi-compact quasi-separated schemes, which generalises the construction of Elmanto-Morrow in the case of schemes over a field. Our construction is non-A¹-invariant in general, but it uses the classical A¹-invariant motivic cohomology of smooth ℤ-schemes as an input. The main new input of our construction is a global filtration on topological cyclic homology, whose graded pieces provide a common generalisation of derived de Rham cohomology and Bhatt-Morrow-Scholze's syntomic cohomology. Our theory satisfies various expected properties of motivic cohomology, including a relation to non-connective algebraic K-theory via an Atiyah-Hirzebruch spectral sequence, the projective bundle formula, and pro cdh descent. The results of Chapter 11 have appeared as [Bou23]
Poineau, Jérôme. "Des espaces de Berkovich locaux et globaux". Habilitation à diriger des recherches, Université de Strasbourg, 2013. http://tel.archives-ouvertes.fr/tel-00871134.
Pełny tekst źródłaMunoz, Bertrand Ruben. "Coefficients en cohomologie de De Rham-Witt surconvergente". Thesis, Normandie, 2020. http://www.theses.fr/2020NORMC205.
Pełny tekst źródłaUnder a few assumptions, we prove an equivalence of category between a subcategory of F-isocristals on a smooth algebraic variety and overcongergent integrable De Rham-Witt connections. We do so by giving an equivalent definition of overconvergence, and by studying the explicit local structure of the De Rham-Witt complex
Vanhaecke, Arnaud. "Cohomologie de systèmes locaux p-adiques sur les revêtements du demi-plan de Drinfeld". Electronic Thesis or Diss., Sorbonne université, 2023. http://www.theses.fr/2023SORUS463.
Pełny tekst źródłaThis thesis is devoted to further developing the program of geometrization of the local p-adic Langlands correspondence, which was initiated by Colmez, Dospinescu and Niziol in their 2020 paper. They have shown that 2-dimensional Galois representations that are supercuspidal (implicitly de Rham) and with Hodge-Tate weights 0 and 1, appear in the p-adic étale cohomology of the coverings of Drinfeld's half-plane and that their multiplicity is given by the p-adic Langlands correspondence. The main result of this thesis is the generalization of this result in arbitrary weights, by considering the p-adic étale cohomology with coefficients in the symmetric powers of the universal local system on Drinfeld's tower. A striking novelty is the appearance of special representations in the cohomology of the tower with coefficients, with expected multiplicity. The key point is that the local systems which we consider turn out to be particularly simple: they are isotrivial opers.The first part of this thesis is devoted to the study of local isotrivial p-adic systems and to the calculation, in the case of isotrivial opers on curves, of a diagram linking the proetale cohomology of the local system to the Hyodo-Kato cohomology and the de Rham cohomology of the curve.The second part of this thesis is the application of these results to the case of the Drinfeld's tower, allowing the computation of the mentioned multiplicities
Pigeon, David. "Les D-modules arithmétiques dans le cas des p-bases et un algorithme pour le calcul de fonctions zêta". Caen, 2014. http://www.theses.fr/2014CAEN2013.
Pełny tekst źródłaThe theory of arithmetic D-modules was developed by Pierre Berthelot, based on the main ideas of Grothendieck and Mebkhout, who were the first to see the D-modules as a new cohomological approach. The primary aim of my thesis was to generalize the local descriptions of arithmetic D-modules in the smooth case, found by Pierre Berthelot. We want to integrate recent case studies, in particular from Richard Crew, where he studies formally smooth schemes. For that purpose, we generalize the notion of relatively perfect to the cases of formal schemes and obtain in this context a similar description to the smooth case. In a second step, we give an algorithm which allows calculating the zeta function of certain varieties, which are the extension of a variety that is already known to calculate the zeta function
Książki na temat "Géométrie p-adique"
Courbes et Fibres Vectoriels en Theorie de Hodge $p$-Adique. American Mathematical Society, 2018.
Znajdź pełny tekst źródłaCzęści książek na temat "Géométrie p-adique"
André, Yves. "Théorie des motifs et interprétation géométrique des valeurs p-adiques de G-functions (une introduction)". W Number Theory, 37–60. Cambridge University Press, 1995. http://dx.doi.org/10.1017/cbo9780511661990.003.
Pełny tekst źródła