Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Geometric Measure of Entanglement.

Rozprawy doktorskie na temat „Geometric Measure of Entanglement”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych rozpraw doktorskich naukowych na temat „Geometric Measure of Entanglement”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj rozprawy doktorskie z różnych dziedzin i twórz odpowiednie bibliografie.

1

Amouzou, Grâce Dorcas Akpéné. "Etude de l’intrication par les polynômes de Mermin : application aux algorithmes quantiques". Electronic Thesis or Diss., Bourgogne Franche-Comté, 2024. http://www.theses.fr/2024UBFCK063.

Pełny tekst źródła
Streszczenie:
Cette thèse explore la mesure de l'intrication dans certains états hypergraphiques, dans certains algorithmes quantiques tels que les algorithmes quantiques d'estimation de phase et de comptage, ainsi que dans les circuits d'agents réactifs, à l'aide de la mesure géométrique de l'intrication, d'outils issus des polynômes de Mermin et des matrices de coefficients. L'intrication est un concept présent en physique quantique qui n'a pas d'équivalent connu à ce jour en physique classique.Le coeur de notre recherche repose sur la mise en place de dispositifs de détection et de mesure de l'intrication afin d'étudier des états quantiques du point de vue de l'intrication.Dans cette optique, des calculs sont d'abord effectués numériquement puis sur simulateur et ordinateur quantiques. Effectivement, trois des outils exploités sont implémentables sur machine quantique, ce qui permet de comparer les résultats théoriques et "réels"
This thesis explores the measurement of entanglement in certain hypergraph states, in certain quantum algorithms like the Quantum Phase estimation and Counting algorithms as well as in reactive agent circuits, using the geometric measurement of entanglement, tools from Mermin polynomials and coefficient matrices. Entanglement is a concept present in quantum physics that has no known equivalent to date in classical physics.The core of our research is based on the implementation of entanglement detection and measurement devices in order to study quantum states from the point of view of entanglement.With this in mind, calculations are first carried out numerically and then on a quantum simulator and computer. Indeed, three of the tools used can be implemented on a quantum machine, which allows us to compare theoretical and "real" results
Style APA, Harvard, Vancouver, ISO itp.
2

Teng, Peiyuan. "Tensor network and neural network methods in physical systems". The Ohio State University, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=osu1524836522115804.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Fuentes, Guridi Ivette. "Entanglement and geometric phases in light-matter interactions". Thesis, Imperial College London, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.400562.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Gunhan, Ali Can. "Environmental Effects On Quantum Geometric Phase And Quantum Entanglement". Phd thesis, METU, 2008. http://etd.lib.metu.edu.tr/upload/3/12609450/index.pdf.

Pełny tekst źródła
Streszczenie:
We investigate the geometric phase (GP) acquired by the states of a spin-1/2 nucleus which is subject to a static magnetic field. This nucleus as the carrier system of GP, is taken as coupled to a dissipative environment, so that it evolves non-unitarily. We study the effects of different characteristics of different environments on GP as nucleus evolves in time. We showed that magnetic field strength is the primary physical parameter that determines the stability of GP
its stability decreases as the magnetic field strength increases. (By decrease in stability what we mean is the increase in the time rate of change of GP.) We showed that this decrease can be very rapid, and so it could be impossible to make use of it as a quantum logic gate in quantum information theory (QIT). To see if these behaviors differ in different environments, we analyze the same system for a fixed temperature environment which is under the influence of an electromagnetic field in a squeezed state. We find that the general dependence of GP on magnetic field does not change, but this time the effects are smoother. Namely, increase in magnetic field decreases the stability of GP also for in this environment
but this decrease is slower in comparison with the former case, and furthermore it occurs gradually. As a second problem we examine the entanglement of two atoms, which can be used as a two-qubit system in QIT. The entanglement is induced by an external quantum system. Both two-level atoms are coupled to a third two-level system by dipole-dipole interaction. The two atoms are assumed to be in ordinary vacuum and the third system is taken as influenced by a certain environment. We examined different types of environments. We show that the steady-state bipartite entanglement can be achieved in case the environment is a strongly fluctuating, that is a squeezed-vacuum, while it is not possible for a thermalized environment.
Style APA, Harvard, Vancouver, ISO itp.
5

Hartley, Julian. "Aspects of entanglement and geometric phase in quantum information". Thesis, Imperial College London, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.420622.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Johansson, Markus. "Entanglement and Quantum Computation from a Geometric and Topological Perspective". Doctoral thesis, Uppsala universitet, Teoretisk kemi, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-173120.

Pełny tekst źródła
Streszczenie:
In this thesis we investigate geometric and topological structures in the context of entanglement and quantum computation. A parallel transport condition is introduced in the context of Franson interferometry based on the maximization of two-particle coincidence intensity. The dependence on correlations is investigated and it is found that the holonomy group is in general non-Abelian, but Abelian for uncorrelated systems. It is found that this framework contains a parallel transport condition developed by Levay in the case of two-qubit systems undergoing local SU(2) evolutions. Global phase factors of topological origin, resulting from cyclic local SU(2) evolution, called topological phases, are investigated in the context of multi-qubit systems. These phases originate from the topological structure of the local SU(2)-orbits and are an attribute of most entangled multi-qubit systems. The relation between topological phases and SLOCC-invariant polynomials is discussed. A general method to find the values of the topological phases in an n-qubit system is described. A non-adiabatic generalization of holonomic quantum computation is developed in which high-speed universal quantum gates can be realized by using non-Abelian geometric phases. It is shown how a set of non-adiabatic holonomic one- and two-qubit gates can be implemented by utilizing transitions in a generic three-level Λ configuration. The robustness of the proposed scheme to different sources of error is investigated through numerical simulation. It is found that the gates can be made robust to a variety of errors if the operation time of the gate can be made sufficiently short. This scheme opens up for universal holonomic quantum computation on qubits characterized by short coherence times.
Style APA, Harvard, Vancouver, ISO itp.
7

Villa, E. "Methods of geometric measure theory in stochastic geometry". Doctoral thesis, Università degli Studi di Milano, 2007. http://hdl.handle.net/2434/28369.

Pełny tekst źródła
Streszczenie:
All the results of the present thesis have been obtained facing problems related to the study of the so called birth-and-growth stochastic processes, relevant in several real applications, like crystallization processes, tumour growth, angiogenesis, etc. We have introduced a Delta formalism, à la Dirac-Schwartz, for the description of random measures associated with random closed sets in R^d of lower dimensions, such that the usual Dirac delta at a point follows as particular case, in order to provide a natural framework for deriving evolution equations for mean densities at integer Hausdorff dimensions in terms of the relevant kinetic parameters associated to a given birth-and-growth process. In this context connections with the concepts of hazard functions and spherical contact distribution functions, together with local Steiner formulas at first order have been studied and, under suitable general conditions on the resulting random growing set, we may write evolution equations of the mean volume density in terms of the growing rate and of the mean surface density. To this end we have introduced definitions of discrete, continuous and absolutely continuous random closed set, which extend the standard well known definitions for random variables. Further, since in many real applications such as fibre processes, n-facets of random tessellations several problems are related to the estimation of such mean densities, in order to face such problems in the general setting of spatially inhomogeneous processes, we have analyzed an approximation of mean densities for sufficiently regular random closed sets, such that some known results in literature follow as particular cases.
Style APA, Harvard, Vancouver, ISO itp.
8

Hudgell, Sarahann. "Produce software to measure the geometric properties of airways /". Leeds : University of Leeds, School of Computer Studies, 2008. http://www.comp.leeds.ac.uk/fyproj/reports/0708/Hudgell.pdf.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Vedovato, Mattia. "Some variational and geometric problems on metric measure spaces". Doctoral thesis, Università degli studi di Trento, 2022. https://hdl.handle.net/11572/337379.

Pełny tekst źródła
Streszczenie:
In this Thesis, we analyze three variational and geometric problems, that extend classical Euclidean issues of the calculus of variations to more general classes of spaces. The results we outline are based on the articles [Ved21; MV21] and on a forthcoming joint work with Nicolussi Golo and Serra Cassano. In the first place, in Chapter 1 we provide a general introduction to metric measure spaces and some of their properties. In Chapter 2 we extend the classical Talenti’s comparison theorem for elliptic equations to the setting of RCD(K,N) spaces: in addition the the generalization of Talenti’s inequality, we will prove that the result is rigid, in the sense that equality forces the space to have a symmetric structure, and stable. Chapter 3 is devoted to the study of the Bernstein problem for intrinsic graphs in the first Heisenberg group H^1: we will show that under mild assumptions on the regularity any stationary and stable solution to the minimal surface equation needs to be intrinsically affine. Finally, in Chapter 4 we study the dimension and structure of the singular set for p-harmonic maps taking values in a Riemannian manifold.
Style APA, Harvard, Vancouver, ISO itp.
10

CASTELPIETRA, MARCO. "Metric, geometric and measure theoretic properties of nonsmooth value functions". Doctoral thesis, Università degli Studi di Roma "Tor Vergata", 2007. http://hdl.handle.net/2108/202601.

Pełny tekst źródła
Streszczenie:
La funzione valore è un nodo centrale del controllo ottimo. `E noto che la funzione valore può essere irregolare anche per sistemi molto regolari. Pertanto l’analisi non liscia diviene un importante strumento per studiarne le proprietà, anche grazie alle numerose connessioni con la semiconcavità. Sotto opportune ipotesi, la funzione valore è localmente semiconcava. Questa proprietà è connessa anche con la proprietà di sfera interna dei suoi insiemi di livello e dei loro perimetri. In questa tesi introduciamo l’analisi non-liscia e le sue connessioni con funzioni semiconcave ed insiemi di perimetro finito. Descriviamo i sistemi di controllo ed introduciamo le proprietà basilari della funzione tempo minimo T(x) e della funzione valore V (x). Usando il principio del massimo, estendiamo alcuni risultati noti di sfera interna per gli insiemi raggiungibili A(T), al caso non-autonomo ed ai sistemi con costo corrente non costante. Questa proprietà ci permette di ottenere delle stime sui perimetri per alcuni sistemi di controllo. Infine queste proprietà degli insiemi raggiungibili possono essere estese agli insiemi di livello della funzione valore, e, sotto alcune ipotesi di controllabilità otteniamo anche semiconcavità locale per V (x). Inoltre studiamo anche sistemi di controllo vincolati. Nei sistemi vincolati la funzione valore perde regolarità. Infatti, quando una traiettoria tocca il bordo del vincolo Ω, si presentano delle singolarità. Questi effetti sono evidenziati anche dal principio del massimo, che produce un termine aggiuntivo di misura(eventualmente discontinuo), quando una traiettoria tocca il bordo ∂Ω. E la funzione valore perde la semiconcavità, anche per sistemi particolarmente semplici. Ma siamo in grado di recuperare lipschitzianità per il tempo minimo, ed enunciare il principio del massimo esplicitando il termine di bordo. In questo modo otteniamo delle particolari proprietà di sfera interna, e quindi anche stime sui perimetri, per gli insiemi raggiungibili.
The value function is a focal point in optimal control theory. It is a known fact that the value function can be nonsmooth even with very smooth data. So, nonsmooth analysis is a useful tool to study its regularity. Semiconcavity is a regularity property, with some fine connection with nonsmooth analysis. Under appropriate assumptions, the value function is locally semiconcave. This property is connected with the interior sphere property of its level sets and their perimeters. In this thesis we introduce basic concepts of nonsmooth analysis and their connections with semiconcave functions, and sets of finite perimeter. We describe control systems, and we introduce the basic properties of the minimum time function T(x) and of the value function V (x). Then, using maximum principle, we extend some known results of interior sphere property for the attainable setsA(t), to the nonautonomous case and to systems with nonconstant running cost L. This property allow us to obtain some fine perimeter estimates for some class of control systems. Finally these regularity properties of the attainable sets can be extended to the level sets of the value function, and, with some controllability assumption, we also obtain a local semiconcavity for V (x). Moreoverwestudycontrolsystemswithstateconstraints. Inconstrained systems we loose many of regularity properties related to the value function. In fact, when a trajectory of control system touches the boundary of the constraint set Ω, some singularity effect occurs. This effect is clear even in the statement of the maximum principle. Indeed, due to the times in which a trajectory stays on ∂Ω, a measure boundary term (possibly, discontinuous) appears. So, we have no more semiconcavity for the value function, even for very simple control systems. But we recover Lipschitz continuity for the minimum time and we rewrite the constrained maximum principle with an explicit boundary term. We also obtain a kind of interior sphere property, and perimeter estimates for the attainable sets for some class of control systems.
Style APA, Harvard, Vancouver, ISO itp.
11

Woldekristos, Habtom G. "Tripartite Entanglement in Quantum Open Systems". Miami University / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=miami1250185666.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Massaccesi, Annalisa. "Currents with coefficients in groups, applications and other problems in Geometric Measure Theory". Doctoral thesis, Scuola Normale Superiore, 2014. http://hdl.handle.net/11384/85703.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Raux, Guillaume Julien. "Robustness measures for signal detection in non-stationary noise using differential geometric tools". Texas A&M University, 2006. http://hdl.handle.net/1969.1/4732.

Pełny tekst źródła
Streszczenie:
We propose the study of robustness measures for signal detection in non-stationary noise using differential geometric tools in conjunction with empirical distribution analysis. Our approach shows that the gradient can be viewed as a random variable and therefore used to generate sample densities allowing one to draw conclusions regarding the robustness. As an example, one can apply the geometric methodology to the detection of time varying deterministic signals in imperfectly known dependent nonstationary Gaussian noise. We also compare stationary to non-stationary noise and prove that robustness is barely reduced by admitting non-stationarity. In addition, we show that robustness decreases with larger sample sizes, but there is a convergence in this decrease for sample sizes greater than 14. We then move on to compare the effect on robustness for signal detection between non-Gaussian tail effects and residual dependency. The work focuses on robustness as applied to tail effects for the noise distribution, affecting discrete-time detection of signals in independent non-stationary noise. This approach makes use of the extension to the generalized Gaussian case allowing the comparison in robustness between the Gaussian and Laplacian PDF. The obtained results are contrasted with the influence of dependency on robustness for a fixed tail category and draws consequences on residual dependency versus tail uncertainty.
Style APA, Harvard, Vancouver, ISO itp.
14

Nguyen, Khai/T. "The regularity of the minimum time function via nonsmooth analysis and geometric measure theory". Doctoral thesis, Università degli studi di Padova, 2010. http://hdl.handle.net/11577/3427404.

Pełny tekst źródła
Streszczenie:
Several regularity results on the minimum time function are proved, together with regularity properties of a class of continuous functions whose hypograph satisfies an external sphere condition.
Si dimostrano risultati di regolarita' per la funzione tempo minimo, mediante particolari proprieta' di una classe di funzioni continue il cui ipografico soddisfa una condizione di sfera esterna.
Style APA, Harvard, Vancouver, ISO itp.
15

Albouy, Olivier. "Discrete algebra and geometry applied to the Pauli group and mutually unbiased bases in quantum information theory". Phd thesis, Université Claude Bernard - Lyon I, 2009. http://tel.archives-ouvertes.fr/tel-00612229.

Pełny tekst źródła
Streszczenie:
Pour d non puissance d'un nombre premier, le nombre maximal de bases deux à deux décorrélées d'un espace de Hilbert de dimension d n'est pas encore connu. Dans ce mémoire, nous commençons par donner une construction de bases décorrélées en lien avec une famille de représentations irréductibles de l'algèbre de Lie su(2) et faisant appel aux sommes de Gauss.Puis nous étudions de façon systématique la possibilité de construire de telle bases au moyen des opérateurs de Pauli. 1) L'étude de la droite projective sur Zdm montre que, pour obtenir des ensembles maximaux de bases décorrélées à l'aide d'opérateurs de Pauli, il est nécessaire de considérer des produits tensoriels de ces opérateurs. 2) Les sous-modules lagrangiens de Zd2n, dont nous donnons une classification complète, rendent compte des ensembles maximalement commutant d'opérateurs de Pauli. Cette classification permet de savoir lesquels de ces ensembles sont susceptibles de donner des bases décorrélées : ils correspondent aux demi-modules lagrangiens, qui s'interprètent encore comme les points isotropes de la droite projective (P(Mat(n, Zd)²),ω). Nous explicitons alors un isomorphisme entre les bases décorrélées ainsi obtenues et les demi-modules lagrangiens distants, ce qui précise aussi la correspondance entre sommes de Gauss et bases décorrélées. 3) Des corollaires sur le groupe de Clifford et l'espace des phases discret sont alors développés.Enfin, nous présentons quelques outils inspirés de l'étude précédente. Nous traitons ainsi du rapport anharmonique sur la sphère de Bloch, de géométrie projective en dimension supérieure, des opérateurs de Pauli continus et nous comparons l'entropie de von Neumann à une mesure de l'intrication par calcul d'un déterminant.
Style APA, Harvard, Vancouver, ISO itp.
16

Donzella, Michael A. "The Geometry of Rectifiable and Unrectifiable Sets". Kent State University / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=kent1404332888.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Peng, Li [Verfasser]. "A Geometric Representation and Similarity Measure for Clustering Based Anomaly Detection in Industrial Automation Systems / Li Peng". Hamburg : Helmut-Schmidt-Universität, Bibliothek, 2020. http://d-nb.info/122304694X/34.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Morgan, Frank. "Compactness". Pontificia Universidad Católica del Perú, 2014. http://repositorio.pucp.edu.pe/index/handle/123456789/96708.

Pełny tekst źródła
Streszczenie:
In my opinion, compactness is the most important concept in mathematics. We 'll track it from the one-dimensional real line in calculus to infinite dimensional spaces of functions and surfaces and see what it can do.
Style APA, Harvard, Vancouver, ISO itp.
19

SEMOLA, DANIELE. "Recent developments about Geometric Analysis on RCD(K,N) spaces". Doctoral thesis, Scuola Normale Superiore, 2020. http://hdl.handle.net/11384/94195.

Pełny tekst źródła
Streszczenie:
This thesis is about some recent developments on Geometric Analysis and Geometric Measure Theory on RCD(K,N) metric measure spaces that have been obtained in [8,48,49,51,52,171]. After the preliminary Chapter 1, where we collect the basic notions of the theory relevant for our purposes, Chapter 2 is dedicated to the presentation of a simplified approach to the structure theory of RCD(K,N) spaces via δ- splitting maps developed in collaboration with Brué and Pasqualetto. The strategy is similar to the one adopted by Cheeger-Colding in the theory of Ricci limit spaces and it is suitable for adaptations to codimension one. Chapter 3 is devoted to the proof of the constancy of the dimension conjecture for RCD(K,N) spaces. This has been obtained in a joint work with Brué, where we proved that dimension of the tangent space is the same almost everywhere with respect to the reference measure, generalizing a previous result obtained by Colding-Naber for Ricci limits. The strategy is based on the study of regularity of flows of Sobolev vector fields on spaces with Ricci curvature bounded from below, which we find of independent interest. In Chapters 4 and 5 we present the structure theory for boundaries of sets of finite perimeter in this framework, as developed in collaboration with Ambrosio, Brué and Pasqualetto. An almost complete generalization of De Giorgi’s celebrated theorem is given, opening to further developments for Geometric Measure Theory in the setting of synthetic lower bounds on Ricci curvature. In Chapter 6 we eventually collect some results about sharp lower bounds on the first Dirichlet eigenvalue of the p-Laplacian based on a joint work with Mondino. We also address the problems of rigidity and almost rigidity, heavily relying on the compactness and stability properties of RCD spaces.
Style APA, Harvard, Vancouver, ISO itp.
20

Couvreur, Romain. "Geometric lattice models and irrational conformal field theories". Thesis, Sorbonne université, 2019. http://www.theses.fr/2019SORUS062.

Pełny tekst źródła
Streszczenie:
Dans cette thèse nous étudions différents aspects des modèles critiques non-unitaires de physique statistique en deux dimensions. Notre approche, partant de modèles discrets sur le réseau, permet d'en apprendre plus sur les théories conformes associées. Celles-ci sont non-unitaires et souvent irrationnelles, logarithmiques ou encore non-compactes. Pour commencer, le problème de l'entropie d'intrication dans des chaînes de spin non-unitaires et son interprétation dans les modèles de boucles sont considérés. Le rôle de la charge centrale effective, une quantité pertinente pour étudier aussi d'autres problèmes de ce manuscrit, y est discuté. Ensuite, nous regardons deux problèmes liés au modèle de Chalker-Coddington, une chaîne de spin supersymétrique de dimension infinie, importante pour l'étude de la transition entre plateaux dans l'effet Hall quantique entier. Puisque ce modèle a un nombre infini de degrés de liberté, il a été proposé de considérer une série de troncations. Nous présentons de nouveaux résultats basés sur cette approche et développons cette méthode dans le cadre du mouvement Brownien dans sa formulation supersymétrique. Ensuite, un nouveau modèle est proposé pour interpoler la classe A et la classe C de l'effet Hall quantique. Le modèle de Chalker-Coddington est une réalisation particulière de la classe A tandis que la classe C, qui décrit la physique de l'effet Hall quantique de spin, est relié à un modèle de percolation. Ce modèle donne un exemple de flot sous l'action du groupe de renormalisation entre une théorie conforme compacte et non-compacte. La dernière partie de cette thèse discute la classification des observables sur réseau avec une symétrie discrète. Le processus est illustré sur le modèle de Potts avec sa symétrie sous l'action du groupe des permutations et des résultats déjà connus sont étendus au cas des opérateurs non-scalaires. Cette approche est importante dans l'étude de l'indécomposabilité des modèles non-unitaires et peut être utilisée pour étudier la percolation en dimension supérieure
In this thesis we study several aspects of two-dimensional lattice models of statistical physics with non-unitary features. This bottom-up approach, starting from discrete lattice models, is helpful to understand the features of the associated conformal field theories. They are non-unitary and often irrational, logarithmic or even non-compact. First, we study the problem of the entanglement entropy in non-unitary spin chains and its interpretation in loop models. We discuss the role of the effective central charge, a relevant quantity to study the next problems in this thesis. We then address two problems related to the Chalker-Coddington model, an infinite-dimensional supersymmetric chain important for the study of the plateau transition in the integer quantum Hall effect. Since the model has an infinite number of degrees of freedom, it has been proposed to study it with a series of truncations. We present new results based on this approach and extend this methodology to the case of Brownian motion in its supersymmetric formulation. Next, a new model is proposed to interpolate between class A and class C. The Chalker-Coddington model is a particular realisation of class A whereas class C, describing the physics of the spin quantum Hall effect, can be related to a model of percolation. This interpolating model provides an example of a RG-flow between a non-compact CFT and compact one. The last part of this thesis deals with the problem of classifying observables in lattice models with discrete symmetries. The process is illustrated on the Potts model and its symmetry under the group of permutations and previous results are extended for non-scalar operators. This approach is important to study indecomposability of non-unitary models and can be used to study models such as percolation in higher dimensions
Style APA, Harvard, Vancouver, ISO itp.
21

Gagatsos, Christos. "Gaussian deterministic and probabilistic transformations of bosonic quantum fields: squeezing and entanglement generation". Doctoral thesis, Universite Libre de Bruxelles, 2014. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209146.

Pełny tekst źródła
Streszczenie:
The processing of information based on the generation of common quantum optical states (e.g. coherent states) and the measurement of the quadrature components of the light field (e.g. homodyne detection) is often referred to as continuous-variable quantum information processing. It is a very fertile field of investigation, at a crossroads between quantum optics and information theory, with notable successes such as unconditional continuous-variable quantum teleportation or Gaussian quantum key distribution. In quantum optics, the states of the light field are conveniently characterized using a phase-space representation (e.g. Wigner function), and the common optical components effect simple affine transformations in phase space (e.g. rotations). In quantum information theory, one often needs to determine entropic characteristics of quantum states and operations, since the von Neuman entropy is the quantity at the heart of entanglement measures or channel capacities. Computing entropies of quantum optical states requires instead turning to a state-space representation of the light field, which formally is the Fock space of a bosonic mode.

This interplay between phase-space and state-space representations does not represent a particular problem as long as Gaussian states (e.g. coherent, squeezed, or thermal states) and Gaussian operations (e.g. beam splitters or squeezers) are concerned. Indeed, Gaussian states are fully characterized by the first- and second-order moments of mode operators, while Gaussian operations are defined via their actions on these moments. The so-called symplectic formalism can be used to treat all Gaussian transformations on Gaussian states, including mixed states of an arbitrary number of modes, and the entropies of Gaussian states are directly linked to their symplectic eigenvalues.

This thesis is concerned with the Gaussian transformations applied onto arbitrary states of light, in which case the symplectic formalism is unapplicable and this phase-to-state space interplay becomes highly non trivial. A first motivation to consider arbitrary (non-Gaussian) states of light results from various Gaussian no-go theorems in continuous-variable quantum information theory. For instance, universal quantum computing, quantum entanglement concentration, or quantum error correction are known to be impossible when restricted to the Gaussian realm. A second motivation comes from the fact that several fundamental quantities, such as the entanglement of formation of a Gaussian state or the communication capacity of a Gaussian channel, rely on an optimization over all states, including non-Gaussian states even though the considered state or channel is Gaussian. This thesis is therefore devoted to developing new tools in order to compute state-space properties (e.g. entropies) of transformations defined in phase-space or conversely to computing phase-space properties (e.g. mean-field amplitudes) of transformations defined in state space. Remarkably, even some basic questions such as the entanglement generation of optical squeezers or beam splitters were unsolved, which gave us a nice work-bench to investigate this interplay.

In the first part of this thesis (Chapter 3), we considered a recently discovered Gaussian probabilistic transformation called the noiseless optical amplifier. More specifically, this is a process enabling the amplification of a quantum state without introducing noise. As it has long been known, when amplifing a quantum signal, the arising of noise is inevitable due to the unitary evolution that governs quantum mechanics. It was recently realized, however, that one can drop the unitarity of the amplification procedure and trade it for a noiseless, albeit probabilistic (heralded) transformation. The fact that the transformation is probabilistic is mathematically reflected in the fact that it is non trace-preserving. This quantum device has gained much interest during the last years because it can be used to compensate losses in a quantum channel, for entanglement distillation, probabilistic quantum cloning, or quantum error correction. Several experimental demonstrations of this device have already been carried out. Our contribution to this topic has been to derive the action of this device on squeezed states and to prove that it acts quite surprisingly as a universal (phase-insensitive) optical squeezer, conserving the signal-to-noise ratio just as a phase-sensitive optical amplifier but for all quadratures at the same time. This also brought into surface a paradoxical effect, namely that such a device could seemingly lead to instantaneous signaling by circumventing the quantum no-cloning theorem. This paradox was discussed and resolved in our work.

In a second step, the action of the noiseless optical amplifier and it dual operation (i.e. heralded noiseless attenuator) on non-Gaussian states has been examined. We have observed that the mean-field amplitude may decrease in the process of noiseless amplification (or may increase in the process of noiseless attenuation), a very counterintuitive effect that Gaussian states cannot exhibit. This work illustrates the above-mentioned phase-to-state space interplay since these devices are defined as simple filtering operations in state space but inferring their action on phase-space quantities such as the mean-field amplitude is not straightforward. It also illustrates the difficulty of dealing with non-Gaussian states in Gaussian transformations (these noiseless devices are probabilistic but Gaussian). Furthermore, we have exhibited an experimental proposal that could be used to test this counterintuitive feature. The proposed set-up is feasible with current technology and robust against usual inefficiencies that occur in optical experiment.

Noiseless amplification and attenuation represent new important tools, which may offer interesting perspectives in quantum optical communications. Therefore, further understanding of these transformations is both of fundamental interest and important for the development and analysis of protocols exploiting these tools. Our work provides a better understanding of these transformations and reveals that the intuition based on ordinary (deterministic phase-insensitive) amplifiers and losses is not always applicable to the noiseless amplifiers and attenuators.

In the last part of this thesis, we have considered the entropic characterization of some of the most fundamental Gaussian transformations in quantum optics, namely a beam splitter and two-mode squeezer. A beam splitter effects a simple rotation in phase space, while a two-mode squeezer produces a Bogoliubov transformation. Thus, there is a well-known phase-space characterization in terms of symplectic transformations, but the difficulty originates from that one must return to state space in order to access quantum entropies or entanglement. This is again a hard problem, linked to the above-mentioned interplay in the reverse direction this time. As soon as non-Gaussian states are concerned, there is no way of calculating the entropy produced by such Gaussian transformations. We have investigated two novel tools in order to treat non-Gaussian states under Gaussian transformations, namely majorization theory and the replica method.

In Chapter 4, we have started by analyzing the entanglement generated by a beam splitter that is fed with a photon-number state, and have shown that the entanglement monotones can be neatly combined with majorization theory in this context. Majorization theory provides a preorder relation between bipartite pure quantum states, and gives a necessary and sufficient condition for the existence of a deterministic LOCC (local operations and classical communication) transformation from one state to another. We have shown that the state resulting from n photons impinging on a beam splitter majorizes the corresponding state with any larger photon number n’ > n, implying that the entanglement monotonically grows with n, as expected. In contrast, we have proven that such a seemingly simple optical component may have a rather surprising behavior when it comes to majorization theory: it does not necessarily lead to states that obey a majorization relation if one varies the transmittance (moving towards a balanced beam splitter). These results are significant for entanglement manipulation, giving rise in particular to a catalysis effect.

Moving forward, in Chapter 5, we took the step of introducing the replica method in quantum optics, with the goal of achieving an entropic characterization of general Gaussian operations on a bosonic quantum field. The replica method, a tool borrowed from statistical physics, can also be used to calculate the von Neumann entropy and is the last line of defense when the usual definition is not practical, which is often the case in quantum optics since the definition involves calculating the eigenvalues of some (infinite-dimensional) density matrix. With this method, the entropy produced by a two-mode squeezer (or parametric optical amplifier) with non-trivial input states has been studied. As an application, we have determined the entropy generated by amplifying a binary superposition of the vacuum and an arbitrary Fock state, which yields a surprisingly simple, yet unknown analytical expression. Finally, we have turned to the replica method in the context of field theory, and have examined the behavior of a bosonic field with finite temperature when the temperature decreases. To this end, information theoretical tools were used, such as the geometric entropy and the mutual information, and interesting connection between phase transitions and informational quantities were found. More specifically, dividing the field in two spatial regions and calculating the mutual information between these two regions, it turns out that the mutual information is non-differentiable exactly at the critical temperature for the formation of the Bose-Einstein condensate.

The replica method provides a new angle of attack to access quantum entropies in fundamental Gaussian bosonic transformations, that is quadratic interactions between bosonic mode operators such as Bogoliubov transformations. The difficulty of accessing entropies produced when transforming non-Gaussian states is also linked to several currently unproven entropic conjectures on Gaussian optimality in the context of bosonic channels. Notably, determining the capacity of a multiple-access or broadcast Gaussian bosonic channel is pending on being able to access entropies. We anticipate that the replica method may become an invaluable tool in order to reach a complete entropic characterization of Gaussian bosonic transformations, or perhaps even solve some of these pending conjectures on Gaussian bosonic channels.


Doctorat en Sciences de l'ingénieur
info:eu-repo/semantics/nonPublished

Style APA, Harvard, Vancouver, ISO itp.
22

Weyer, Hendrik [Verfasser], Marc [Akademischer Betreuer] Keßeböhmer, Marc [Gutachter] Keßeböhmer i Tony [Gutachter] Samuel. "A Study on Measure-Geometric Laplacians on the Real Line / Hendrik Weyer ; Gutachter: Marc Keßeböhmer, Tony Samuel ; Betreuer: Marc Keßeböhmer". Bremen : Staats- und Universitätsbibliothek Bremen, 2018. http://d-nb.info/1161096671/34.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Reichl, Paul 1973. "Flow past a cylinder close to a free surface". Monash University, Dept. of Mechanical Engineering, 2001. http://arrow.monash.edu.au/hdl/1959.1/9212.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Kissel, Kris. "Generalizations of a result of Lewis and Vogel /". Thesis, Connect to this title online; UW restricted, 2007. http://hdl.handle.net/1773/5741.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Wells-Day, Benjamin Michael. "Structure of singular sets local to cylindrical singularities for stationary harmonic maps and mean curvature flows". Thesis, University of Cambridge, 2019. https://www.repository.cam.ac.uk/handle/1810/290409.

Pełny tekst źródła
Streszczenie:
In this paper we prove structure results for the singular sets of stationary harmonic maps and mean curvature flows local to particular singularities. The original work is contained in Chapter 5 and Chapter 8. Chapters 1-5 are concerned with energy minimising maps and stationary harmonic maps. Chapters 6-8 are concerned with mean curvature flows and Brakke flows. In the case of stationary harmonic maps we consider a singularity at which the spine dimension is maximal, and such that the weak tangent map is homotopically non-trivial, and has minimal density amongst singularities of maximal spine dimen- sion. Local to such a singularity we show the singular set is a bi-Hölder continuous homeomorphism of the unit disk of dimension equal to the maximal spine dimension. A weak tangent map is translation invariant along a subspace, and invariant under dilations, so it completely defined by its values on a sphere. Such a map is said to be homotopically non-trivial if the mapping of a sphere into some target manifold cannot be deformed by a homotopy to a constant map. For an n-dimensional mean curvature flow we consider a singularity at which we can find a shrinking cylinder as a tangent flow, that collapses on an (n−1)-dimensional plane. Local to such a singularity we show that all singularities have such a cylindrical tangent, or else have lower Gaussian density than that of the shrinking cylinder. The subset of cylindrical singularities can be shown to be contained in a finite union of parabolic (n − 1)-dimensional Lipschitz submanifolds. In the case that the mean curvature flow arises from elliptic regularisation we can show that all singularities local to a cylindrical singularity with (n − 1)-dimensional spine are either cylindrical singularities with (n − 1)-dimensional spine, or contained in a parabolic Hausdorff (n − 2)-dimensional set.
Style APA, Harvard, Vancouver, ISO itp.
26

Mondino, Andrea. "The Willmore functional and other L^p curvature functionals in Riemannian manifolds". Doctoral thesis, SISSA, 2011. http://hdl.handle.net/20.500.11767/4840.

Pełny tekst źródła
Streszczenie:
Using techniques both of non linear analysis and geometric measure theory, we prove existence of minimizers and more generally of critical points for the Willmore functional and other $L^p$ curvature functionals for immersions in Riemannian manifolds. More precisely, given a $3$-dimensional Riemannian manifold $(M,g)$ and an immersion of a sphere $f:\Sp^2 \hookrightarrow (M,g)$ we study the following problems. 1) The Conformal Willmore functional in a perturbative setting: consider $(M,g)=(\Rtre,\eu+\epsilon h)$ the euclidean $3$-space endowed with a perturbed metric ($h=h_{\mu\nu}$ is a smooth field of symmetric bilinear forms); we prove, under assumptions on the trace free Ricci tensor and asymptotic flatness, existence of critical points for the Conformal Willmore functional $I(f):=\frac{1}{2}\int |A^\circ|^2 $ (where $A^\circ:=A-\frac{1}{2}H$ is the trace free second fundamental form). The functional is conformally invariant in curved spaces. We also establish a non existence result in general Riemannian manifolds. The technique is perturbative and relies on a Lyapunov-Schmidt reduction. \\ 2) The Willmore functional in a semi-perturbative setting: consider $(M,g)=(\Rtre, \eu+h)$ where $h=h_{\mu\nu}$ is a $C^{\infty}_0(\Rtre)$ field of symmetric bilinear forms with compact support and small $C^1$ norm. Under a general assumption on the scalar curvature we prove existence of a smooth immersion of $\Sp^2$ minimizing the Willmore functional $W(f):=\frac{1}{4} \int |H|^2$ (where $H$ is the mean curvature). The technique is more global and relies on the direct method in the calculus of variations. \\ 3) The functionals $E:=\frac{1}{2} \int |A|^2 $ and $W_1:=\int\left( \frac{|H|^2}{4}+1 \right)$ in compact ambient manifolds: consider $(M,g)$ a $3$-dimensional compact Riemannian manifold. We prove, under global conditions on the curvature of $(M,g)$, existence and regularity of an immersion of a sphere minimizing the functionals $E$ or $W_1$. The technique is global, uses geometric measure theory and regularity theory for higher order PDEs. \\ 4) The functionals $E_1:=\int \left( \frac{|A|^2}{2} +1 \right) $ and $W_1:=\int\left( \frac{|H|^2}{4}+1 \right)$ in noncompact ambient manifolds: consider $(M,g)$ a $3$-dimensional asymptotically euclidean non compact Riemannian $3$-manifold. We prove, under general conditions on the curvature of $(M,g)$, existence and regularity of an immersion of a sphere minimizing the functionals $E_1$ or $W_1$. The technique relies on the direct method in the calculus of variations. \\ 5) The supercritical functionals $\int |H|^p$ and $\int |A|^p$ in arbitrary dimension and codimension: consider $(N,g)$ a compact $n$-dimensional Riemannian manifold possibly with boundary. For any $2\leq mm$, defined on the $m$-dimensional submanifolds of $N$. We prove, under assumptions on $(N,g)$, existence and partial regularity of a minimizer of such functionals in the framework of varifold theory. During the arguments we prove some new monotonicity formulas and new Isoperimetric Inequalities which are interesting by themselves.
Style APA, Harvard, Vancouver, ISO itp.
27

Carnovale, Marc. "Arithmetic Structures in Small Subsets of Euclidean Space". The Ohio State University, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=osu1555657038785892.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Perstneva, Polina. "Elliptic measure in domains with boundaries of codimension different from 1". Electronic Thesis or Diss., université Paris-Saclay, 2023. http://www.theses.fr/2023UPASM037.

Pełny tekst źródła
Streszczenie:
Cette thèse étudie différentes variantes de la mesure harmonique et leurs relations avec la géométrie de la frontière d'un domaine. Dans la première partie de la thèse, on se concentre sur l'analogue de la mesure harmonique pour les domaines ayant des frontières de dimensions plus petites, définies via la théorie des opérateurs elliptiques dégénérés récemment développée par David et al. Plus précisément, on démontre qu'il n'existe pas de famille à un paramètre non dégénérée de solutions de l'équation LμDμ = 0, ce qui constitue la première étape pour retrouver une forme de l'assertion "si la fonction de distance à la frontière d'un domaine est harmonique, alors la frontière est plate", qui manque à la théorie des opérateurs elliptiques dégénérés. On découvre et explique également pourquoi la stratégie la plus naturelle pour étendre notre résultat à l'absence de solutions individuelles de l'équation LμDμ = 0 ne fonctionne pas. Dans la deuxième partie de la thèse, on s'intéresse aux mesures elliptiques dans le cadre classique. On construit une nouvelle famille d'opérateurs avec des coefficients continus scalaires dont les mesures elliptiques sont absolument continues par rapport aux mesures de Hausdorff sur des flocons de neige symétriques de type Koch. Cette famille enrichit la collection des exemples connus de mesures elliptiques qui se comportent très différemment de la mesure harmonique et des mesures elliptiques d'opérateurs proches, d'une certaine manière, du Laplacien. De plus, nos nouveaux exemples ne sont pas compacts. La construction fournit également une méthode possible pour construire des opérateurs ayant ce type de comportement pour d'autres fractales qui possèdent suffisamment de symétries
This thesis studies different counterparts of the harmonic measure and their relations with the geometry of the boundary of a domain. In the first part of the thesis, we focus on the analogue of harmonic measure for domains with boundaries of smaller dimensions, defined via the theory of degenerate elliptic operators developed recently by David et al. More precisely, we prove that there is no non-degenerate one-parameter family of solutions to the equation LμDμ = 0, which constitutes the first step to recover an analogue of the statement ``if the distance function to the boundary of a domain is harmonic, then the boundary is flat'', missing from the theory of degenerate elliptic operators. We also find out and explain why the most natural strategy to extend our result to the absence of individual solutions to the equation LμDμ = 0 does not work. In the second part of the thesis, we focus on elliptic measures in the classical setting. We construct a new family of operators with scalar continuous coefficients whose elliptic measures are absolutely continuous with respect to the Hausdorff measures on Koch-type symmetric snowflakes. This family enriches the collection of a few known examples of elliptic measures which behave very differently from the harmonic measure and the elliptic measures of operators close in some sense to the Laplacian. Plus, our new examples are non-compact. Our construction also provides a possible method to construct operators with this type of behaviour for other fractals that possess enough symmetries
Style APA, Harvard, Vancouver, ISO itp.
29

Boonsiripant, Saroch. "Speed profile variation as a surrogate measure of road safety based on GPS-equipped vehicle data". Diss., Atlanta, Ga. : Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/28275.

Pełny tekst źródła
Streszczenie:
Thesis (M. S.)--Civil and Environmental Engineering, Georgia Institute of Technology, 2009.
Committee Chair: Hunter, Michael; Committee Member: Dixon, Karen; Committee Member: Guensler, Randall; Committee Member: Rodgers, Michael; Committee Member: Tsui, Kwok-Leung.
Style APA, Harvard, Vancouver, ISO itp.
30

Imagi, Yohsuke. "Surjectivity of a Gluing for Stable T2-cones in Special Lagrangian Geometry". 京都大学 (Kyoto University), 2014. http://hdl.handle.net/2433/189337.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Graham, David(David Warwick) 1976. "Forced Brakke flows". Monash University, School of Mathematical Sciences, 2003. http://arrow.monash.edu.au/hdl/1959.1/7774.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Graham, David (David Warwick) 1976. "Forced Brakke flows". Monash University, School of Mathematical Sciences, 2003. http://arrow.monash.edu.au/hdl/1959.1/5712.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Vittone, Davide. "Submanifolds in Carnot groups". Doctoral thesis, Scuola Normale Superiore, 2006. http://hdl.handle.net/11384/85698.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Huou, Benoit. "Inégalités isopérimétriques produit pour les élargissements euclidien et uniforme : symétrisation et inégalités fonctionnelles". Thesis, Toulouse 3, 2016. http://www.theses.fr/2016TOU30239/document.

Pełny tekst źródła
Streszczenie:
Le problème isopérimétrique consiste, dans un espace métrique mesuré, à trouver les ensembles qui, à volume fixé, ont la plus petite mesure de surface. Il peut être formulé dans de nombreux cadres (espaces métriques mesurés généraux, variétés riemanniennes à poids, parties de l'espace euclidien...). Deux questions se dégagent de ce problème : - Quels sont les ensembles solutions, c'est-à-dire ayant la plus petite mesure de surface ? (Il faut noter que ces ensembles n'existent pas toujours). - Que vaut la plus petite mesure de surface ? La solution à la deuxième question peut être formulée sous la forme d'une fonction, appelée profil isopérimétrique, qui, à une valeur de volume (pondéré) donnée, associe la plus petite mesure de surface correspondante. La notion de mesure de surface, quant à elle, peut être définie de plusieurs manières (contenu de Minkowski, périmètre géométrique...), toutes dépendant étroitement à la fois de la distance et de la mesure ambiantes. L'objet principal de cette thèse est l'étude du problème isopérimétrique dans des espaces produits, que ce soit pour transférer des inégalités isopérimétriques d'espaces facteurs vers ces produits, ou pour comparer le profil isopérimétrique de l'espace produit à ceux des facteurs. La thèse se découpe en quatre parties : - Étude de l'opération de symétrisation (pour les ensembles) et de réarrangement (pour les fonctions), notions analogues, du point de vue de la théorie de la mesure géométrique et des fonctions à variations bornée. Ces opérations agissent de sorte à ce que n'augmente pas la mesure de surface (pour les ensembles), ou la variation (pour les fonctions). Nous introduisons notamment une nouvelle classe d'espaces modèles, pour lesquels nous obtenons des résultats qualitativement similaires à ceux obtenus pour les espaces modèles classiques : inégalités isopérimétriques transférées aux produits, comparaison d'énergies (pour des fonctionnelles convexes). - Détail d'un argument de minoration du profil isopérimétrique d'un espace métrique produit XxY par une fonction dépendant des profils de X et Y, pour une large classe de distances produits sur XxY. L'étude de ce problème est faite via la minimisation d'une fonctionnelle sur la classe des mesures de Radon. - Étude du problème isopérimétrique dans un espace métrique mesuré produit (le produit d'ordre quelconque du même espace métrique mesuré), muni de la combinaison uniforme de sa distance (élargissement uniforme). Nous donnons un critère pour que tous les profils isopérimétriques (quel que soit l'ordre d'itération du produit) soient minorés par un multiple du minorant du profil isopérimétrique de l'espace originel. Ceci est fait en utilisant notamment des méthodes ayant trait aux inégalités fonctionnelles. Nous appliquons ensuite les résultats aux influences géométriques. - Étude d'inégalités fonctionnelles dites isopérimétriques, permettant d'appréhender le comportement isopérimétrique dans l'espace produit correspondant d'ordre quelconque. Nous résumons l'état des connaissances à propos des inégalités de ce type et proposons une autre méthode qui pourrait aboutir à prouver une telle inégalité dans le cas de mesures réelles particulières, pour lesquelles le problème est ouvert
The isoperimetric problem in a metric measured space consists in finding the sets having minimal boundary measure, with prescribed volume. It can be formulated in various settings (general metric measured spaces, Riemannian manifolds, submanifolds of the Euclidean space, ...). At this point, two questions arise : - What are the optimal sets, namely the sets having smallest boundary measure (it has to be said that they do not always exist) ? - What is the smallest boundary measure ? The solution to the second answer can be expressed by a function called the isoperimetric profile. This function maps a value of (prescribed) measure onto the corresponding smallest boundary measure. As for the precise notion of boundary measure, it can be defined in different ways (Minkowski content, geometric perimeter, ...), all of them closely linked to the ambient distance and measure. The main object of this thesis is the study of the isoperimetric problem in product spaces, in order to transfer isoperimetric inequalities from factor spaces to the product spaces, or to compare their isoperimetric profiles. The thesis is divided into four parts : - Study of the symmetrization operation (for sets) and the rearrangement operation (for functions), analogous notions, from the point of view of Geometric Measure Theory and Bounded Variation functions. These operations cause the boundary measure to decrease (for sets), or the variation (for functions). We introduce a new class of model spaces, for which we obtain similar results to those concerning classic model spaces : transfer of isoperimetric inequalities to the product spaces, energy comparison (for convex functionals). - Detailed proof of an argument of minorization of the isoperimetric profile of a metric measured product space XxY by a function depending on the profiles of X and Y, for a wide class of product distances over XxY. The study of this problem uses the minimization of a functional defined on Radon measures class. - Study of the isoperimetric problem in a metric measured space (n times the same space) equipped with the uniform combination of its distance (uniform enlargement). We give a condition under which every isoperimetric profile (whatever the order of iteration might be) is bounded from below by a quantity which is proportional to the isoperimetric profile of the underlying space. We then apply the result to geometric influences. - Study of isoperimetric functional inequalities, which give information about the isoperimetric behavior of the product spaces. We give an overview of the results about this kind of inequalities, and suggest a method to prove such an inequality in a particular case of real measures for which the problem reamins open
Style APA, Harvard, Vancouver, ISO itp.
35

Ferrari, Luca Alberto Davide. "Approximations par champs de phases pour des problèmes de transport branché". Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLX049/document.

Pełny tekst źródła
Streszczenie:
Dans cette thèse, nous concevons des approximations par champ de phase de certains problèmes de Transport Branché. Le Transport Branché est un cadre mathématique pour modéliser des réseaux de distribution offre-demande qui présentent une structure d'arbre. En particulier, le réseau, les usines d'approvisionnement et le lieu de la demande sont modélisés en tant que mesures et le probléme est présenté comme un probléme d'optimisation sous contrainte. Le coût de transport d'une masse m le long d'un bord de longueur L est h(m)xL et le coût total d'un réseau est défini comme la somme de la contribution sur tous ses arcs. Le cas du Transport Branché correspond avec la choix h(m) =|m|^α où α est dans [0,1). La sous-additivité de la fonction cout s'assure que déplacer deux masses conjointement est moins cher que de le faire séparément. Dans ce travail, nous introduisons diverses approximations variationnelles du problème du transport branché. Les fonctionnelles que on vais utiliser sont basées sur une représentation par champ de phase du réseau et sont plus lisses que le problème original, ce qui permet des méthodes d'optimisation numérique efficaces. Nous introduisons une famille des fonctionnelles inspirées par le fonctionnelle de Ambrosio et Tortorelli pour modéliser une fonction de coût h affine dans l'espace R^2. Pour ce cas, nous produisons un résultat complet de Gamma-convergence et nous le corrélons avec une procédure de minimisation alternée pour obtenir des approximations numériques des minimiseurs. Puis nous généralisons cette approche à n'importe quel espace R^n et obtenons un résultat complet de $Gamma$-convergence dans le cas de surfaces k-dimensionnelles avec k
In this thesis we devise phase field approximations of some Branched Transportation problems. Branched Transportation is a mathematical framework for modeling supply-demand distribution networks which exhibit tree like structures. In particular the network, the supply factories and the demand location are modeled as measures and the problem is cast as a constrained optimization problem. The transport cost of a mass m along an edge with length L is h(m)xL and the total cost of a network is defined as the sum of the contribution on all its edges. The branched transportation case consists with the specific choice h(m)=|m|^α where α is a value in [0,1). The sub-additivity of the cost function ensures that transporting two masses jointly is cheaper than doing it separately. In this work we introduce various variational approximations of the branched transport optimization problem. The approximating functionals are based on a phase field representation of the network and are smoother than the original problem which allows for efficient numerical optimization methods. We introduce a family of functionals inspired by the Ambrosio and Tortorelli one to model an affine transport cost functions. This approach is firstly used to study the problem any affine cost function h in the ambient space R^2. For this case we produce a full Gamma-convergence result and correlate it with an alternate minimization procedure to obtain numerical approximations of the minimizers. We then generalize this approach to any ambient space and obtain a full Gamma-convergence result in the case of k-dimensional surfaces. In particular, we obtain a variational approximation of the Plateau problem in any dimension and co-dimension. In the last part of the thesis we propose two models for general concave cost functions. In the first one we introduce a multiphase field approach and recover any piecewise affine cost function. Finally we propose and study a family of functionals allowing to recover in the limit any concave cost function h
Style APA, Harvard, Vancouver, ISO itp.
36

Sacchelli, Ludovic. "Singularités en géométrie sous-riemannienne". Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLX050/document.

Pełny tekst źródła
Streszczenie:
Nous étudions les relations qui existent entre des aspects de la géométrie sous-riemannienne et une diversité de singularités typiques dans ce contexte.Avec les théorèmes de Whitney sous-riemanniens, nous conditionnons l’existence de prolongements globaux de courbes horizontales définies sur des fermés à des hypothèses de non-singularité de l’application point-final dans l’approximation nilpotente de la variété.Nous appliquons des méthodes perturbatives pour obtenir des asymptotiques sur la longueur de courbes localement minimisantes perdant leur optimalité proche de leur point de départ dans le cas des variétés sous-riemanniennes de contact de dimension arbitraire. Nous décrivons la géométrie du lieu singulier et prouvons sa stabilité dans le cas des variétés de dimension 5.Nous introduisons une construction permettant de définir des champs de directions à l’aide de couples de champs de vecteurs. Ceci fournit une topologie naturelle pour analyser la stabilité des singularités de champs de directions sur des surfaces
We investigate the relationship between features of of sub-Riemannian geometry and an array of singularities that typically arise in this context.With sub-Riemannian Whitney theorems, we ensure the existence of global extensions of horizontal curves defined on closed set by requiring a non-singularity hypothesis on the endpoint-map of the nilpotent approximation of the manifold to be satisfied.We apply perturbative methods to obtain asymptotics on the length of short locally-length-minimizing curves losing optimality in contact sub-Riemannian manifolds of arbitrary dimension. We describe the geometry of the singular set and prove its stability in the case of manifolds of dimension 5.We propose a construction to define line fields using pairs of vector fields. This provides a natural topology to study the stability of singularities of line fields on surfaces
Style APA, Harvard, Vancouver, ISO itp.
37

Pegon, Paul. "Transport branché et structures fractales". Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLS444/document.

Pełny tekst źródła
Streszczenie:
Cette thèse est consacrée à l’étude du transport branché, de problèmes variationnels qui y sont liés et de structures fractales qui peuvent y apparaître. Le problème du transport branché consiste à connecter deux mesures de même masse par le biais d’un réseau en minimisant un certain coût, qui sera pour notre étude proportionnel à mLα afin de déplacer une masse m sur une distance L. Plusieurs modèles continus ont été proposés pour formuler le problème, et on s’intéresse plus particulièrement aux deux grands types de modèles statiques : le modèle Lagrangien et le modèle Eulérien, avec une emphase sur le premier. Après avoir posé proprement les bases de ces modèles, on établit rigoureusement leur équivalence en utilisant une décomposition de Smirnov des mesures vectorielles à divergence mesure. On s’intéresse par la suite à un problème d’optimisation de forme lié au transport branché qui consiste à déterminer les ensembles de volume 1 les plus proches de l’origine au sens du transport branché. On démontre l’existence d’une solution, décrite comme un ensemble de sous-niveau de la fonction paysage, désormais standard en transport branché. La régularité Hölder de la fonction paysage, obtenue ici sans hypothèse de régularité a priori sur la solution considérée, permet d’obtenir une borne supérieure sur la dimension de Minkowski de son bord, qui est non-entière et dont on conjecture qu’elle en est la dimension exacte. Des simulations numériques, basées sur une approximation variationnelle à la Modica-Mortola de la fonctionnelle du transport branché, ont été effectuées dans le but d’étayer cette conjecture. Une dernière partie de la thèse se concentre sur la fonction paysage, essentielle à l’étude de problèmes variationnels faisant intervenir le transport branché en ce sens qu’elle apparaît comme une variation première du coût d’irrigation. Le but est d’étendre sa définition et ses propriétés fondamentales au cas d’une source étendue, ce à quoi l’on parvient dans le cas d’un réseau possédant un système fini de racines, par exemple pour des mesures à supports disjoints. On donne une définition satisfaisante de la fonction paysage dans ce cas, qui vérifie en particulier la propriété de variation première et on démontre sa régularité Hölder sous des hypothèses raisonnables sur les mesures à connecter
This thesis is devoted to the study of branched transport, related variational problems and fractal structures that are likely to arise. The branched transport problem consists in connecting two measures of same mass through a network minimizing a certain cost, which in our study will be proportional to mLα in order to move a mass m over a distance L. Several continuous models have been proposed to formulate this problem, and we focus on the two main static models : the Lagrangian and the Eulerian ones, with an emphasis on the first one. After setting properly the bases for these models, we establish rigorously their equivalence using a Smirnov decomposition of vector measures whose divergence is a measure. Secondly, we study a shape optimization problem related to branched transport which consists in finding the sets of unit volume which are closest to the origin in the sense of branched transport. We prove existence of a solution, described as a sublevel set of the landscape function, now standard in branched transport. The Hölder regularity of the landscape function, obtained here without a priori hypotheses on the considered solution, allows us to obtain an upper bound on the Minkowski dimension of its boundary, which is non-integer and which we conjecture to be its exact dimension. Numerical simulations, based on a variational approximation a la Modica-Mortola of the branched transport functional, have been made to support this conjecture. The last part of the thesis focuses on the landscape function, which is essential to the study of variational problems involving branched transport as it appears as a first variation of the irrigation cost. The goal is to extend its definition and fundamental properties to the case of an extended source, which we achieve in the case of networks with finite root systems, for instance if the measures have disjoint supports. We give a satisfying definition of the landscape function in that case, which satisfies the first variation property and we prove its Hölder regularity under reasonable assumptions on the measures we want to connect
Style APA, Harvard, Vancouver, ISO itp.
38

Dufloux, Laurent. "Dimension de Hausdorff des ensembles limites". Thesis, Sorbonne Paris Cité, 2015. http://www.theses.fr/2015USPCD022/document.

Pełny tekst źródła
Streszczenie:
Soit G le groupe SO°(1, n) (n ≥ 3) ou PU(1, n) (n ≥ 2) et fixons une décomposition d'Iwasawa G = KAN. Soit ɼ un sous-groupe discret de G, que nous supposons Zariski-dense et de mesure de Bowen-Margulis-Sullivan finie. Lorsque G = SO°(1, n), nous étudions la géométrie de la mesure de Bowen-Margulis-Sullivan le long des sous-groupes fermés connexes de N, en lien avec la dichotomie de Mohammadi-Oh. Nous établissons des résultats déterministes sur la dimension des projections de la mesure de Patterson- Sullivan. Lorsque G = PU(1, n), nous relions la géométrie de la mesure de Bowen- Margulis-Sullivan le long du centre du groupe de Heisenberg au problème du calcul de la dimension de Hausdorff de l'ensemble limite relativement à la distance sphérique au bord. Nous calculons cette dimension pour certains groupes de Schottky
Let G be the group SO° (1,n) (n ≥ 3) or PU(1, n) (n ≥ 2) and fix some Iwasawa decomposition G = KAN. Let ɼ be a discrete subgroup of G.We assume that ɼ is Zariski-dense with finite Bowen-Margulis-Sullivan measure. When G = SO°(1,n), we investigate the geometry of the Bowen-Margulis-Sullivan measure elong connected closed subgroups of N. This is related to the Mohammadi-Oh dichotomy. We then prove deterministic results on the dimension of projections of Patterson-Sullivan measure. When G = PU(1,n), we relate the geometry of Bowen-Margulis-Sullivan measure along the center of Heisenberg group to the problem of computing the Hausdorff dimension of the limit set with respect to the spherical metric on the boudary. We construct some Schottky subgroups for wich we are able to compute this dimension
Style APA, Harvard, Vancouver, ISO itp.
39

Brécheteau, Claire. "Vers une vision robuste de l'inférence géométrique". Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS334/document.

Pełny tekst źródła
Streszczenie:
Le volume de données disponibles est en perpétuelle expansion. Il est primordial de fournir des méthodes efficaces et robustes permettant d'en extraire des informations pertinentes. Nous nous focalisons sur des données pouvant être représentées sous la forme de nuages de points dans un certain espace muni d'une métrique, e.g. l'espace Euclidien R^d, générées selon une certaine distribution. Parmi les questions naturelles que l'on peut se poser lorsque l'on a accès à des données, trois d'entre elles sont abordées dans cette thèse. La première concerne la comparaison de deux ensembles de points. Comment décider si deux nuages de points sont issus de formes ou de distributions similaires ? Nous construisons un test statistique permettant de décider si deux nuages de points sont issus de distributions égales (modulo un certain type de transformations e.g. symétries, translations, rotations...). La seconde question concerne la décomposition d'un ensemble de points en plusieurs groupes. Étant donné un nuage de points, comment faire des groupes pertinents ? Souvent, cela consiste à choisir un système de k représentants et à associer chaque point au représentant qui lui est le plus proche, en un sens à définir. Nous développons des méthodes adaptées à des données échantillonnées selon certains mélanges de k distributions, en présence de données aberrantes. Enfin, lorsque les données n'ont pas naturellement une structure en k groupes, par exemple, lorsqu'elles sont échantillonnées à proximité d'une sous-variété de R^d, une question plus pertinente est de construire un système de k représentants, avec k grand, à partir duquel on puisse retrouver la sous-variété. Cette troisième question recouvre le problème de la quantification d'une part, et le problème de l'approximation de la distance à un ensemble d'autre part. Pour ce faire, nous introduisons et étudions une variante de la méthode des k-moyennes adaptée à la présence de données aberrantes dans le contexte de la quantification. Les réponses que nous apportons à ces trois questions dans cette thèse sont de deux types, théoriques et algorithmiques. Les méthodes proposées reposent sur des objets continus construits à partir de distributions et de sous-mesures. Des études statistiques permettent de mesurer la proximité entre les objets empiriques et les objets continus correspondants. Ces méthodes sont faciles à implémenter en pratique lorsque des nuages de points sont à disposition. L'outil principal utilisé dans cette thèse est la fonction distance à la mesure, introduite à l'origine pour adapter les méthodes d'analyse topologique des données à des nuages de points corrompus par des données aberrantes
It is primordial to establish effective and robust methods to extract pertinent information from datasets. We focus on datasets that can be represented as point clouds in some metric space, e.g. Euclidean space R^d; and that are generated according to some distribution. Of the natural questions that may arise when one has access to data, three are addressed in this thesis. The first question concerns the comparison of two sets of points. How to decide whether two datasets have been generated according to similar distributions? We build a statistical test allowing to one to decide whether two point clouds have been generated from distributions that are equal (up to some rigid transformation e.g. symmetry, translation, rotation...).The second question is about the decomposition of a set of points into clusters. Given a point cloud, how does one make relevant clusters? Often, it consists of selecting a set of k representatives, and associating every point to its closest representative (in some sense to be defined). We develop methods suited to data sampled according to some mixture of k distributions, possibly with outliers. Finally, when the data can not be grouped naturally into $k$ clusters, e.g. when they are generated in a close neighborhood of some sub-manifold in R^d, a more relevant question is the following. How to build a system of $k$ representatives, with k large, from which it is possible to recover the sub-manifold? This last question is related to the problems of quantization and compact set inference. To address it, we introduce and study a modification of the $k$-means method adapted to the presence of outliers, in the context of quantization. The answers we bring in this thesis are of two types, theoretical and algorithmic. The methods we develop are based on continuous objects built from distributions and sub-measures. Statistical studies allow us to measure the proximity between the empirical objects and the continuous ones. These methods are easy to implement in practice, when samples of points are available. The main tool in this thesis is the function distance-to-measure, which was originally introduced to make topological data analysis work in the presence of outliers
Style APA, Harvard, Vancouver, ISO itp.
40

Labourie, Camille. "Limites d'ensembles quasiminimaux et existence d'ensembles minimaux sous contraintes topologiques". Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPASS008.

Pełny tekst źródła
Streszczenie:
Au dix-neuvième siècle, Joseph Plateau a décrit la disposition géométrique des films de savons. Leur forme s'explique par leur tendance à minimiser leur aire pour atteindre une position d'équilibre. Les mathématiciens ont abstrait le concept de «surface d'aire minimale s'appuyant sur un bord» et ont nommé le problème de minimisation correspondant, «problème de Plateau». Il fait l'objet de différentes formulations qui correspondent à autant de façons de définir la classe des «surfaces bordées par une frontière fixée» et «l'aire» à minimiser. Dans cette thèse, on généralise aux suites quasiminimisantes, la limite faible de suites minimisantes introduite par De Lellis, De Philippis, De Rosa, Ghiraldin et Maggi. On montre qu'une limite faible d'ensembles quasiminimaux est quasiminimal. Ce résultat est analogue au théorème de passage à la limite de David pour la convergence de Hausdorff locale. Notre démonstration est inspirée par celle de David tout en étant plus simple. On déduit une méthode directe pour prouver l'existence de solutions à divers problèmes de Plateau, même avec une frontière libre. On l'applique ensuite à deux variantes du problème de Reifenberg (frontière libre ou fixe) pour tous les groupes de coefficient. D'autre part, on propose une structure pour construire des projections de Federer-Fleming ainsi qu'une nouvelle estimation sur le choix des centres de projection
In the nineteenth century, Joseph Plateau described the geometrical disposition of soap films. Their shape is explained by their tendency to minimize their area to a reach an equilibrium. Mathematicians have abstracted the concept of "surface with minimal area spanning a boundary" and have named the corresponding minimization problem, "Plateau problem". It has different formulations corresponding to as many ways of defining the class of "surfaces spanning a given boundary" and the "area" to minimize. In this thesis, we generalize to quasiminimizing sequences, the weak limit of minimizing sequences introduced by De Lellis, De Philippis, De Rosa, Ghiraldin and Maggi. We show that a weak limit of quasiminimal sets is quasiminimal. This result is analogous to the limiting theorem of David for the local Hausdorff convergence. Our proof is inspired by David's one while being simpler. We deduce a direct method to prove existence of solutions to various Plateau problem, even with a free boundary. We apply it then to two variants of the Reifenberg problem (fixed or free boundary) for all coefficient groups. Furthermore, we propose a structure to build Federer-Fleming projections as well as a new estimate on the choice of projection centers
Style APA, Harvard, Vancouver, ISO itp.
41

Louet, Jean. "Problèmes de transport optimal avec pénalisation en gradient". Phd thesis, Université Paris Sud - Paris XI, 2014. http://tel.archives-ouvertes.fr/tel-01070163.

Pełny tekst źródła
Streszczenie:
Le problème du transport optimal, originellement introduit par Monge au 18ème siècle, consiste à minimiser l'énergie nécessaire au déplacement d'une masse dont la répartition est donnée vers une autre masse dont la répartition est elle aussi donnée; mathématiquement, cela se traduit par : trouver le minimiseur de l'intégrale de c(x,T(x)) (où c est le coût de transport de x vers T(x)) parmi toutes les applications T à mesure image prescrite.Cette thèse est consacrée à l'étude de problèmes variationnels similaires où l'on fait intervenir la matrice jacobienne de la fonction de transport, c'est-à-dire que le coût dépend de trois variables c(x,T(x),DT(x)) ; il s'agit typiquement de rajouter l'intégale de |DT(x)|^2 à la fonctionnelle afin d'obtenir une pénalisation Sobolev. Ce type de problème trouve ses motivations en mécanique des milieux continus, élasticité incompressible ou en analyse de forme et appelle d'un point de vue mathématique une approche totalement différente de celle du problème de transport usuel.Les questions suivantes sont envisagées :- bonne définition du problème, notamment de l'énergie de Dirichlet, via les espaces de Sobolev par rapport à une mesure, et résultats d'existence de minimiseurs ;- caractérisation de ces minimiseurs : optimalité du transport croissant sur la droite réelle, et approche du type équation d'Euler-Lagrange en dimension quelconque ;- sélection d'un minimiseur via une procédure de pénalisation du type Gamma-convergence (l'énergie de Dirichlet est mutipliée par un petit paramètre) lorsque le coût de transport est le coût de Monge donné par la distance, pour lequel l'application de transport optimale n'est pas unique ;- autres approches du problème et perspectives : formulation dynamique du type Benamou-Brenier, et formulation duale similaire à celle de Kantorovitch dans le cas du problème du transport optimal usuel.
Style APA, Harvard, Vancouver, ISO itp.
42

Xu, Yanli. "Une mesure de non-stationnarité générale : Application en traitement d'images et du signaux biomédicaux". Thesis, Lyon, INSA, 2013. http://www.theses.fr/2013ISAL0090/document.

Pełny tekst źródła
Streszczenie:
La variation des intensités est souvent exploitée comme une propriété importante du signal ou de l’image par les algorithmes de traitement. La grandeur permettant de représenter et de quantifier cette variation d’intensité est appelée une « mesure de changement », qui est couramment employée dans les méthodes de détection de ruptures d’un signal, dans la détection des contours d’une image, dans les modèles de segmentation basés sur les contours, et dans des méthodes de lissage d’images avec préservation de discontinuités. Dans le traitement des images et signaux biomédicaux, les mesures de changement existantes fournissent des résultats peu précis lorsque le signal ou l’image présentent un fort niveau de bruit ou un fort caractère aléatoire, ce qui conduit à des artefacts indésirables dans le résultat des méthodes basées sur la mesure de changement. D’autre part, de nouvelles techniques d'imagerie médicale produisent de nouveaux types de données dites à valeurs multiples, qui nécessitent le développement de mesures de changement adaptées. Mesurer le changement dans des données de tenseur pose alors de nouveaux problèmes. Dans ce contexte, une mesure de changement, appelée « mesure de non-stationnarité (NSM) », est améliorée et étendue pour permettre de mesurer la non-stationnarité de signaux multidimensionnels quelconques (scalaire, vectoriel, tensoriel) par rapport à un paramètre statistique, et en fait ainsi une mesure générique et robuste. Une méthode de détection de changements basée sur la NSM et une méthode de détection de contours basée sur la NSM sont respectivement proposées et appliquées aux signaux ECG et EEG, ainsi qu’a des images cardiaques pondérées en diffusion (DW). Les résultats expérimentaux montrent que les méthodes de détection basées sur la NSM permettent de fournir la position précise des points de changement et des contours des structures tout en réduisant efficacement les fausses détections. Un modèle de contour actif géométrique basé sur la NSM (NSM-GAC) est proposé et appliqué pour segmenter des images échographiques de la carotide. Les résultats de segmentation montrent que le modèle NSM-GAC permet d’obtenir de meilleurs résultats comparativement aux outils existants avec moins d'itérations et de temps de calcul, et de réduire les faux contours et les ponts. Enfin, et plus important encore, une nouvelle approche de lissage préservant les caractéristiques locales, appelée filtrage adaptatif de non-stationnarité (NAF), est proposée et appliquée pour améliorer les images DW cardiaques. Les résultats expérimentaux montrent que la méthode proposée peut atteindre un meilleur compromis entre le lissage des régions homogènes et la préservation des caractéristiques désirées telles que les bords ou frontières, ce qui conduit à des champs de tenseurs plus homogènes et par conséquent à des fibres cardiaques reconstruites plus cohérentes
The intensity variation is often used in signal or image processing algorithms after being quantified by a measurement method. The method for measuring and quantifying the intensity variation is called a « change measure », which is commonly used in methods for signal change detection, image edge detection, edge-based segmentation models, feature-preserving smoothing, etc. In these methods, the « change measure » plays such an important role that their performances are greatly affected by the result of the measurement of changes. The existing « change measures » may provide inaccurate information on changes, while processing biomedical images or signals, due to the high noise level or the strong randomness of the signals. This leads to various undesirable phenomena in the results of such methods. On the other hand, new medical imaging techniques bring out new data types and require new change measures. How to robustly measure changes in theos tensor-valued data becomes a new problem in image and signal processing. In this context, a « change measure », called the Non-Stationarity Measure (NSM), is improved and extended to become a general and robust « change measure » able to quantify changes existing in multidimensional data of different types, regarding different statistical parameters. A NSM-based change detection method and a NSM-based edge detection method are proposed and respectively applied to detect changes in ECG and EEG signals, and to detect edges in the cardiac diffusion weighted (DW) images. Experimental results show that the NSM-based detection methods can provide more accurate positions of change points and edges and can effectively reduce false detections. A NSM-based geometric active contour (NSM-GAC) model is proposed and applied to segment the ultrasound images of the carotid. Experimental results show that the NSM-GAC model provides better segmentation results with less iterations that comparative methods and can reduce false contours and leakages. Last and more important, a new feature-preserving smoothing approach called « Nonstationarity adaptive filtering (NAF) » is proposed and applied to enhance human cardiac DW images. Experimental results show that the proposed method achieves a better compromise between the smoothness of the homogeneous regions and the preservation of desirable features such as boundaries, thus leading to homogeneously consistent tensor fields and consequently a more reconstruction of the coherent fibers
Style APA, Harvard, Vancouver, ISO itp.
43

Cheng, Ching-hsiao, i 鄭經. "Geometric measure theoretic properties of sets". Thesis, 1997. http://ndltd.ncl.edu.tw/handle/92116866765154008824.

Pełny tekst źródła
Streszczenie:
碩士
國立臺灣大學
數學系
85
It is well known that if E is a set with locally finite perimeter (or a Caccioppoli set), then the (n-1)-dimensional Hausdorff measure of the difference between essential boundary of E and reduced boundary of E is zero. Two questions rise naturally: 1.Can we have the refined equality that the (n-1)-dimensional Hausdorff measure of the difference between the boundary of E and the reduced boundary of E is zero? 2.For what kind of functions f can we have the level sets of f satisfy the statement in 1? This thesis will deal with these problems in chapter 1 and 2. In appendix A and B, we give another proof of isoperimetric inequality, and redefine the reduced boundary of a set. We prove that the reduced boundaryunder new definition is (n-1)- dimensional Hausdorff measure measurable. This solves the measurability of the reduced boundary under original definition with respect to (n-1)-dimensional Hausdorff measure.
Style APA, Harvard, Vancouver, ISO itp.
44

"On the roles of exceptional geometry in calibration theory". 2008. http://library.cuhk.edu.hk/record=b5893543.

Pełny tekst źródła
Streszczenie:
Wu, Dan.
Thesis (M.Phil.)--Chinese University of Hong Kong, 2008.
Includes bibliographical references (leaves 62-63).
Abstracts in English and Chinese.
Chapter 1 --- Introduction --- p.6
Chapter 2 --- Calibrated Geometry --- p.9
Chapter 2.1 --- Theory of calibrations --- p.9
Chapter 2.2 --- Two classical examples --- p.14
Chapter 2.3 --- Calibrations and the VCP-forms --- p.19
Chapter 3 --- Constructing Calibrations --- p.23
Chapter 3.1 --- Clifford algebra and Spin groups --- p.23
Chapter 3.2 --- Calibrations and spinors --- p.30
Chapter 4 --- Calibrations in Exceptional Geometry --- p.39
Chapter 4.1 --- G2 calibration --- p.40
Chapter 4.2 --- Cayley calibration --- p.49
Bibliography --- p.62
Style APA, Harvard, Vancouver, ISO itp.
45

Stevenson, Robin. "Generating quantum resources through measurement and control". Phd thesis, 2013. http://hdl.handle.net/1885/150657.

Pełny tekst źródła
Streszczenie:
The quantum resources of entanglement and single photons are key to a range of quantum applications. These resources are challenging to produce cleanly and efficiently. This thesis investigates and improves methods of producing entanglement and single photons using measurement and control. To robustly produce entanglement, this thesis extends work by Carvalho et al., who developed a method for creating an entangled state of two atoms. This is done by coupling the atoms to a damped cavity, and using measurement of the output of the cavity to trigger a feedback pulse on the atoms. The robustness of this scheme against imperfect localisation of the two atoms is tested in this thesis, and limits are placed on the size of a trap that will still allow an entangled state to be produced. Additionally, using three-level (Lambda configuration) atoms slows the rate at which the system evolves, allowing more time for measurement and feedback to be applied, though it does not counteract the influence of spontaneous emission. In extending this work to multiple atoms we found that the system rapidly becomes more complex, and we developed a strategy for choosing a feedback pulse that stabilises a specific, highly entangled steady state of multiple particles. In addition to this general strategy, we developed a local and separable feedback for generating entanglement in a four-partite system. This thesis also investigates the production of single photons through the rephased amplified spontaneous emission (RASE) protocol. This protocol offers the promise of a stream of precisely shaped single photons, though it is plagued by efficiency issues. We develop a model of RASE and show that it overcomes the trade-off between efficiency and photon spacing by using different optical depths for the amplified spontaneous emission (ASE) preparation of the ensemble, and the RASE emission of single photons. By tailoring the density profile of the ensemble to mode-match the RASE emission of a single photon, we also able to eliminate reabsorption of the emitted photon, which would otherwise have limited the efficiency to 70%.
Style APA, Harvard, Vancouver, ISO itp.
46

LI, Tse-ting, i 李則霆. "Geometric measure of 3D model surface deformation based on the iterative closest point algorithm". Thesis, 2014. http://ndltd.ncl.edu.tw/handle/55374020945619254211.

Pełny tekst źródła
Streszczenie:
碩士
國立臺灣科技大學
材料科學與工程系
102
With 3D modeling technologies, we can build virtual objects (point clouds), such as mountains, buildings, and faces. These 3D virtual objects help us obtain more information than traditional 2D images. In 2D cases, we can easily evaluate the similarity measure between two images. However, it is not easy for us to do so between two 3D virtual objects, especially when they are obtained from different devices (different coordinate systems). Iterative Closest Point (ICP) provides a way to find corresponding points between two point cloud data. It has been applied to many fields, such as object alignment, face and hand recognition, camera tracking, etc. However, it does not provide a geometric measure between two models for deformation evaluation. In this thesis, we propose a geometric measure method based on ICP. This measure is used to evaluate the degree of deformation. From experimental results, the proposed method can detect the local deformation area and give a quantitative evaluation between the original object and deformed one.
Style APA, Harvard, Vancouver, ISO itp.
47

Massaccesi, Annalisa. "Currents with coefficients in groups, applications and other problems in Geometric Measure Theory (2014)". Doctoral thesis, 2014. http://hdl.handle.net/11577/3317127.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Horstmeyer, Leonhard Marlo. "Towards a Geometric Theory of Exact Lumpability". Doctoral thesis, 2017. https://ul.qucosa.de/id/qucosa%3A15842.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

"On the existence of minimizers for the Willmore function". 1998. http://library.cuhk.edu.hk/record=b5889661.

Pełny tekst źródła
Streszczenie:
by Lo Yiu Ming.
Thesis (M.Phil.)--Chinese University of Hong Kong, 1998.
Includes bibliographical references (leaves 89-90).
Abstract also in Chinese.
Abstract --- p.iii
Acknowledgements --- p.iv
Chapter Chapter 1. --- Introduction --- p.1
Chapter 1.1. --- Main Idea --- p.5
Chapter 1.2. --- Organization --- p.8
Chapter Chapter 2. --- Geometric and Analytic Preliminaries --- p.9
Chapter 2.1. --- A Review on Measure Theory --- p.9
Chapter 2.2. --- Submanifolds in Rn --- p.11
Chapter 2.3. --- Several Results from PDEs --- p.17
Chapter 2.4. --- Biharmonic Comparison Lemma --- p.20
Chapter Chapter 3. --- Approximate Graphical Decomposition --- p.24
Chapter 3.1. --- Some Preliminaries --- p.24
Chapter 3.2. --- Approximate Graphical Decomposition --- p.30
Chapter Chapter 4. --- Existence & Regularity of Measure-theoretic Limits of Minimizing Sequence --- p.41
Chapter 4.1. --- Willmore Functional and Area --- p.41
Chapter 4.2. --- Existence of Measure-theoretic Limit of Minimizing Sequence --- p.45
Chapter 4.3. --- Higher Regularity at Good Points --- p.54
Chapter 4.4. --- Convergence in Hausdorff Distance Sense --- p.62
Chapter 4.5. --- Regularity near Bad Points --- p.64
Chapter Chapter 5. --- Existence of Genus 1 Minimizers in Rn --- p.83
References --- p.89
Style APA, Harvard, Vancouver, ISO itp.
50

Tsi, Hook Laurence, i 蔡文欽. "An Enhancement of Speech Recognition by Time-Axis-aligned Sample Training and Weight-Based Geometric Measure". Thesis, 1997. http://ndltd.ncl.edu.tw/handle/02981396463739346898.

Pełny tekst źródła
Streszczenie:
碩士
國立台灣工業技術學院
電機工程技術研究所
85
The methodologies of sample training and feature error measurement on voice is studied in this thesis in order to improve the accuracyof speech recognition. On voice sample training, the quality of the model being trained is badly effected due to the time variances existing among samples. This thesis proposes to align the time axis of voice training samples by using dynamic time warping so that the interference resulted from the time variance can be reduced as much as possible. On feature error measurement, this thesis proposes theimpose on special feature the weights generated by heuristic rulesto widen the differences among speaking words being recognized so that the high accuracy of speech recognition is realized.
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii