Gotowa bibliografia na temat „Geometric Measure of Entanglement”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Geometric Measure of Entanglement”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Geometric Measure of Entanglement"
Cao, Ya, i An Min Wang. "Revised geometric measure of entanglement". Journal of Physics A: Mathematical and Theoretical 40, nr 13 (14.03.2007): 3507–37. http://dx.doi.org/10.1088/1751-8113/40/13/014.
Pełny tekst źródłaWei, T. C., M. Ericsson, P. M. Goldbart i W. J. Munro. "Connections between relative entropy of entanglement and geometric measure of entanglement". Quantum Information and Computation 4, nr 4 (lipiec 2004): 252–72. http://dx.doi.org/10.26421/qic4.4-2.
Pełny tekst źródłaGuo, Yu, Yanping Jia, Xinping Li i Lizhong Huang. "Genuine multipartite entanglement measure". Journal of Physics A: Mathematical and Theoretical 55, nr 14 (9.03.2022): 145303. http://dx.doi.org/10.1088/1751-8121/ac5649.
Pełny tekst źródłaShi, Xian, Lin Chen i Yixuan Liang. "Quantifying the entanglement of quantum states under the geometric method". Physica Scripta 98, nr 1 (7.12.2022): 015103. http://dx.doi.org/10.1088/1402-4896/aca56e.
Pełny tekst źródłaChang, Haixia, Vehbi E. Paksoy i Fuzhen Zhang. "Interpretation of generalized matrix functions via geometric measure of quantum entanglement". International Journal of Quantum Information 13, nr 07 (październik 2015): 1550049. http://dx.doi.org/10.1142/s0219749915500495.
Pełny tekst źródłaBuchholz, Lars Erik, Tobias Moroder i Otfried Gühne. "Evaluating the geometric measure of multiparticle entanglement". Annalen der Physik 528, nr 3-4 (9.12.2015): 278–87. http://dx.doi.org/10.1002/andp.201500293.
Pełny tekst źródłaZhang, Meiming, i Naihuan Jing. "Tighter monogamy relations of entanglement measures based on fidelity". Laser Physics Letters 19, nr 8 (11.07.2022): 085205. http://dx.doi.org/10.1088/1612-202x/ac772e.
Pełny tekst źródłaPaz-Silva, Gerardo A., i John H. Reina. "Geometric multipartite entanglement measures". Physics Letters A 365, nr 1-2 (maj 2007): 64–69. http://dx.doi.org/10.1016/j.physleta.2006.12.065.
Pełny tekst źródłaJang, Kap Soo, MuSeong Kim i DaeKil Park. "Phase-factor Dependence of the Geometric Entanglement Measure". Journal of the Korean Physical Society 58, nr 5 (13.05.2011): 1058–75. http://dx.doi.org/10.3938/jkps.58.1058.
Pełny tekst źródłaKAZAKOV, A. YA. "THE GEOMETRIC MEASURE OF ENTANGLEMENT OF THREE-PARTITE PURE STATES". International Journal of Quantum Information 04, nr 06 (grudzień 2006): 907–15. http://dx.doi.org/10.1142/s0219749906002286.
Pełny tekst źródłaRozprawy doktorskie na temat "Geometric Measure of Entanglement"
Amouzou, Grâce Dorcas Akpéné. "Etude de l’intrication par les polynômes de Mermin : application aux algorithmes quantiques". Electronic Thesis or Diss., Bourgogne Franche-Comté, 2024. http://www.theses.fr/2024UBFCK063.
Pełny tekst źródłaThis thesis explores the measurement of entanglement in certain hypergraph states, in certain quantum algorithms like the Quantum Phase estimation and Counting algorithms as well as in reactive agent circuits, using the geometric measurement of entanglement, tools from Mermin polynomials and coefficient matrices. Entanglement is a concept present in quantum physics that has no known equivalent to date in classical physics.The core of our research is based on the implementation of entanglement detection and measurement devices in order to study quantum states from the point of view of entanglement.With this in mind, calculations are first carried out numerically and then on a quantum simulator and computer. Indeed, three of the tools used can be implemented on a quantum machine, which allows us to compare theoretical and "real" results
Teng, Peiyuan. "Tensor network and neural network methods in physical systems". The Ohio State University, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=osu1524836522115804.
Pełny tekst źródłaFuentes, Guridi Ivette. "Entanglement and geometric phases in light-matter interactions". Thesis, Imperial College London, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.400562.
Pełny tekst źródłaGunhan, Ali Can. "Environmental Effects On Quantum Geometric Phase And Quantum Entanglement". Phd thesis, METU, 2008. http://etd.lib.metu.edu.tr/upload/3/12609450/index.pdf.
Pełny tekst źródłaits stability decreases as the magnetic field strength increases. (By decrease in stability what we mean is the increase in the time rate of change of GP.) We showed that this decrease can be very rapid, and so it could be impossible to make use of it as a quantum logic gate in quantum information theory (QIT). To see if these behaviors differ in different environments, we analyze the same system for a fixed temperature environment which is under the influence of an electromagnetic field in a squeezed state. We find that the general dependence of GP on magnetic field does not change, but this time the effects are smoother. Namely, increase in magnetic field decreases the stability of GP also for in this environment
but this decrease is slower in comparison with the former case, and furthermore it occurs gradually. As a second problem we examine the entanglement of two atoms, which can be used as a two-qubit system in QIT. The entanglement is induced by an external quantum system. Both two-level atoms are coupled to a third two-level system by dipole-dipole interaction. The two atoms are assumed to be in ordinary vacuum and the third system is taken as influenced by a certain environment. We examined different types of environments. We show that the steady-state bipartite entanglement can be achieved in case the environment is a strongly fluctuating, that is a squeezed-vacuum, while it is not possible for a thermalized environment.
Hartley, Julian. "Aspects of entanglement and geometric phase in quantum information". Thesis, Imperial College London, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.420622.
Pełny tekst źródłaJohansson, Markus. "Entanglement and Quantum Computation from a Geometric and Topological Perspective". Doctoral thesis, Uppsala universitet, Teoretisk kemi, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-173120.
Pełny tekst źródłaVilla, E. "Methods of geometric measure theory in stochastic geometry". Doctoral thesis, Università degli Studi di Milano, 2007. http://hdl.handle.net/2434/28369.
Pełny tekst źródłaHudgell, Sarahann. "Produce software to measure the geometric properties of airways /". Leeds : University of Leeds, School of Computer Studies, 2008. http://www.comp.leeds.ac.uk/fyproj/reports/0708/Hudgell.pdf.
Pełny tekst źródłaVedovato, Mattia. "Some variational and geometric problems on metric measure spaces". Doctoral thesis, Università degli studi di Trento, 2022. https://hdl.handle.net/11572/337379.
Pełny tekst źródłaCASTELPIETRA, MARCO. "Metric, geometric and measure theoretic properties of nonsmooth value functions". Doctoral thesis, Università degli Studi di Roma "Tor Vergata", 2007. http://hdl.handle.net/2108/202601.
Pełny tekst źródłaThe value function is a focal point in optimal control theory. It is a known fact that the value function can be nonsmooth even with very smooth data. So, nonsmooth analysis is a useful tool to study its regularity. Semiconcavity is a regularity property, with some fine connection with nonsmooth analysis. Under appropriate assumptions, the value function is locally semiconcave. This property is connected with the interior sphere property of its level sets and their perimeters. In this thesis we introduce basic concepts of nonsmooth analysis and their connections with semiconcave functions, and sets of finite perimeter. We describe control systems, and we introduce the basic properties of the minimum time function T(x) and of the value function V (x). Then, using maximum principle, we extend some known results of interior sphere property for the attainable setsA(t), to the nonautonomous case and to systems with nonconstant running cost L. This property allow us to obtain some fine perimeter estimates for some class of control systems. Finally these regularity properties of the attainable sets can be extended to the level sets of the value function, and, with some controllability assumption, we also obtain a local semiconcavity for V (x). Moreoverwestudycontrolsystemswithstateconstraints. Inconstrained systems we loose many of regularity properties related to the value function. In fact, when a trajectory of control system touches the boundary of the constraint set Ω, some singularity effect occurs. This effect is clear even in the statement of the maximum principle. Indeed, due to the times in which a trajectory stays on ∂Ω, a measure boundary term (possibly, discontinuous) appears. So, we have no more semiconcavity for the value function, even for very simple control systems. But we recover Lipschitz continuity for the minimum time and we rewrite the constrained maximum principle with an explicit boundary term. We also obtain a kind of interior sphere property, and perimeter estimates for the attainable sets for some class of control systems.
Książki na temat "Geometric Measure of Entanglement"
Federer, Herbert. Geometric Measure Theory. Redaktorzy B. Eckmann i B. L. van der Waerden. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-62010-2.
Pełny tekst źródłaFederer, Herbert. Geometric measure theory. Berlin: Springer, 1996.
Znajdź pełny tekst źródłaAmbrosio, Luigi, red. Geometric Measure Theory and Real Analysis. Pisa: Scuola Normale Superiore, 2014. http://dx.doi.org/10.1007/978-88-7642-523-3.
Pełny tekst źródłaBombieri, E., red. Geometric Measure Theory and Minimal Surfaces. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-10970-6.
Pełny tekst źródłaservice), SpringerLink (Online, red. Geometric Measure Theory and Minimal Surfaces. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2011.
Znajdź pełny tekst źródłaMorgan, Frank. Geometric measure theory: A beginner's guide. Boston: Academic Press, 1988.
Znajdź pełny tekst źródłaDe Philippis, Guido, Xavier Ros-Oton i Georg S. Weiss. Geometric Measure Theory and Free Boundary Problems. Redaktorzy Matteo Focardi i Emanuele Spadaro. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-65799-4.
Pełny tekst źródłaFigalli, Alessio, Ireneo Peral i Enrico Valdinoci. Partial Differential Equations and Geometric Measure Theory. Redaktorzy Alberto Farina i Enrico Valdinoci. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-74042-3.
Pełny tekst źródła1949-, Parks Harold R., red. Geometric integration theory. Boston, Mass: Birkhäuser, 2008.
Znajdź pełny tekst źródłaAllard, William, i Frederick Almgren, red. Geometric Measure Theory and the Calculus of Variations. Providence, Rhode Island: American Mathematical Society, 1986. http://dx.doi.org/10.1090/pspum/044.
Pełny tekst źródłaCzęści książek na temat "Geometric Measure of Entanglement"
Marín, Juan, José Martell, Dorina Mitrea, Irina Mitrea i Marius Mitrea. "Geometric Measure Theory". W Progress in Mathematics, 27–161. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-08234-4_2.
Pełny tekst źródłaFederer, Herbert. "General measure theory". W Geometric Measure Theory, 50–206. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-62010-2_3.
Pełny tekst źródłaFederer, Herbert. "Introduction". W Geometric Measure Theory, 1–7. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-62010-2_1.
Pełny tekst źródłaFederer, Herbert. "Grassmann algebra". W Geometric Measure Theory, 8–49. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-62010-2_2.
Pełny tekst źródłaFederer, Herbert. "Rectifiability". W Geometric Measure Theory, 207–340. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-62010-2_4.
Pełny tekst źródłaFederer, Herbert. "Homological integration theory". W Geometric Measure Theory, 341–512. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-62010-2_5.
Pełny tekst źródłaFederer, Herbert. "Applications to the calculus of variations". W Geometric Measure Theory, 513–654. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-62010-2_6.
Pełny tekst źródłaBertlmann, Reinhold A., i Nicolai Friis. "Quantification and Conversion of Entanglement". W Modern Quantum Theory, 485–541. Oxford University PressOxford, 2023. http://dx.doi.org/10.1093/oso/9780199683338.003.0016.
Pełny tekst źródłaBaggott, Jim. "Complementarity and entanglement". W Beyond measure, 181–204. Oxford University PressOxford, 2003. http://dx.doi.org/10.1093/oso/9780198529279.003.0010.
Pełny tekst źródłaJozsa, Richard. "Entanglement and Quantum Computation". W The Geometric Universe, 369–79. Oxford University PressOxford, 1998. http://dx.doi.org/10.1093/oso/9780198500599.003.0027.
Pełny tekst źródłaStreszczenia konferencji na temat "Geometric Measure of Entanglement"
Huertas, Samuel, Daniel Peláez, Valentina López, Laura Bravo i Romón Castañeda. "Spatial Entanglement of Geometric States of Ordinary Space in Non-paraxial Inteference". W 2024 XVIII National Meeting on Optics and the IX Andean and Caribbean Conference on Optics and its Applications (ENO-CANCOA), 1–4. IEEE, 2024. http://dx.doi.org/10.1109/eno-cancoa61307.2024.10751559.
Pełny tekst źródłaSeshadri, Suparna, Karthik V. Myilswamy, Zhao-Hui Ma, Yu-Ping Huang i Andrew M. Weiner. "Measuring frequency-bin entanglement from a quasi-phase-matched lithium niobate microring". W CLEO: Fundamental Science, FTu4F.3. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_fs.2024.ftu4f.3.
Pełny tekst źródłaKlaver, Yvan, Randy te Morsche, Batoul Hashemi, Bruno L. Segat Frare, Pooya Torab Ahmadi, Niloofar Majidian Taleghani, Evan Jonker i in. "Enhanced stimulated Brillouin scattering in tellurite covered silicon nitride waveguides via geometric and cladding engineering". W CLEO: Science and Innovations, STh4C.1. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_si.2024.sth4c.1.
Pełny tekst źródłaŻyczkowski, Karol. "Geometry of Quantum Entanglement". W Workshop on Entanglement and Quantum Decoherence. Washington, D.C.: Optica Publishing Group, 2008. http://dx.doi.org/10.1364/weqd.2008.embs3.
Pełny tekst źródłaSusulovska, N. A., i Kh P. Gnatenko. "Quantifying Geometric Measure of Entanglement of Multi-qubit Graph States on the IBM’s Quantum Computer". W 2021 IEEE International Conference on Quantum Computing and Engineering (QCE). IEEE, 2021. http://dx.doi.org/10.1109/qce52317.2021.00080.
Pełny tekst źródłaBeigi, Salman. "Maximal entanglement — A new measure of entanglement". W 2014 Iran Workshop on Communication and Information Theory (IWCIT). IEEE, 2014. http://dx.doi.org/10.1109/iwcit.2014.6842486.
Pełny tekst źródłaXie, Songbo, i Joseph H. Eberly. "Multi-Photonic Entanglement, A Geometric Approach". W Frontiers in Optics. Washington, D.C.: OSA, 2021. http://dx.doi.org/10.1364/fio.2021.fth6d.6.
Pełny tekst źródłaJha, Anand K., Mehul Malik i Robert W. Boyd. "Exploring Energy-Time Entanglement Using Geometric Phase". W International Quantum Electronics Conference. Washington, D.C.: OSA, 2009. http://dx.doi.org/10.1364/iqec.2009.iwf7.
Pełny tekst źródłaToro, Tatiana. "Potential Analysis Meets Geometric Measure Theory". W Proceedings of the International Congress of Mathematicians 2010 (ICM 2010). Published by Hindustan Book Agency (HBA), India. WSPC Distribute for All Markets Except in India, 2011. http://dx.doi.org/10.1142/9789814324359_0107.
Pełny tekst źródłaJack, B., J. Leach, J. Romero, S. Franke-Arnold, S. M. Barnett i M. J. Padgett. "Spatial Light Modulators to Measure Entanglement Between Spatial States". W Frontiers in Optics. Washington, D.C.: OSA, 2009. http://dx.doi.org/10.1364/fio.2009.jtub4.
Pełny tekst źródła