Gotowa bibliografia na temat „Geometric finiteness”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Geometric finiteness”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Geometric finiteness"
Lück, Wolfgang. "The Geometric Finiteness Obstruction". Proceedings of the London Mathematical Society s3-54, nr 2 (marzec 1987): 367–84. http://dx.doi.org/10.1112/plms/s3-54.2.367.
Pełny tekst źródłaSwarup, G. A. "Geometric finiteness and rationality". Journal of Pure and Applied Algebra 86, nr 3 (maj 1993): 327–33. http://dx.doi.org/10.1016/0022-4049(93)90107-5.
Pełny tekst źródłaTuschmann, Wilderich. "Geometric diffeomorphism finiteness in low dimensions and homotopy group finiteness". Mathematische Annalen 322, nr 2 (luty 2002): 413–20. http://dx.doi.org/10.1007/s002080100281.
Pełny tekst źródłaScott, G. P., i G. A. Swarup. "Geometric finiteness of certain Kleinian groups". Proceedings of the American Mathematical Society 109, nr 3 (1.03.1990): 765. http://dx.doi.org/10.1090/s0002-9939-1990-1013981-6.
Pełny tekst źródłaGrove, Karsten, Peter Petersen i Jyh-Yang Wu. "Geometric finiteness theorems via controlled topology". Inventiones Mathematicae 99, nr 1 (grudzień 1990): 205–13. http://dx.doi.org/10.1007/bf01234417.
Pełny tekst źródłaKapovich, Michael, i Beibei Liu. "Geometric finiteness in negatively pinched Hadamard manifolds". Annales Academiae Scientiarum Fennicae Mathematica 44, nr 2 (czerwiec 2019): 841–75. http://dx.doi.org/10.5186/aasfm.2019.4444.
Pełny tekst źródłaTorroba, Gonzalo. "Finiteness of flux vacua from geometric transitions". Journal of High Energy Physics 2007, nr 02 (21.02.2007): 061. http://dx.doi.org/10.1088/1126-6708/2007/02/061.
Pełny tekst źródłaProctor, Emily. "Orbifold homeomorphism finiteness based on geometric constraints". Annals of Global Analysis and Geometry 41, nr 1 (24.05.2011): 47–59. http://dx.doi.org/10.1007/s10455-011-9270-4.
Pełny tekst źródłaDurumeric, Oguz C. "Geometric finiteness in large families in dimension 3". Topology 40, nr 4 (lipiec 2001): 727–37. http://dx.doi.org/10.1016/s0040-9383(99)00080-4.
Pełny tekst źródłaGrove, Karsten, Peter Petersen V i Jyh-Yang Wu. "Erratum to Geometric finiteness theorems via controlled topology". Inventiones mathematicae 104, nr 1 (grudzień 1991): 221–22. http://dx.doi.org/10.1007/bf01245073.
Pełny tekst źródłaRozprawy doktorskie na temat "Geometric finiteness"
Fléchelles, Balthazar. "Geometric finiteness in convex projective geometry". Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASM029.
Pełny tekst źródłaThis thesis is devoted to the study of geometrically finite convex projective orbifolds, following work of Ballas, Cooper, Crampon, Leitner, Long, Marquis and Tillmann. A convex projective orbifold is the quotient of a bounded, convex and open subset of an affine chart of real projective space (called a properly convex domain) by a discrete group of projective transformations that preserve it. We say that a convex projective orbifold is strictly convex if there are no non-trivial segments in the boundary of the convex subset, and round if in addition there is a unique supporting hyperplane at each boundary point. Following work of Cooper-Long-Tillmann and Crampon-Marquis, we say that a strictly convex orbifold is geometrically finite if its convex core decomposes as the union of a compact subset and of finitely many ends, called cusps, all of whose points have an injectivity radius smaller than a constant depending only on the dimension. Understanding what types of cusps may occur is crucial for the study of geometrically finite orbifolds. In the strictly convex case, the only known restriction on cusp holonomies, imposed by a generalization of the celebrated Margulis lemma proven by Cooper-Long-Tillmann and Crampon-Marquis, is that the holonomy of a cusp has to be virtually nilpotent. We give a complete characterization of the holonomies of cusps of strictly convex orbifolds and of those of round orbifolds. By generalizing a method of Cooper, which gave the only previously known example of a cusp of a strictly convex manifold with non virtually abelian holonomy, we build examples of cusps of strictly convex manifolds and round manifolds whose holonomy can be any finitely generated torsion-free nilpotent group. In joint work with M. Islam and F. Zhu, we also prove that for torsion-free relatively hyperbolic groups, relative P1-Anosov representations (in the sense of Kapovich-Leeb, Zhu and Zhu-Zimmer) that preserve a properly convex domain are exactly the holonomies of geometrically finite round manifolds.In the general case of non strictly convex projective orbifolds, no satisfactory definition of geometric finiteness is known at the moment. However, Cooper-Long-Tillmann, followed by Ballas-Cooper-Leitner, introduced a notion of generalized cusps in this context. Although they only require that the holonomy be virtually nilpotent, all previously known examples had virtually abelian holonomy. We build examples of generalized cusps whose holonomy can be any finitely generated torsion-free nilpotent group. We also allow ourselves to weaken Cooper-Long-Tillmann’s original definition by assuming only that the holonomy be virtually solvable, and this enables us to construct new examples whose holonomy is not virtually nilpotent.When a geometrically finite orbifold has no cusps, i.e. when its convex core is compact, we say that the orbifold is convex cocompact. Danciger-Guéritaud-Kassel provided a good definition of convex cocompactness for convex projective orbifolds that are not necessarily strictly convex. They proved that the holonomy of a convex cocompact convex projective orbifold is Gromov hyperbolic if and only if the associated representation is P1-Anosov. Using these results, Vinberg’s theory and work of Agol and Haglund-Wise about cubulated hyperbolic groups, we construct, in collaboration with S. Douba, T. Weisman and F. Zhu, examples of P1-Anosov representations for any cubulated hyperbolic group. This gives new examples of hyperbolic groups admitting Anosov representations
Kuckuck, Benno. "Finiteness properties of fibre products". Thesis, University of Oxford, 2012. http://ora.ox.ac.uk/objects/uuid:a9624d17-9d11-4bd0-8c46-78cbba73469c.
Pełny tekst źródłaBowditch, B. H. "Geometrical finiteness for hyperbolic groups". Thesis, University of Warwick, 1988. http://wrap.warwick.ac.uk/99188/.
Pełny tekst źródłaPassaro, Davide. "Finiteness of Complete Intersection Calabi Yau Threefolds". Thesis, Uppsala universitet, Teoretisk fysik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-394987.
Pełny tekst źródłaMarseglia, Stéphane. "Variétés projectives convexes de volume fini". Thesis, Strasbourg, 2017. http://www.theses.fr/2017STRAD019/document.
Pełny tekst źródłaIn this thesis, we study strictly convex projective manifolds of finite volume. Such a manifold is the quotient G\U of a properly convex open subset U of the real projective space RP^(n-1) by a discrete torsionfree subgroup G of SLn(R) preserving U. We study the Zariski closure of holonomies of convex projective manifolds of finite volume. For such manifolds G\U, we show that either the Zariski closure of G is SLn(R) or it is a conjugate of SO(1,n-1).We also focuss on the moduli space of strictly convex projective structures of finite volume. We show that this moduli space is a closed set of the representation space
Hung, Min Kai, i 洪旻楷. "On the finiteness of geometric knots". Thesis, 2010. http://ndltd.ncl.edu.tw/handle/14407283257393717053.
Pełny tekst źródła國立臺灣師範大學
數學系
98
In these paper, we consider several properties of Normal Projection Energy. Firstly, among the class of $C^{1,1}$-smooth knots, the upper bound of Normal Projection Energy gives a uniform lower bound of Gromov's distorsion of knots. Secondly, Normal Projection Energy is bounded by the product of total curvature and ropelength. Thirdly, to prove the bound of Normal Projection Energy, we study the curves which attain the infimum of the total absolute curvature in the set of curves contained in a ball with fixed endpoints and length.
"Survey on the finiteness results in geometric analysis on complete manifolds". 2010. http://library.cuhk.edu.hk/record=b5894429.
Pełny tekst źródłaThesis (M.Phil.)--Chinese University of Hong Kong, 2010.
Includes bibliographical references (leaves 102-105).
Abstracts in English and Chinese.
Chapter 0 --- Introduction --- p.6
Chapter 1 --- Background knowledge --- p.9
Chapter 1.1 --- Comparison theorems --- p.9
Chapter 1.2 --- Bochner techniques --- p.13
Chapter 1.3 --- Eigenvalue estimates for Laplacian operator --- p.14
Chapter 1.4 --- Spectral theory for Schrodinger operator on Rieman- nian manifolds --- p.16
Chapter 2 --- Vanishing theorems --- p.20
Chapter 2.1 --- Liouville type theorem for Lp subharmonic functions --- p.20
Chapter 2.2 --- Generalized type of vanishing theorem --- p.21
Chapter 3 --- Finite dimensionality results --- p.28
Chapter 3.1 --- Three types of integral inequalities --- p.28
Chapter 3.2 --- Weak Harnack inequality --- p.34
Chapter 3.3 --- Li's abstract finite dimensionality theorem --- p.37
Chapter 3.4 --- Applications of the finite dimensionality theorem --- p.42
Chapter 4 --- Ends of Riemannian manifolds --- p.48
Chapter 4.1 --- Green's function --- p.48
Chapter 4.2 --- Ends and harmonic functions --- p.53
Chapter 4.3 --- Some topological applications --- p.72
Chapter 5 --- Splitting theorems --- p.79
Chapter 5.1 --- Splitting theorems for manifolds with non-negative Ricci curvature --- p.79
Chapter 5.2 --- Splitting theorems for manifolds of Ricci curvature with a negative lower bound --- p.83
Chapter 5.3 --- Manifolds with the maximal possible eigenvalue --- p.93
Bibliography --- p.102
Książki na temat "Geometric finiteness"
Marco, Rigoli, i Setti Alberto G. 1960-, red. Vanishing and finiteness results in geometric analysis: A generalization of the Bochner technique. Basel: Birkhauser, 2008.
Znajdź pełny tekst źródłaSession, Ring Theory. Ring theory and its applications: Ring Theory Session in honor of T.Y. Lam on his 70th birthday at the 31st Ohio State-Denison Mathematics Conference, May 25-27, 2012, The Ohio State University, Columbus, OH. Redaktorzy Lam, T. Y. (Tsit-Yuen), 1942- honouree, Huynh, Dinh Van, 1947- editor of compilation i Ohio State-Denison Mathematics Conference. Providence, Rhode Island: American Mathematical Society, 2014.
Znajdź pełny tekst źródłaVanishing and Finiteness Results in Geometric Analysis. Basel: Birkhäuser Basel, 2008. http://dx.doi.org/10.1007/978-3-7643-8642-9.
Pełny tekst źródłaPigola, Stefano, Marco Rigoli i Alberto G. Setti. Vanishing and Finiteness Results in Geometric Analysis: A Generalization of the Bochner Technique. Springer London, Limited, 2008.
Znajdź pełny tekst źródłaWitzel, Stefan. Finiteness Properties of Arithmetic Groups Acting on Twin Buildings. Springer London, Limited, 2014.
Znajdź pełny tekst źródłaFiniteness Properties of Arithmetic Groups Acting on Twin Buildings. Springer, 2014.
Znajdź pełny tekst źródłaHrushovski, Ehud, i François Loeser. Non-Archimedean Tame Topology and Stably Dominated Types (AM-192). Princeton University Press, 2017. http://dx.doi.org/10.23943/princeton/9780691161686.001.0001.
Pełny tekst źródłaAbbes, Ahmed, i Michel Gros. Representations of the fundamental group and the torsor of deformations. Global aspects. Princeton University Press, 2017. http://dx.doi.org/10.23943/princeton/9780691170282.003.0003.
Pełny tekst źródłaRings with Polynomial Identities and Finite Dimensional Representations of Algebras. American Mathematical Society, 2020.
Znajdź pełny tekst źródłaCzęści książek na temat "Geometric finiteness"
Katz, Nicholas M., Serge Lang i Kenneth A. Ribet. "Finiteness Theorems in Geometric Classfield Theory". W Collected Papers Volume III, 101–35. New York, NY: Springer New York, 2000. http://dx.doi.org/10.1007/978-1-4612-2116-6_9.
Pełny tekst źródłaLang, Serge. "Finiteness Theorems in Geometric Classfield Theory". W Springer Collected Works in Mathematics, 101–35. New York, NY: Springer New York, 2000. http://dx.doi.org/10.1007/978-1-4614-6324-5_9.
Pełny tekst źródłaSuciu, Alexander I. "Geometric and homological finiteness in free abelian covers". W Configuration Spaces, 461–501. Pisa: Scuola Normale Superiore, 2012. http://dx.doi.org/10.1007/978-88-7642-431-1_21.
Pełny tekst źródłaAndrzejewski, Pawel. "Equivariant finiteness obstruction and its geometric applications - A survey". W Lecture Notes in Mathematics, 20–37. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/bfb0084735.
Pełny tekst źródłaSchlomiuk, Dana. "Aspects of planar polynomial vector fields: global versus local, real versus complex, analytic versus algebraic and geometric". W Normal Forms, Bifurcations and Finiteness Problems in Differential Equations, 471–509. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/978-94-007-1025-2_13.
Pełny tekst źródłaGörtz, Ulrich, i Torsten Wedhorn. "Finiteness Conditions". W Algebraic Geometry I, 241–85. Wiesbaden: Vieweg+Teubner, 2010. http://dx.doi.org/10.1007/978-3-8348-9722-0_11.
Pełny tekst źródłaFaltings, Gerd. "Finiteness Theorems for Abelian Varieties over Number Fields". W Arithmetic Geometry, 9–26. New York, NY: Springer New York, 1986. http://dx.doi.org/10.1007/978-1-4613-8655-1_2.
Pełny tekst źródłaZarhin, Yuri G. "Finiteness theorems for dimensions of irreducible λ-adic representations". W Arithmetic Algebraic Geometry, 431–44. Boston, MA: Birkhäuser Boston, 1991. http://dx.doi.org/10.1007/978-1-4612-0457-2_20.
Pełny tekst źródłaBesson, Gérard, i Gilles Courtois. "Compactness and Finiteness Results for Gromov-Hyperbolic Spaces". W Surveys in Geometry I, 205–68. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-86695-2_6.
Pełny tekst źródłaOllivier, François. "Canonical Bases: Relations with Standard Bases, Finiteness Conditions and Application to Tame Automorphisms". W Effective Methods in Algebraic Geometry, 379–400. Boston, MA: Birkhäuser Boston, 1991. http://dx.doi.org/10.1007/978-1-4612-0441-1_25.
Pełny tekst źródłaStreszczenia konferencji na temat "Geometric finiteness"
Koike, Satoshi. "Finiteness theorems on Blow-Nash triviality for real algebraic singularities". W Geometric Singularity Theory. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2004. http://dx.doi.org/10.4064/bc65-0-10.
Pełny tekst źródłaBejan, Adrian, i Sylvie Lorente. "A Course on Flow-System Configuration and Multi-Scale Design". W ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-59203.
Pełny tekst źródłaMartinez, Rudolph, Brent S. Paul, Morgan Eash i Carina Ting. "A Three-Dimensional Wiener-Hopf Technique for General Bodies of Revolution: Part 1—Theory". W ASME 2009 International Mechanical Engineering Congress and Exposition. ASMEDC, 2009. http://dx.doi.org/10.1115/imece2009-13344.
Pełny tekst źródła