Gotowa bibliografia na temat „Geometric Covering and Packing”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Geometric Covering and Packing”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Geometric Covering and Packing"

1

Chan, Timothy M., i Elyot Grant. "Exact algorithms and APX-hardness results for geometric packing and covering problems". Computational Geometry 47, nr 2 (luty 2014): 112–24. http://dx.doi.org/10.1016/j.comgeo.2012.04.001.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Ashok, Pradeesha, Aniket Basu Roy i Sathish Govindarajan. "Local search strikes again: PTAS for variants of geometric covering and packing". Journal of Combinatorial Optimization 39, nr 2 (21.06.2019): 618–35. http://dx.doi.org/10.1007/s10878-019-00432-y.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Klevanskiy, Nikolay N., Sergey I. Tkachev, Ludmila A. Voloshchuk, Rouslan B. Nourgaziev i Vladimir S. Mavzovin. "Regular Two-Dimensional Packing of Congruent Objects: Cognitive Analysis of Honeycomb Constructions". Applied Sciences 11, nr 11 (31.05.2021): 5128. http://dx.doi.org/10.3390/app11115128.

Pełny tekst źródła
Streszczenie:
A new approach to investigate the two-dimensional, regular packing of arbitrary geometric objects (GOs), using cognitive visualization, is presented. GOs correspond to congruent non-convex polygons with their associated coordinate system. The origins of these coordinate systems are accepted by object poles. The approach considered is based on cognitive processes that are forms of heuristic judgments. According to the first heuristic judgment, regular packing of congruent GOs on the plane have a honeycomb structure, that is, each GO contacts six neighboring GO, the poles of which are vertices of the pole hexagon in the honeycomb construction of packing. Based on the visualization of the honeycomb constructions a second heuristic judgment is obtained, according to which inside the hexagon of the poles, there are fragments of three GOs. The consequence is a third heuristic judgment on the plane covering density with regular packings of congruent GOs. With the help of cognitive visualization, it is established that inside the hexagon of poles there are fragments of exactly three objects. The fourth heuristic judgment is related to the proposal of a triple lattice packing for regular packing of congruent GOs.
Style APA, Harvard, Vancouver, ISO itp.
4

Tyrin, Grigory, i Vladimir Frolovsky. "Research and application of the crow search algorithm for geometric covering optimization problems". Proceedings of the Russian higher school Academy of sciences, nr 1 (8.07.2021): 54–61. http://dx.doi.org/10.17212/1727-2769-2021-1-54-61.

Pełny tekst źródła
Streszczenie:
The problem of geometric covering is a special case of the optimal design problem and belongs to the class of cutting and packing problems. The challenge is to position some geometric objects on the surface to be coated so that the entire surface is covered. The complexity of the problems under consideration is due to their belonging to the class of NP-hard problems, which excludes the possibility of solving them by exact methods and requires the development of approximate optimization methods and algorithms. This article discusses the problem of geometric covering of an area with circles from a given set of radii. To solve the problem of geometric covering, a hexagonal grid coverage method with optimization by a metaheuristic algorithm is used. The crow search algorithm is such an algorithm, which is a relatively new metaheuristic algorithm based on the intelligent behavior of crows in a flock. The crow search algorithm includes two control parameters: the awareness probability and the flight length. To study the solution method and check the efficiency, a problem was modeled on the basis of a real design of automatic irrigation systems, and the results of experiments with different values of control parameters were presented.
Style APA, Harvard, Vancouver, ISO itp.
5

Fejes Tóth, G., P. Gritzmann i J. M. Wills. "Finite sphere packing and sphere covering". Discrete & Computational Geometry 4, nr 1 (styczeń 1989): 19–40. http://dx.doi.org/10.1007/bf02187713.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Swanepoel, Konrad J. "Simultaneous Packing and Covering in Sequence Spaces". Discrete & Computational Geometry 42, nr 2 (7.05.2009): 335–40. http://dx.doi.org/10.1007/s00454-009-9189-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

MATTILA, PERTTI, i R. DANIEL MAULDIN. "Measure and dimension functions: measurability and densities". Mathematical Proceedings of the Cambridge Philosophical Society 121, nr 1 (styczeń 1997): 81–100. http://dx.doi.org/10.1017/s0305004196001089.

Pełny tekst źródła
Streszczenie:
During the past several years, new types of geometric measure and dimension have been introduced; the packing measure and dimension, see [Su], [Tr] and [TT1]. These notions are playing an increasingly prevalent role in various aspects of dynamics and measure theory. Packing measure is a sort of dual of Hausdorff measure in that it is defined in terms of packings rather than coverings. However, in contrast to Hausdorff measure, the usual definition of packing measure requires two limiting procedures, first the construction of a premeasure and then a second standard limiting process to obtain the measure. This makes packing measure somewhat delicate to deal with. The question arises as to whether there is some simpler method for defining packing measure and dimension. In this paper, we find a basic limitation on this possibility. We do this by determining the descriptive set-theoretic complexity of the packing functions. Whereas the Hausdorff dimension function on the space of compact sets is Borel measurable, the packing dimension function is not. On the other hand, we show that the packing dimension functions are measurable with respect to the σ-algebra generated by the analytic sets. Thus, the usual sorts of measurability properties used in connection with Hausdorff measure, for example measures of sections and projections, remain true for packing measure.
Style APA, Harvard, Vancouver, ISO itp.
8

Groemer, H. "Some basic properties of packing and covering constants". Discrete & Computational Geometry 1, nr 2 (czerwiec 1986): 183–93. http://dx.doi.org/10.1007/bf02187693.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Böröczky, Károly. "Finite packing and covering by congruent convex domains". Discrete & Computational Geometry 30, nr 2 (10.07.2003): 185–93. http://dx.doi.org/10.1007/s00454-003-0005-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Schurmann, Achill, i Frank Vallentin. "Computational Approaches to Lattice Packing and Covering Problems". Discrete & Computational Geometry 35, nr 1 (12.10.2005): 73–116. http://dx.doi.org/10.1007/s00454-005-1202-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Rozprawy doktorskie na temat "Geometric Covering and Packing"

1

Song, Yongqiang. "Improved Approximation Algorithms for Geometric Packing Problems With Experimental Evaluation". Thesis, University of North Texas, 2003. https://digital.library.unt.edu/ark:/67531/metadc4355/.

Pełny tekst źródła
Streszczenie:
Geometric packing problems are NP-complete problems that arise in VLSI design. In this thesis, we present two novel algorithms using dynamic programming to compute exactly the maximum number of k x k squares of unit size that can be packed without overlap into a given n x m grid. The first algorithm was implemented and ran successfully on problems of large input up to 1,000,000 nodes for different values. A heuristic based on the second algorithm is implemented. This heuristic is fast in practice, but may not always be giving optimal times in theory. However, over a wide range of random data this version of the algorithm is giving very good solutions very fast and runs on problems of up to 100,000,000 nodes in a grid and different ranges for the variables. It is also shown that this version of algorithm is clearly superior to the first algorithm and has shown to be very efficient in practice.
Style APA, Harvard, Vancouver, ISO itp.
2

Bezdek, Andras. "Packing and covering problems /". The Ohio State University, 1986. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487266691095136.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Chen, Zhibin, i 陳智斌. "On various packing and covering problems". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2009. http://hub.hku.hk/bib/B43085520.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Chen, Zhibin. "On various packing and covering problems". Click to view the E-thesis via HKUTO, 2009. http://sunzi.lib.hku.hk/hkuto/record/B43085520.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Nielsen, Torben Noerup. "Combinatorial Bin Packing Problems". Diss., The University of Arizona, 1985. http://hdl.handle.net/10150/187536.

Pełny tekst źródła
Streszczenie:
In the past few years, there has been a strong and growing interest in evaluating the expected behavior of what we call combinatorial bin packing problems. A combinatorial bin packing problem consists of a number of items of various sizes and value ratios (value per unit of size) along with a collection of bins of fixed capacity into which the items are to be packed. The packing must be done in such a way that the sum of the sizes of the items into a given bin does not exceed the capacity of that bin. Moreover, an item must either be packed into a bin in its entirety or not at all: this "all or nothing" requirement is why these problems are characterized as being combinatorial. The objective of the packing is to optimize a given criterion Junction. Here optimize means either maximize or minimize, depending on the problem. We study two problems that fit into this framework: the Knapsack Problem and the Minimum Sum of Squares Problem. Both of these problems are known to be in the class of NP-hard problems and there is ample reason to suspect that these problems do not admit of efficient exact solution. We obtain results concerning the performance of heuristics under the assumption that the inputs are random samples from some distribution. For the Knapsack Problem, we develop four heuristics, two of which are on-line and two off-line. All four heuristics are shown to be asymptotically optimal in expectation when the item sizes and value ratios are assumed to be independent and uniform. One heuristic is shown to be asymptotically optimal in expectation when the item sizes are uniformly distributed and the value ratios are exponentially distributed. The amount of time required by these heuristics is no more than proportional to the amount of time required to sort the items in order of nonincreasing value ratios. For the Minimum Sum of Squares Problem, we develop two heuristics, both of which are off-line. Both of these heuristics are shown to be asymptotically optimal in expectation when the sizes of the items input are assumed uniformly distributed.
Style APA, Harvard, Vancouver, ISO itp.
6

Stardom, John. "Metaheuristics and the search for covering and packing arrays". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2001. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/MQ61608.pdf.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Pasha, Arfath. "Geometric bin packing algorithm for arbitrary shapes". [Gainesville, Fla.] : University of Florida, 2003. http://purl.fcla.edu/fcla/etd/UFE0000907.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Chang, Engder. "Neural computing for minimum set covering and gate-packing problems". Case Western Reserve University School of Graduate Studies / OhioLINK, 1993. http://rave.ohiolink.edu/etdc/view?acc_num=case1056655652.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

許眞眞 i Zhenzhen Xu. "A min-max theorem on packing and covering cycles in graphs". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2002. http://hub.hku.hk/bib/B31226966.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Xu, Zhenzhen. "A min-max theorem on packing and covering cycles in graphs /". Hong Kong : University of Hong Kong, 2002. http://sunzi.lib.hku.hk/hkuto/record.jsp?B25155301.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Książki na temat "Geometric Covering and Packing"

1

Convegno, italiano di geometria integrale probabilità geometriche e. corpi convessi (4th 1994 Bari Italy). IV Convegno italiano di geometria integrale, probabilità geometriche e corpi convessi: Bari, 2-5 maggio 1994. Palermo: Sede della società, 1995.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Convegno italiano di geometria integrale, probabilità geometriche e corpi convessi (5th 1995 Milan, Italy). V Convegno italiano di geometria integrale, probabilità geometriche e corpi convessi: Milano, 19-22 aprile 1995. Palermo: Sede della società, 1996.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Rogers, C. A. Packing and covering. Cambridge: Cambridge University Press, 2008.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Böröczky, K. Finite packing and covering. Cambridge, UK: Cambridge University Press, 2004.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

service), SpringerLink (Online, red. The Kepler Conjecture: The Hales-Ferguson Proof. New York, NY: Springer Science+Business Media, LLC, 2011.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Combinatorial optimization: Packing and covering. Philadelphia: Society for Industrial and Applied Mathematics, 2001.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

1951-, Cohen G., red. Covering codes. Amsterdam: Elsevier, 1997.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

1943-, Itoh Yoshiaki, i ebrary Inc, red. Random sequential packing of cubes. Singapore: World Scientific, 2011.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Barg, Alexander, i O. R. Musin. Discrete geometry and algebraic combinatorics. Providence, Rhode Island: American Mathematical Society, 2014.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Gerardus Joannes Maria Van Wee. Covering codes, perfect codes, and codes from algebraic curves. Helmond [Netherlands]: Wibro Dissertatiedrukkerij, 1991.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Części książek na temat "Geometric Covering and Packing"

1

Croft, Hallard T., Kenneth J. Falconer i Richard K. Guy. "Packing and Covering". W Unsolved Problems in Geometry, 107–30. New York, NY: Springer New York, 1991. http://dx.doi.org/10.1007/978-1-4612-0963-8_5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Chekuri, Chandra, Sariel Har-Peled i Kent Quanrud. "Fast LP-based Approximations for Geometric Packing and Covering Problems". W Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, 1019–38. Philadelphia, PA: Society for Industrial and Applied Mathematics, 2020. http://dx.doi.org/10.1137/1.9781611975994.62.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Ashok, Pradeesha, Aniket Basu Roy i Sathish Govindarajan. "Local Search Strikes Again: PTAS for Variants of Geometric Covering and Packing". W Lecture Notes in Computer Science, 25–37. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-62389-4_3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Yakovlev, Sergiy. "Configuration Spaces of Geometric Objects with Their Applications in Packing, Layout and Covering Problems". W Advances in Intelligent Systems and Computing, 122–32. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-26474-1_9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Blinovsky, Volodia. "Covering and Packing". W Asymptotic Combinatorial Coding Theory, 41–61. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4615-6193-4_3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Diestel, Reinhard. "Matching Covering and Packing". W Graph Theory, 35–58. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-53622-3_2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Diestel, Reinhard. "Matching Covering and Packing". W Graph Theory, 35–57. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/978-3-642-14279-6_2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Mitchell, Joseph S. B., i Supantha Pandit. "Packing and Covering with Segments". W WALCOM: Algorithms and Computation, 198–210. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-39881-1_17.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Karakostas, George. "Fractional Packing and Covering Problems". W Encyclopedia of Algorithms, 778–82. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-2864-4_149.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Karakostas, George. "Fractional Packing and Covering Problems". W Encyclopedia of Algorithms, 1–6. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-27848-8_149-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Streszczenia konferencji na temat "Geometric Covering and Packing"

1

Azar, Yossi, Umang Bhaskar, Lisa Fleischer i Debmalya Panigrahi. "Online Mixed Packing and Covering". W Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms. Philadelphia, PA: Society for Industrial and Applied Mathematics, 2013. http://dx.doi.org/10.1137/1.9781611973105.6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Gadouleau, Maximilien, i Zhiyuan Yan. "Packing and covering properties of subspace codes". W 2009 IEEE International Symposium on Information Theory - ISIT. IEEE, 2009. http://dx.doi.org/10.1109/isit.2009.5205292.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Srinivasan, Aravind. "Improved approximations of packing and covering problems". W the twenty-seventh annual ACM symposium. New York, New York, USA: ACM Press, 1995. http://dx.doi.org/10.1145/225058.225138.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Ene, Alina, Sariel Har-Peled i Benjamin Raichel. "Geometric packing under non-uniform constraints". W the 2012 symposuim. New York, New York, USA: ACM Press, 2012. http://dx.doi.org/10.1145/2261250.2261253.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Young, N. E. "Sequential and parallel algorithms for mixed packing and covering". W Proceedings 42nd IEEE Symposium on Foundations of Computer Science. IEEE, 2001. http://dx.doi.org/10.1109/sfcs.2001.959930.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Koufogiannakis, Christos, i Neal E. Young. "Beating Simplex for Fractional Packing and Covering Linear Programs". W 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07). IEEE, 2007. http://dx.doi.org/10.1109/focs.2007.4389519.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Koufogiannakis, Christos, i Neal E. Young. "Beating Simplex for Fractional Packing and Covering Linear Programs". W 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07). IEEE, 2007. http://dx.doi.org/10.1109/focs.2007.62.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Azar, Yossi, Niv Buchbinder, T.-H. Hubert Chan, Shahar Chen, Ilan Reuven Cohen, Anupam Gupta, Zhiyi Huang i in. "Online Algorithms for Covering and Packing Problems with Convex Objectives". W 2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS). IEEE, 2016. http://dx.doi.org/10.1109/focs.2016.24.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Benko, Attila, Gyorgy Dosa i Zsolt Tuza. "Bin Packing/Covering with Delivery, solved with the evolution of algorithms". W 2010 IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA). IEEE, 2010. http://dx.doi.org/10.1109/bicta.2010.5645312.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Mount, David, i Ruth Silverman. "Algorithms for covering and packing and applications to CAD/CAM (abstract only)". W the 15th annual conference. New York, New York, USA: ACM Press, 1987. http://dx.doi.org/10.1145/322917.323100.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Raporty organizacyjne na temat "Geometric Covering and Packing"

1

Balas, E., G. Cornuejols i J. N. Hooker. Covering, Packing and Logical Inference. Fort Belvoir, VA: Defense Technical Information Center, październik 1993. http://dx.doi.org/10.21236/ada274314.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii