Gotowa bibliografia na temat „Geomagnetic substorm”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Geomagnetic substorm”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Geomagnetic substorm"
Yagova, Nadezda, Natalia Nosikova, Lisa Baddeley, Olga Kozyreva, Dag A. Lorentzen, Vyacheslav Pilipenko i Magnar G. Johnsen. "Non-triggered auroral substorms and long-period (1–4 mHz) geomagnetic and auroral luminosity pulsations in the polar cap". Annales Geophysicae 35, nr 3 (8.03.2017): 365–76. http://dx.doi.org/10.5194/angeo-35-365-2017.
Pełny tekst źródłaGuineva, Veneta, Irina Despirak, Rolf Werner, Rumiana Bojilova i Lyubomira Raykova. "Mid-latitude effects of “expanded” geomagnetic substorms: a case study". EPJ Web of Conferences 254 (2021): 01004. http://dx.doi.org/10.1051/epjconf/202125401004.
Pełny tekst źródłaLu, Li, Qinglong Yu, Shuai Jia, Zhong Xie, Jian Lan i Yuan Chang. "Simulation of Dynamic Evolution of Ring Current Ion Flux by a Lunar Base Energetic Neutral Atom (ENA) Imaging". Astronomy 2, nr 3 (22.08.2023): 153–64. http://dx.doi.org/10.3390/astronomy2030011.
Pełny tekst źródłaIyemori, T., i D. R. K. Rao. "Decay of the Dst field of geomagnetic disturbance after substorm onset and its implication to storm-substorm relation". Annales Geophysicae 14, nr 6 (30.06.1996): 608–18. http://dx.doi.org/10.1007/s00585-996-0608-3.
Pełny tekst źródłaBelova, E., S. Kirkwood i H. Tammet. "The effect of magnetic substorms on near-ground atmospheric current". Annales Geophysicae 18, nr 12 (31.12.2000): 1623–29. http://dx.doi.org/10.1007/s00585-001-1623-z.
Pełny tekst źródłaКуражковская, Надежда, Nadezhda Kurazhkovskaya, Борис Клайн i Boris Klain. "Effect of geomagnetic activity, solar wind and parameters of interplanetary magnetic field on regularities in intermittency of Pi2 geomagnetic pulsations". Solnechno-Zemnaya Fizika 1, nr 3 (27.09.2015): 11–20. http://dx.doi.org/10.12737/11551.
Pełny tekst źródłaWild, J. A., E. E. Woodfield i S. K. Morley. "On the triggering of auroral substorms by northward turnings of the interplanetary magnetic field". Annales Geophysicae 27, nr 9 (25.09.2009): 3559–70. http://dx.doi.org/10.5194/angeo-27-3559-2009.
Pełny tekst źródłaWang, H., i H. Lühr. "The efficiency of mechanisms driving Subauroral Polarization Streams (SAPS)". Annales Geophysicae 29, nr 7 (20.07.2011): 1277–86. http://dx.doi.org/10.5194/angeo-29-1277-2011.
Pełny tekst źródłaGuineva, Veneta, Irina Despirak i Natalia Kleimenova. "Substorms manifestation at high and mid-latitudes during two large magnetic storm". Aerospace Research in Bulgaria 31 (2019): 27–39. http://dx.doi.org/10.3897/arb.v31.e03.
Pełny tekst źródłaPulkkinen, A., A. Thomson, E. Clarke i A. McKay. "April 2000 geomagnetic storm: ionospheric drivers of large geomagnetically induced currents". Annales Geophysicae 21, nr 3 (31.03.2003): 709–17. http://dx.doi.org/10.5194/angeo-21-709-2003.
Pełny tekst źródłaRozprawy doktorskie na temat "Geomagnetic substorm"
Uwamahoro, Jean. "An analysis of sources and predictability of geomagnetic storms". Thesis, Rhodes University, 2011. http://hdl.handle.net/10962/d1005236.
Pełny tekst źródłaYamamoto, Kazuhiro. "Excitation of High-m Poloidal ULF Waves in the Inner Magnetosphere during Geomagnetic Storms and Substorms: Importance of Radial Gradient of Proton Distributions in Drift-Bounce Resonance". Kyoto University, 2020. http://hdl.handle.net/2433/253099.
Pełny tekst źródłaTsareva, Olga. "Variabilité temporelle du champ magnétique terrestre et son influence sur l'environnement spatial proche". Thesis, Toulouse 3, 2020. http://www.theses.fr/2020TOU30122.
Pełny tekst źródłaThe Earth's magnetic field undergoes strong temporal variabilities with characteristic periods as short as ten seconds (magnetospheric substorms triggering the polar aurora) and as long as a million years (geomagnetic reversals). Its temporal variations, although of very different origin and characteristics, affect the dynamics of the near-Earth space environment.The first part of this thesis is dedicated to the development of a new kinetic theory of instabilities in the magnetospheric tail which could explain the origin of substorms. Starting from a known theory of drift instabilities linked to the presence of a pressure gradient in the magnetotail, the proposed model includes trapped bouncing electrons which can enter into resonance with drift Alfvén instability modes if the density gradient in the tail becomes large. Taking this the bouncing motion into account significantly increases the growth rate of this universal instability. To try to validate this new model, an example of an auroral observation by the THEMIS mission (February 3, 2008) was analyzed. This event was chosen because it corresponds to an isolated auroral arc observed both by the All-sky cameras located on the ground and by the THEMIS satellites orbiting at 10 RE. This auroral activation seems to have been triggered by a sudden compression of the magnetospheric tail towards 10 RE significantly increasing the pressure gradient and causing significant fluctuations in the magnetic field. The orders of magnitude of the period and the growth rate of these oscillations are compatible with the dispersion curves deduced from the theoretical model.Second part of the thesis is devoted to changes in the radiation situation on Earth, the radiation belts and the terrestrial atmosphere during Earth's magnetic field reversal. We calculated the variations in galactic cosmic proton flux during a geomagnetic reversal to infer the radiation doses to which human population and astronauts could be exposed. The radiation background should increase by a factor of about three during the solar minimum period, and the elevated radiation regions should be redistributed and their areas will apparently increase due to the dipole field decrease, such radiation doses are not dangerous for humans and other living creatures. At the same time, for astronauts aboard the ISS orbiting at 400 km above the ground, during a reversal period a 14-fold radiation increase can be dangerous. Undoubtedly, in this case, a correction of the orbits of space vehicles would be required. Classical Störmer theory was generalized to the case of an axisymmetric superposition of dipole and quadrupole fields. [...]
Spencer, Edmund Augustus. "Analysis of geomagnetic storms and substorms with the WINDMI model". Thesis, 2006. http://hdl.handle.net/2152/2604.
Pełny tekst źródłaMays, Mona Leila. "The study of interplanetary shocks, geomagnetic storms, and substorms with the WINDMI model". 2009. http://hdl.handle.net/2152/10703.
Pełny tekst źródłatext
Książki na temat "Geomagnetic substorm"
Soviet-Finnish Auroral Workshop (1st 1984 Leningrad, R.S.F.S.R.). Proceedings of the first Soviet-Finnish Auroral Workshop, October 1-6, 1984 in Leningrad, USSR. Helsinki: Finnish Academy of Science and Letters, Sodankylä Geophysical Observatory, 1986.
Znajdź pełny tekst źródłaFinnish-American Auroral Workshop (3rd 1985 Sodankylä, Finland). Proceedings of the third Finnish-American Auroral Workshop, October 14-18, 1985 in Sodankylä, Finland. Sodankylä, Finland: Finnish Academy of Science and Letters, Sodankylä Geophysical Observatory, 1986.
Znajdź pełny tekst źródłaUnited States. National Aeronautics and Space Administration., red. Magnetospheric substorms and tail dynamics: Final technical report. [Washington, DC: National Aeronautics and Space Administration, 1998.
Znajdź pełny tekst źródłaSoviet-Finnish Auroral Workshop (2nd 1986 Murmansk, R.S.F.S.R.). Proceedings of the Second Soviet-Finnish Auroral Workshop, Murmansk, October 20-25, 1986. Redaktorzy Bösinger T, Tanskanen P. J i Uspenskiĭ M. V. Helsinki: Commission for Scientific and Technical Co-operation between Finland and the USSR, 1987.
Znajdź pełny tekst źródłaUnited States. National Aeronautics and Space Administration., red. Ion drift meter research: Final report 1 January 1992 - 31 December 1993. Richardson, TX: The University of Texas at Dallas, 1994.
Znajdź pełny tekst źródłaMoore, T. E. The geopause. [Washington, D.C: National Aeronautics and Space Administration, 1995.
Znajdź pełny tekst źródłaC, Delcourt D., i George C. Marshall Space Flight Center., red. The geopause. Huntsville, Ala: NASA Marshall Space Flight Center, 1995.
Znajdź pełny tekst źródłaDorman, Lev I. Plasmas and Energetic Processes in the Geomagnetosphere: Plasmas/Magnetic and Current Sheets, Reconnections, Particle Acceleration, and Substorms. Nova Science Publishers, Incorporated, 2017.
Znajdź pełny tekst źródłaBurch, James L., i Vassilis Angelopoulos. THEMIS Mission. Springer New York, 2010.
Znajdź pełny tekst źródłaCzęści książek na temat "Geomagnetic substorm"
Hanumath Sastri, J., R. Sridharan i Tarun Kumar Pant. "Equatorial ionosphere-thermosphere system during geomagnetic storms". W Disturbances in Geospace: The Storm-Substorm Relationship, 185–203. Washington, D. C.: American Geophysical Union, 2003. http://dx.doi.org/10.1029/142gm16.
Pełny tekst źródłaBaker, D. N., i X. Li. "Relativistic electron flux enhancements during strong geomagnetic activity". W Disturbances in Geospace: The Storm-Substorm Relationship, 217–30. Washington, D. C.: American Geophysical Union, 2003. http://dx.doi.org/10.1029/142gm18.
Pełny tekst źródłaVassiliadis, D., A. J. Klimas, J. A. Valdivia i D. N. Baker. "Substorm Expansion as Seen from the Ground: Models of the Geomagnetic Signature". W Substorms-4, 73–78. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-4798-9_14.
Pełny tekst źródłaBaishev, D. G., E. S. Barkova, S. I. Solovyev i K. Yumoto. "Response of Eastward Electrojet and IPDP Geomagnetic Pulsations to the Substorm Expansion Phase". W Substorms-4, 577–80. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-4798-9_120.
Pełny tekst źródłaKleimenova, N. G., O. V. Kozyreva, M. Bitterly i J. Bitterly. "Substorm Onset Effect in the Dayside Polar Cusp 1–5 mHz Geomagnetic Pulsations". W Substorms-4, 597–600. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-4798-9_125.
Pełny tekst źródłaKamide, Y., J. H. Shue i M. Brittnacher. "Effects of solar wind density on the auroral electrojets and global auroras during geomagnetic storms". W Disturbances in Geospace: The Storm-Substorm Relationship, 15–22. Washington, D. C.: American Geophysical Union, 2003. http://dx.doi.org/10.1029/142gm02.
Pełny tekst źródłaGrande, M., C. H. Perry, A. Hall, J. Fennell, R. Nakamura i Y. Kamide. "What is the effect of substorms on the ring current ion population during a geomagnetic storm?" W Disturbances in Geospace: The Storm-Substorm Relationship, 75–89. Washington, D. C.: American Geophysical Union, 2003. http://dx.doi.org/10.1029/142gm08.
Pełny tekst źródłaLin, N., R. J. Walker, R. L. McPherron i M. G. Kivelson. "Magnetic islands in the near geomagnetic tail and its implications for the mechanism of 1054 UT CDAW 6 substorm". W Physics of Magnetic Flux Ropes, 647–54. Washington, D. C.: American Geophysical Union, 1990. http://dx.doi.org/10.1029/gm058p0647.
Pełny tekst źródłaIyemori, T. "Substorms as a Dissipation Process in Geomagnetic Storms". W Substorms-4, 99–101. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-4798-9_20.
Pełny tekst źródłaShirapov, D. Sh, V. M. Mishin, V. D. Urbanovich i V. V. Mishin. "Some Problems of the Polar Cap and Geomagnetic Tail Dynamics". W Substorms-4, 413–16. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-4798-9_87.
Pełny tekst źródłaStreszczenia konferencji na temat "Geomagnetic substorm"
Kleimenova, N. G., J. Manninen, T. Turunen, L. I. Gromova, Yu V. Fedorenko, A. S. Nikitenko i O. M. Lebed. "Unexpected high-frequency “birds”-type VLF emissions." W Physics of Auroral Phenomena. FRC KSC RAS, 2020. http://dx.doi.org/10.37614/2588-0039.2020.43.008.
Pełny tekst źródłaRaporty organizacyjne na temat "Geomagnetic substorm"
BARKHATOV, NIKOLAY, i SERGEY REVUNOV. A software-computational neural network tool for predicting the electromagnetic state of the polar magnetosphere, taking into account the process that simulates its slow loading by the kinetic energy of the solar wind. SIB-Expertise, grudzień 2021. http://dx.doi.org/10.12731/er0519.07122021.
Pełny tekst źródłaKleimenova, Natalia G., A. Odzimek, S. Michnowski i M. Kubicki. Geomagnetic Storms and Substorms as Space Weather I nfluence on Atmospheric Electric Field Variations. Balkan, Black Sea and Caspian Sea Regional Network on Space Weather Studies, listopad 2018. http://dx.doi.org/10.31401/sungeo.2018.01.14.
Pełny tekst źródła