Gotowa bibliografia na temat „Genotoxic stress response”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Genotoxic stress response”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Genotoxic stress response"
Antoch, Marina P., i Roman V. Kondratov. "Circadian Proteins and Genotoxic Stress Response". Circulation Research 106, nr 1 (8.01.2010): 68–78. http://dx.doi.org/10.1161/circresaha.109.207076.
Pełny tekst źródłaChen, Ting-Yu, Bu-Miin Huang, Tang K. Tang, Yu-Ying Chao, Xiao-Yi Xiao, Pei-Rong Lee, Li-Yun Yang i Chia-Yih Wang. "Genotoxic stress-activated DNA-PK-p53 cascade and autophagy cooperatively induce ciliogenesis to maintain the DNA damage response". Cell Death & Differentiation 28, nr 6 (18.01.2021): 1865–79. http://dx.doi.org/10.1038/s41418-020-00713-8.
Pełny tekst źródłaDbaibo, G. S., M. Y. Pushkareva, R. A. Rachid, N. Alter, M. J. Smyth, L. M. Obeid i Y. A. Hannun. "p53-dependent ceramide response to genotoxic stress." Journal of Clinical Investigation 102, nr 2 (15.07.1998): 329–39. http://dx.doi.org/10.1172/jci1180.
Pełny tekst źródłaShi, Qing-Mei, Yan-Ming Wang, Xin-De Zheng, Raymond Teck Ho Lee i Yue Wang. "Critical Role of DNA Checkpoints in Mediating Genotoxic-Stress–induced Filamentous Growth inCandida albicans". Molecular Biology of the Cell 18, nr 3 (marzec 2007): 815–26. http://dx.doi.org/10.1091/mbc.e06-05-0442.
Pełny tekst źródłaSun, X., H. Shimizu i K. Yamamoto. "Identification of a novel p53 promoter element involved in genotoxic stress-inducible p53 gene expression." Molecular and Cellular Biology 15, nr 8 (sierpień 1995): 4489–96. http://dx.doi.org/10.1128/mcb.15.8.4489.
Pełny tekst źródłaLiu, Li, Jiri Veis, Wolfgang Reiter, Edwin Motari, Catherine E. Costello, John C. Samuelson, Gustav Ammerer i David E. Levin. "Regulation of Pkc1 Hyper-Phosphorylation by Genotoxic Stress". Journal of Fungi 7, nr 10 (17.10.2021): 874. http://dx.doi.org/10.3390/jof7100874.
Pełny tekst źródłaSuh, Yousin, Kang-Ae Lee, Woo-Ho Kim, Bok-Ghee Han, Jan Vijg i Sang Chul Park. "Aging alters the apoptotic response to genotoxic stress". Nature Medicine 8, nr 1 (styczeń 2002): 3–4. http://dx.doi.org/10.1038/nm0102-3.
Pełny tekst źródłaDutertre, Martin, Gabriel Sanchez, Marie-Cécile De Cian, Jérôme Barbier, Etienne Dardenne, Lise Gratadou, Gwendal Dujardin, Catherine Le Jossic-Corcos, Laurent Corcos i Didier Auboeuf. "Cotranscriptional exon skipping in the genotoxic stress response". Nature Structural & Molecular Biology 17, nr 11 (24.10.2010): 1358–66. http://dx.doi.org/10.1038/nsmb.1912.
Pełny tekst źródłaFORNACE, ALBERT J., JOANY JACKMAN, M. CHRISTINE HOLLANDER, BARBARA HOFFMAN-LIEBERMANN i DAN A. LIEBERMANN. "Genotoxic-Stress-Response Genes and Growth-Arrest Genes." Annals of the New York Academy of Sciences 663, nr 1 Aging and Cel (listopad 1992): 139–53. http://dx.doi.org/10.1111/j.1749-6632.1992.tb38657.x.
Pełny tekst źródłaKumari, Nidhi, M. Abul Hassan, Xiangdong Lu, Robert G. Roeder i Debabrata Biswas. "AFF1 acetylation by p300 temporally inhibits transcription during genotoxic stress response". Proceedings of the National Academy of Sciences 116, nr 44 (14.10.2019): 22140–51. http://dx.doi.org/10.1073/pnas.1907097116.
Pełny tekst źródłaRozprawy doktorskie na temat "Genotoxic stress response"
Konstantinidou, C. "Stage-specific response of NC lineages to genotoxic stress". Thesis, University College London (University of London), 2015. http://discovery.ucl.ac.uk/1458881/.
Pełny tekst źródłaPurmessur, Nadia Sheree. "The regulation of p53-dependent microRNA expression in response to genotoxic stress". Thesis, University of Leicester, 2014. http://hdl.handle.net/2381/28637.
Pełny tekst źródłaVickridge, Elise. "Management of E. coli sister chromatid cohesion in response to genotoxic stress". Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS172/document.
Pełny tekst źródłaMaintaining genome integrity through replication is an essential process for the cell cycle. However, many factors can compromise this replication and thus the genome integrity. Mitomycin C is a genotoxic agent that creates a covalent link between the two DNA strands. When the replication fork encounters the DNA crosslink, it breaks and creates a DNA double strand break (DSB). Escherichia coli (E.coli) is a widely used model for studying complex DNA mechanisms. When facing a DNA DSB, E. coli activates the SOS response pathway. The SOS response comprises over 50 genes that are under the control of a LexA-repressed promoter. Upon a DSB induction, RecA, a central protein of the SOS response will trigger the degradation of LexA and all the SOS genes will be expressed.We have developed a novel molecular biology tool that reveals contacts between sister chromatids that are cohesive. It has been shown in the lab (Lesterlin et al. 2012) that during a regular cell cycle, the two newly replicated sister chromatids stay in close contact for 10 to 20 min before segregating to separate cell halves thanks to the action of Topoisomerase IV. This step is called sister chromatid cohesion. We have used this molecular biology tool to study sister chromatid cohesion upon a genotoxic stress induced by mitomycin C (MMC). We have shown that sister chromatid cohesion is maintained and prolonged when the cell is facing a DSB. Moreover, this sister chromatid cohesion is dependent on RecN, an SOS induced structural maintenance of chromosome-like (SMC-like) protein. In the absence of RecN, the proximity between both sister chromatids is lost and this has a deleterious effect on cell viability. By tagging the chromosome with fluorescent proteins, we have revealed that RecN can also mediated a progressive regression of two previously segregated sister chromatids and this is coordinated with a whole nucleoid compaction. Further studies showed that this genome compaction is orderly and is not the result of a random compaction in response to DNA damage.Interestingly, inhibiting TopoIV in a recN mutant fully restores viability and sister chromatid cohesion suggesting that RecN’s action is mainly structural. Preserving cohesion through precatenanes is sufficient to favor repair and cell viability even in the absence of RecN.An RNA-seq experiment in a WT strain and a recN mutant revealed that the whole SOS response is downregulated in a recN mutant. This suggests that RecN may have an effect on the induction of the SOS response and thus RecA filament formation. This is in good agreement with the change in RecA-mcherry foci formation we observed. In the WT strain, the RecA-mcherry foci are defined as described in previous work. However, in the recN, the RecA-mcherry foci seemed to form bundle like structures. These RecA bundles were previsously described by Lesterlin et al. in the particular case of a DSB occurring on a chromatid that has already been segregated from its homolog. This could mean that in the absence of recN, the sister chromatids segregate and RecA forms bundle like structures in order to perform a search for the intact homologous sister chromatid.Altogether, these results reveal that RecN is an essential protein for sister chromatid cohesion upon a genotoxic stress. RecN favors sister chromatid cohesion by preventing their segregation. Through a whole nucleoid rearrangement, RecN mediates sister chromatid regression, favoring DNA repair and cell viability
Davidson, Adam. "Investigating the Role of Interferon Regulatory Factor 3 in Response to Genotoxic Stress". Thèse, Université d'Ottawa / University of Ottawa, 2013. http://hdl.handle.net/10393/24928.
Pełny tekst źródłaLiu, Jia, i 劉佳. "Role of FBXO31 in regulating MAPK-mediated genotoxic stress response and cancer cell survival". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2013. http://hdl.handle.net/10722/205657.
Pełny tekst źródłapublished_or_final_version
Anatomy
Doctoral
Doctor of Philosophy
Al-Asadi, Mazin Gh. "Investigation of dormancy in acute myeloid leukaemia cells and the induction of dormancy in their response to genotoxic stress". Thesis, University of Nottingham, 2017. http://eprints.nottingham.ac.uk/43320/.
Pełny tekst źródłaStockwell, Simon Reidar. "The role of threonine 286 phosphorylation on cyclin D1 in sub-cellular localisation and proteolysis in response to genotoxic stress". Thesis, Institute of Cancer Research (University Of London), 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.406688.
Pełny tekst źródłaDuarte, Alexandra. "The interplay between MYCN and the DNA damage response : modulation of MYCN expression, its interactions with components of the DNA damage response and cellular responses to N-myc following genotoxic stress". Thesis, Imperial College London, 2012. http://hdl.handle.net/10044/1/9832.
Pełny tekst źródłaCook, Peter Joseph. "Eya a dual function nuclear factor crucial for regulation of developmental gene expression and prevention of apoptosis in response to genotoxic stress /". Diss., [La Jolla, Calif.] : University of California, San Diego, 2009. http://wwwlib.umi.com/cr/ucsd/fullcit?p3344509.
Pełny tekst źródłaTitle from first page of PDF file (viewed March 13, 2009). Available via ProQuest Digital Dissertations. Vita. Includes bibliographical references.
Tomkins, C. E. "Cellular responses to genotoxic stress". Thesis, University of Oxford, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.362104.
Pełny tekst źródłaKsiążki na temat "Genotoxic stress response"
Grewal, Mandeep Kaur. ARAP2 is induced in response to genotoxic stress and B cell stimulation. 2005.
Znajdź pełny tekst źródłaLaposa, Rebecca Rachelle. The role of DNA repair and genotoxic stress responses in xenobiotic-initiated teratogenesis. 2001.
Znajdź pełny tekst źródłaLaposa, Rebecca Rachelle. The role of DNA repair and genotoxic stress responses in xenobiotic-initiated teratogenesis. 2001.
Znajdź pełny tekst źródłaCzęści książek na temat "Genotoxic stress response"
Holbrook, N. J., Y. Liu i A. J. Fornace. "Signaling events controlling the molecular response to genotoxic stress". W Stress-Inducible Cellular Responses, 273–88. Basel: Birkhäuser Basel, 1996. http://dx.doi.org/10.1007/978-3-0348-9088-5_18.
Pełny tekst źródłaMacovei, Anca, Mattia Donà, Daniela Carbonera i Alma Balestrazzi. "Plant Response to Genotoxic Stress: A Crucial Role in the Context of Global Climate Change". W Abiotic Stress Response in Plants, 13–26. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2016. http://dx.doi.org/10.1002/9783527694570.ch2.
Pełny tekst źródłaSibon, Ody C. M., i William E. Theurkauf. "Centrosome Regulation in Response to Environmental and Genotoxic Stress". W Centrosomes in Development and Disease, 211–23. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/3527603808.ch11.
Pełny tekst źródłaFatima, Uzma, Mohd Farhan Khan, Jamal e Fatima, Uzma Shahab, Saheem Ahmad i Mohd Aslam Yusuf. "DNA Damage, Response, and Repair in Plants Under Genotoxic Stress". W Stress Signaling in Plants: Genomics and Proteomics Perspective, Volume 2, 151–71. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-42183-4_7.
Pełny tekst źródłaLiu, Yusen, Myriam Gorospe, Nikki J. Holbrook i Carl W. Anderson. "Posttranslational Mechanisms Leading to Mammalian Gene Activation in Response to Genotoxic Stress". W DNA Damage and Repair, 263–98. Totowa, NJ: Humana Press, 1998. http://dx.doi.org/10.1007/978-1-59259-455-9_15.
Pełny tekst źródłaLücke-Huhle, Christine. "Review: Gene Amplification—A Cellular Response to Genotoxic Stress". W Induced Effects of Genotoxic Agents in Eukaryotic Cells, 81–96. CRC Press, 2020. http://dx.doi.org/10.1201/9781003075387-6.
Pełny tekst źródłaHolbrook, Nikki J., Jennifer D. Leuthy, Jong Sung Park i Joseph Fargnoli. "gadd153, a Growth Arrest and DNA Damage Inducible Gene: Expression in Response to Genotoxic Stress". W Induced Effects of Genotoxic Agents in Eukaryotic Cells, 125–40. CRC Press, 2020. http://dx.doi.org/10.1201/9781003075387-9.
Pełny tekst źródłaPietrucha, Barbara. "Ataxia Telangiectasia". W Ataxia - Practice Essentials and Interventions [Working Title]. IntechOpen, 2023. http://dx.doi.org/10.5772/intechopen.112005.
Pełny tekst źródłaKondratov, Roman V., Victoria Y. Gorbacheva i Marina P. Antoch. "The Role of Mammalian Circadian Proteins in Normal Physiology and Genotoxic Stress Responses". W Current Topics in Developmental Biology, 173–216. Elsevier, 2007. http://dx.doi.org/10.1016/s0070-2153(06)78005-x.
Pełny tekst źródłaStreszczenia konferencji na temat "Genotoxic stress response"
Nickens, Kristen P., Ying Han, Harini Shandilya, Gary F. Gerard, Eric P. Kaldjian, Jakob Wikstrom, Orian Shirihai, Steven Patierno i Susan Ceryak. "Abstract 122: Mitochondrial dysregulation and cellular death resistance in response to genotoxic stress". W Proceedings: AACR 101st Annual Meeting 2010‐‐ Apr 17‐21, 2010; Washington, DC. American Association for Cancer Research, 2010. http://dx.doi.org/10.1158/1538-7445.am10-122.
Pełny tekst źródłaTessari, Anna, Kareesma Parbhoo, Meghan Pawlikowski, Matteo Fassan, Eliana Rulli, Claudia Foray, Alessandra Fabbri i in. "Abstract A112: RanBP9 protects cells from genotoxic stress and increased expression is predictive of worse response to platinum in NSCLC patients". W Abstracts: AACR-NCI-EORTC International Conference: Molecular Targets and Cancer Therapeutics; October 26-30, 2017; Philadelphia, PA. American Association for Cancer Research, 2018. http://dx.doi.org/10.1158/1535-7163.targ-17-a112.
Pełny tekst źródłaMao, Pingping, Mary Jardine, Lynn Niemaszyk, Jessica Haghkerdar, Eric Yang, Esty G. yanco, Damayanti Desai i in. "Abstract 2958: The novel protein kinase STK17A is a direct p53 target gene that mediates response to genotoxic and nutritional stress in a cancer cell context-dependent manner". W Proceedings: AACR 103rd Annual Meeting 2012‐‐ Mar 31‐Apr 4, 2012; Chicago, IL. American Association for Cancer Research, 2012. http://dx.doi.org/10.1158/1538-7445.am2012-2958.
Pełny tekst źródła