Gotowa bibliografia na temat „Genomics Big Data Engineering”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Genomics Big Data Engineering”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Genomics Big Data Engineering"
Lekić, Matea, Kristijan Rogić, Adrienn Boldizsár, Máté Zöldy i Ádám Török. "Big Data in Logistics". Periodica Polytechnica Transportation Engineering 49, nr 1 (17.12.2019): 60–65. http://dx.doi.org/10.3311/pptr.14589.
Pełny tekst źródłaRadha, K., i B. Thirumala Rao. "A Study on Big Data Techniques and Applications". International Journal of Advances in Applied Sciences 5, nr 2 (1.06.2016): 101. http://dx.doi.org/10.11591/ijaas.v5.i2.pp101-108.
Pełny tekst źródłaGut, Philipp, Sven Reischauer, Didier Y. R. Stainier i Rima Arnaout. "Little Fish, Big Data: Zebrafish as a Model for Cardiovascular and Metabolic Disease". Physiological Reviews 97, nr 3 (1.07.2017): 889–938. http://dx.doi.org/10.1152/physrev.00038.2016.
Pełny tekst źródłaKennedy, Paul J., Daniel R. Catchpoole, Siamak Tafavogh, Bronwyn L. Harvey i Ahmad A. Aloqaily. "Feature prioritisation on big genomic data for analysing gene-gene interactions". International Journal of Bioinformatics Research and Applications 17, nr 2 (2021): 158. http://dx.doi.org/10.1504/ijbra.2021.10037182.
Pełny tekst źródłaAloqaily, Ahmad A., Siamak Tafavogh, Bronwyn L. Harvey, Daniel R. Catchpoole i Paul J. Kennedy. "Feature prioritisation on big genomic data for analysing gene-gene interactions". International Journal of Bioinformatics Research and Applications 17, nr 2 (2021): 158. http://dx.doi.org/10.1504/ijbra.2021.114420.
Pełny tekst źródłaChan, Jireh Yi-Le, Steven Mun Hong Leow, Khean Thye Bea, Wai Khuen Cheng, Seuk Wai Phoong, Zeng-Wei Hong i Yen-Lin Chen. "Mitigating the Multicollinearity Problem and Its Machine Learning Approach: A Review". Mathematics 10, nr 8 (12.04.2022): 1283. http://dx.doi.org/10.3390/math10081283.
Pełny tekst źródłaYan, Hong. "Coclustering of Multidimensional Big Data: A Useful Tool for Genomic, Financial, and Other Data Analysis". IEEE Systems, Man, and Cybernetics Magazine 3, nr 2 (kwiecień 2017): 23–30. http://dx.doi.org/10.1109/msmc.2017.2664218.
Pełny tekst źródłaShandilya, Shishir K., S. Sountharrajan, Smita Shandilya i E. Suganya. "Big Data Analytics Framework for Real-Time Genome Analysis: A Comprehensive Approach". Journal of Computational and Theoretical Nanoscience 16, nr 8 (1.08.2019): 3419–27. http://dx.doi.org/10.1166/jctn.2019.8302.
Pełny tekst źródłaShi, Daoyuan, i Lynn Kuo. "VARIABLE SELECTION FOR BAYESIAN SURVIVAL MODELS USING BREGMAN DIVERGENCE MEASURE". Probability in the Engineering and Informational Sciences 34, nr 3 (22.06.2018): 364–80. http://dx.doi.org/10.1017/s0269964818000190.
Pełny tekst źródłaUllah, Mohammad Asad, Muhammad-Redha Abdullah-Zawawi, Rabiatul-Adawiah Zainal-Abidin, Noor Liyana Sukiran, Md Imtiaz Uddin i Zamri Zainal. "A Review of Integrative Omic Approaches for Understanding Rice Salt Response Mechanisms". Plants 11, nr 11 (27.05.2022): 1430. http://dx.doi.org/10.3390/plants11111430.
Pełny tekst źródłaRozprawy doktorskie na temat "Genomics Big Data Engineering"
Goldstein, Theodore C. "Tools for extracting actionable medical knowledge from genomic big data". Thesis, University of California, Santa Cruz, 2013. http://pqdtopen.proquest.com/#viewpdf?dispub=3589324.
Pełny tekst źródłaCancer is an ideal target for personal genomics-based medicine that uses high-throughput genome assays such as DNA sequencing, RNA sequencing, and expression analysis (collectively called omics); however, researchers and physicians are overwhelmed by the quantities of big data from these assays and cannot interpret this information accurately without specialized tools. To address this problem, I have created software methods and tools called OCCAM (OmiC data Cancer Analytic Model) and DIPSC (Differential Pathway Signature Correlation) for automatically extracting knowledge from this data and turning it into an actionable knowledge base called the activitome. An activitome signature measures a mutation's effect on the cellular molecular pathway. As well, activitome signatures can also be computed for clinical phenotypes. By comparing the vectors of activitome signatures of different mutations and clinical outcomes, intrinsic relationships between these events may be uncovered. OCCAM identifies activitome signatures that can be used to guide the development and application of therapies. DIPSC overcomes the confounding problem of correlating multiple activitome signatures from the same set of samples. In addition, to support the collection of this big data, I have developed MedBook, a federated distributed social network designed for a medical research and decision support system. OCCAM and DIPSC are two of the many apps that will operate inside of MedBook. MedBook extends the Galaxy system with a signature database, an end-user oriented application platform, a rich data medical knowledge-publishing model, and the Biomedical Evidence Graph (BMEG). The goal of MedBook is to improve the outcomes by learning from every patient.
Miller, Chase Allen. "Towards a Web-Based, Big Data, Genomics Ecosystem". Thesis, Boston College, 2014. http://hdl.handle.net/2345/bc-ir:104052.
Pełny tekst źródłaRapid advances in genome sequencing enable a wide range of biological experiments on a scale that was until recently restricted to large genome centers. However, the analysis of the resulting vast genomic datasets is time-consuming, unintuitive and requires considerable computational expertise and costly infrastructure. Collectively, these factors effectively exclude many bench biologists from genome-scale analyses. Web-based visualization and analysis libraries, frameworks, and applications were developed to empower all biological researchers to easily, interactively, and in a visually driven manner, analyze large biomedical datasets that are essential for their research, without bioinformatics expertise and costly hardware
Thesis (PhD) — Boston College, 2014
Submitted to: Boston College. Graduate School of Arts and Sciences
Discipline: Biology
Hansen, Simon, i Erik Markow. "Big Data : Implementation av Big Data i offentlig verksamhet". Thesis, Högskolan i Halmstad, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-38756.
Pełny tekst źródłaKämpe, Gabriella. "How Big Data Affects UserExperienceReducing cognitive load in big data applications". Thesis, Umeå universitet, Institutionen för datavetenskap, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-163995.
Pełny tekst źródłaLuo, Changqing. "Towards Secure Big Data Computing". Case Western Reserve University School of Graduate Studies / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=case1529929603348119.
Pełny tekst źródłaSchobel, Seth Adam Micah. "The viral genomics revolution| Big data approaches to basic viral research, surveillance, and vaccine development". Thesis, University of Maryland, College Park, 2016. http://pqdtopen.proquest.com/#viewpdf?dispub=10011480.
Pełny tekst źródłaSince the decoding of the first RNA virus in 1976, the field of viral genomics has exploded, first through the use of Sanger sequencing technologies and later with the use next-generation sequencing approaches. With the development of these sequencing technologies, viral genomics has entered an era of big data. New challenges for analyzing these data are now apparent. Here, we describe novel methods to extend the current capabilities of viral comparative genomics. Through the use of antigenic distancing techniques, we have examined the relationship between the antigenic phenotype and the genetic content of influenza virus to establish a more systematic approach to viral surveillance and vaccine selection. Distancing of Antigenicity by Sequence-based Hierarchical Clustering (DASH) was developed and used to perform a retrospective analysis of 22 influenza seasons. Our methods produced vaccine candidates identical to or with a high concordance of antigenic similarity with those selected by the WHO. In a second effort, we have developed VirComp and OrionPlot: two independent yet related tools. These tools first generate gene-based genome constellations, or genotypes, of viral genomes, and second create visualizations of the resultant genome constellations. VirComp utilizes sequence-clustering techniques to infer genome constellations and prepares genome constellation data matrices for visualization with OrionPlot. OrionPlot is a java application for tailoring genome constellation figures for publication. OrionPlot allows for color selection of gene cluster assignments, customized box sizes to enable the visualization of gene comparisons based on sequence length, and label coloring. We have provided five analyses designed as vignettes to illustrate the utility of our tools for performing viral comparative genomic analyses. Study three focused on the analysis of respiratory syncytial virus (RSV) genomes circulating during the 2012- 2013 RSV season. We discovered a correlation between a recent tandem duplication within the G gene of RSV-A and a decrease in severity of infection. Our data suggests that this duplication is associated with a higher infection rate in female infants than is generally observed. Through these studies, we have extended the state of the art of genotype analysis, phenotype/genotype studies and established correlations between clinical metadata and RSV sequence data.
Cheelangi, Madhusudan. "Result Distribution in Big Data Systems". Thesis, University of California, Irvine, 2013. http://pqdtopen.proquest.com/#viewpdf?dispub=1539891.
Pełny tekst źródłaWe are building a Big Data Management System (BDMS) called AsterixDB at UCI. Since AsterixDB is designed to operate on large volumes of data, the results for its queries can be potentially very large, and AsterixDB is also designed to operate under high concurency workloads. As a result, we need a specialized mechanism to manage these large volumes of query results and deliver them to the clients. In this thesis, we present an architecture and an implementation of a new result distribution framework that is capable of handling large volumes of results under high concurency workloads. We present the various components of this result distribution framework and show how they interact with each other to manage large volumes of query results and deliver them to clients. We also discuss various result distribution policies that are possible with our framework and compare their performance through experiments.
We have implemented a REST-like HTTP client interface on top of the result distribution framework to allow clients to submit queries and obtain their results. This client interface provides two modes for clients to choose from to read their query results: synchronous mode and asynchronous mode. In synchronous mode, query results are delivered to a client as a direct response to its query within the same request-response cycle. In asynchronous mode, a query handle is returned instead to the client as a response to its query. The client can store the handle and send another request later, including the query handle, to read the result for the query whenever it wants. The architectural support for these two modes is also described in this thesis. We believe that the result distribution framework, combined with this client interface, successfully meets the result management demands of AsterixDB.
Laurila, M. (Mikko). "Big data in Finnish financial services". Bachelor's thesis, University of Oulu, 2017. http://urn.fi/URN:NBN:fi:oulu-201711243156.
Pełny tekst źródłaTämän työn tavoitteena on selvittää big data -käsitettä sekä kehittää ymmärrystä Suomen rahoitusalan big data -kypsyydestä. Tutkimuskysymykset tutkielmalle ovat “Millaisia big data -ratkaisuja on otettu käyttöön rahoitusalalla Suomessa?” sekä “Mitkä tekijät hidastavat big data -ratkaisujen implementointia rahoitusalalla Suomessa?”. Big data käsitteenä liitetään yleensä valtaviin datamassoihin ja suuruuden ekonomiaan. Siksi big data onkin mielenkiintoinen aihe tutkittavaksi suomalaisessa kontekstissa, missä datajoukkojen koko on jossain määrin rajoittunut markkinan koon myötä. Työssä esitetään big datan määrittely kirjallisuuteen perustuen sekä esitetään yhteenveto big datan soveltamisesta Suomessa aikaisempiin tutkimuksiin perustuen. Työssä on toteutettu laadullinen aineistoanalyysi julkisesti saatavilla olevasta informaatiosta big datan käytöstä rahoitusalalla Suomessa. Tulokset osoittavat big dataa hyödynnettävän jossain määrin rahoitusalalla Suomessa, ainakin suurikokoisissa organisaatioissa. Rahoitusalalle erityisiä ratkaisuja ovat esimerkiksi hakemuskäsittelyprosessien automatisointi. Selkeimmät big data -ratkaisujen implementointia hidastavat tekijät ovat osaavan työvoiman puute, sekä uusien regulaatioiden asettamat paineet kehitysresursseille. Työ muodostaa eräänlaisen kokonaiskuvan big datan hyödyntämisestä rahoitusalalla Suomessa. Tutkimus perustuu julkisen aineiston analyysiin, mikä osaltaan luo pohjan jatkotutkimukselle aiheesta. Jatkossa haastatteluilla voitaisiinkin edelleen syventää tietämystä aiheesta
Flike, Felix, i Markus Gervard. "BIG DATA-ANALYS INOM FOTBOLLSORGANISATIONER En studie om big data-analys och värdeskapande". Thesis, Malmö universitet, Fakulteten för teknik och samhälle (TS), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:mau:diva-20117.
Pełny tekst źródłaNyström, Simon, i Joakim Lönnegren. "Processing data sources with big data frameworks". Thesis, KTH, Data- och elektroteknik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-188204.
Pełny tekst źródłaBig data är ett koncept som växer snabbt. När mer och mer data genereras och samlas in finns det ett ökande behov av effektiva lösningar som kan användas föratt behandla all denna data, i försök att utvinna värde från den. Syftet med detta examensarbete är att hitta ett effektivt sätt att snabbt behandla ett stort antal filer, av relativt liten storlek. Mer specifikt så är det för att testa två ramverk som kan användas vid big data-behandling. De två ramverken som testas mot varandra är Apache NiFi och Apache Storm. En metod beskrivs för att, för det första, konstruera ett dataflöde och, för det andra, konstruera en metod för att testa prestandan och skalbarheten av de ramverk som kör dataflödet. Resultaten avslöjar att Apache Storm är snabbare än NiFi, på den typen av test som gjordes. När antalet noder som var med i testerna ökades, så ökade inte alltid prestandan. Detta visar att en ökning av antalet noder, i en big data-behandlingskedja, inte alltid leder till bättre prestanda och att det ibland krävs andra åtgärder för att öka prestandan.
Książki na temat "Genomics Big Data Engineering"
Wong, Ka-Chun, red. Big Data Analytics in Genomics. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-41279-5.
Pełny tekst źródłaCui, Zhen, Jinshan Pan, Shanshan Zhang, Liang Xiao i Jian Yang, red. Intelligence Science and Big Data Engineering. Visual Data Engineering. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-36189-1.
Pełny tekst źródłaRoy, Sanjiban Sekhar, Pijush Samui, Ravinesh Deo i Stavros Ntalampiras, red. Big Data in Engineering Applications. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-8476-8.
Pełny tekst źródłaFeeney, Kevin, James Welch i Jim Davies. Engineering Agile Big-Data Systems. New York: River Publishers, 2022. http://dx.doi.org/10.1201/9781003338123.
Pełny tekst źródłaLee, Roger, red. Big Data, Cloud Computing, Data Science & Engineering. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-96803-2.
Pełny tekst źródłaLee, Roger, red. Big Data, Cloud Computing, and Data Science Engineering. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-24405-7.
Pełny tekst źródłaLee, Roger, red. Big Data, Cloud Computing, and Data Science Engineering. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-19608-9.
Pełny tekst źródłaCui, Zhen, Jinshan Pan, Shanshan Zhang, Liang Xiao i Jian Yang, red. Intelligence Science and Big Data Engineering. Big Data and Machine Learning. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-36204-1.
Pełny tekst źródłaHe, Xiaofei, Xinbo Gao, Yanning Zhang, Zhi-Hua Zhou, Zhi-Yong Liu, Baochuan Fu, Fuyuan Hu i Zhancheng Zhang, red. Intelligence Science and Big Data Engineering. Image and Video Data Engineering. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-23989-7.
Pełny tekst źródłaSun, Yi, Huchuan Lu, Lihe Zhang, Jian Yang i Hua Huang, red. Intelligence Science and Big Data Engineering. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-67777-4.
Pełny tekst źródłaCzęści książek na temat "Genomics Big Data Engineering"
Borovska, Plamenka, Veska Gancheva i Ivailo Georgiev. "Platform for Adaptive Knowledge Discovery and Decision Making Based on Big Genomics Data Analytics". W Bioinformatics and Biomedical Engineering, 297–308. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-17935-9_27.
Pełny tekst źródłaHabyarimana, Ephrem, i Sofia Michailidou. "Genomics Data". W Big Data in Bioeconomy, 69–76. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-71069-9_6.
Pełny tekst źródłaTalukder, Asoke K. "Genomics 3.0: Big-data in Precision Medicine". W Big Data Analytics, 201–15. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-27057-9_14.
Pełny tekst źródłaFatima, Tahmeena, i S. Jyothi. "Genomics in Big Data Bioinformatics". W Learning and Analytics in Intelligent Systems, 661–67. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-46939-9_60.
Pełny tekst źródłaMeyer, Lars-Peter, Jan Frenzel, Eric Peukert, René Jäkel i Stefan Kühne. "Big Data Services". W Service Engineering, 63–77. Wiesbaden: Springer Fachmedien Wiesbaden, 2018. http://dx.doi.org/10.1007/978-3-658-20905-6_5.
Pełny tekst źródłaChan, Lawrence S. "Big Data Analytics". W Engineering-Medicine, 113–21. Boca Raton, FL : CRC Press/Taylor & Francis Group, [2018] | “A Science Publishers book.”: CRC Press, 2019. http://dx.doi.org/10.1201/9781351012270-13.
Pełny tekst źródłaTamburri, Damian, i Willem-Jan van den Heuvel. "Big Data Engineering". W Data Science for Entrepreneurship, 25–35. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-19554-9_2.
Pełny tekst źródłaAgarwal, Mahima, Mohamood Adhil i Asoke K. Talukder. "Multi-omics Multi-scale Big Data Analytics for Cancer Genomics". W Big Data Analytics, 228–43. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-27057-9_16.
Pełny tekst źródłaKhoria, Vinamra, Amit Kumar i Sanjiban Shekhar Roy. "Leukaemia Classification Using Machine Learning and Genomics". W Studies in Big Data, 87–99. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-9158-4_6.
Pełny tekst źródłaTam, Nguyen Thanh, i Insu Song. "Big Data Visualization:". W Lecture Notes in Electrical Engineering, 399–408. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-0557-2_40.
Pełny tekst źródłaStreszczenia konferencji na temat "Genomics Big Data Engineering"
Jahangir, Sidrah, Peter John, Attya Bhatti, Muhammad Muaaz Aslam i Mandy J. Peffers. "Data Integration for Big Data analytics to identify the gaps in Rheumatoid Arthritis Genomics in a Post-GWAS era". W 2022 2nd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE). IEEE, 2022. http://dx.doi.org/10.1109/icacite53722.2022.9823601.
Pełny tekst źródłaBorovska, Plamenka, i Desislava Ivanova. "Intelligent method for adaptive in silico knowledge discovery based on big genomic data analytics". W PROCEEDINGS OF THE 44TH INTERNATIONAL CONFERENCE ON APPLICATIONS OF MATHEMATICS IN ENGINEERING AND ECONOMICS: (AMEE’18). Author(s), 2018. http://dx.doi.org/10.1063/1.5082116.
Pełny tekst źródłaIvanova, Desislava, i Plamenka Borovska. "Scalable framework for adaptive in-silico knowledge discovery and decision-making out of genomic big data". W PROCEEDINGS OF THE 44TH INTERNATIONAL CONFERENCE ON APPLICATIONS OF MATHEMATICS IN ENGINEERING AND ECONOMICS: (AMEE’18). Author(s), 2018. http://dx.doi.org/10.1063/1.5082134.
Pełny tekst źródłaGodhandaraman, T., N. Pruthviraj, V. Praveenkumar, A. Banuprasad i K. Karthick. "Big data in genomics". W 2017 International Conference on Algorithms, Methodology, Models and Applications in Emerging Technologies (ICAMMAET). IEEE, 2017. http://dx.doi.org/10.1109/icammaet.2017.8186739.
Pełny tekst źródłaGancheva, Veska, i Ivailo Georgiev. "Software architecture for adaptive in silico knowledge discovery and decision making based on big genomic data analytics". W PROCEEDINGS OF THE 45TH INTERNATIONAL CONFERENCE ON APPLICATION OF MATHEMATICS IN ENGINEERING AND ECONOMICS (AMEE’19). AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5133586.
Pełny tekst źródłaBhardwaj, Ruchie, Adhiraaj Sethi i Raghunath Nambiar. "Big data in genomics: An overview". W 2014 IEEE International Conference on Big Data (Big Data). IEEE, 2014. http://dx.doi.org/10.1109/bigdata.2014.7004392.
Pełny tekst źródłaTasoulis, Sotiris, Lu Cheng, Niko Valimaki, Nicholas J. Croucher, Simon R. Harris, William P. Hanage, Teemu Roos i Jukka Corander. "Random projection based clustering for population genomics". W 2014 IEEE International Conference on Big Data (Big Data). IEEE, 2014. http://dx.doi.org/10.1109/bigdata.2014.7004291.
Pełny tekst źródłaYeo, Hangu, i Catherine H. Crawford. "Big Data: Cloud computing in genomics applications". W 2015 IEEE International Conference on Big Data (Big Data). IEEE, 2015. http://dx.doi.org/10.1109/bigdata.2015.7364117.
Pełny tekst źródłaLangmead, Ben. "Practical software for big genomics data". W 2013 IEEE 3rd International Conference on Computational Advances in Bio and Medical Sciences (ICCABS). IEEE, 2013. http://dx.doi.org/10.1109/iccabs.2013.6629241.
Pełny tekst źródłaKochunov, Peter, Li Shen, John Darrell van Horn i Paul M. Thompson. "Session Introduction: Big Data Imaging Genomics". W Pacific Symposium on Biocomputing 2022. WORLD SCIENTIFIC, 2021. http://dx.doi.org/10.1142/9789811250477_0007.
Pełny tekst źródłaRaporty organizacyjne na temat "Genomics Big Data Engineering"
Greenberg, Jane, Samantha Grabus, Florence Hudson, Tim Kraska, Samuel Madden, René Bastón i Katie Naum. The Northeast Big Data Innovation Hub: "Enabling Seamless Data Sharing in Industry and Academia" Workshop Report. Drexel University, marzec 2017. http://dx.doi.org/10.17918/d8159v.
Pełny tekst źródłaBreiman, Adina, Jan Dvorak, Abraham Korol i Eduard Akhunov. Population Genomics and Association Mapping of Disease Resistance Genes in Israeli Populations of Wild Relatives of Wheat, Triticum dicoccoides and Aegilops speltoides. United States Department of Agriculture, grudzień 2011. http://dx.doi.org/10.32747/2011.7697121.bard.
Pełny tekst źródłaSemerikov, Serhiy, Illia Teplytskyi, Yuliia Yechkalo, Oksana Markova, Vladimir Soloviev i Arnold Kiv. Computer Simulation of Neural Networks Using Spreadsheets: Dr. Anderson, Welcome Back. [б. в.], czerwiec 2019. http://dx.doi.org/10.31812/123456789/3178.
Pełny tekst źródłaMicrobiology in the 21st Century: Where Are We and Where Are We Going? American Society for Microbiology, 2004. http://dx.doi.org/10.1128/aamcol.5sept.2003.
Pełny tekst źródła