Gotowa bibliografia na temat „Genome supercoiling”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Genome supercoiling”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Genome supercoiling"
El Houdaigui, Bilal, Raphaël Forquet, Thomas Hindré, Dominique Schneider, William Nasser, Sylvie Reverchon i Sam Meyer. "Bacterial genome architecture shapes global transcriptional regulation by DNA supercoiling". Nucleic Acids Research 47, nr 11 (24.04.2019): 5648–57. http://dx.doi.org/10.1093/nar/gkz300.
Pełny tekst źródłaValenti, Anna, Giuseppe Perugino, Mosè Rossi i Maria Ciaramella. "Positive supercoiling in thermophiles and mesophiles: of the good and evil". Biochemical Society Transactions 39, nr 1 (19.01.2011): 58–63. http://dx.doi.org/10.1042/bst0390058.
Pełny tekst źródłaGeng, Yuncong, Christopher Herrick Bohrer, Nicolás Yehya, Hunter Hendrix, Lior Shachaf, Jian Liu, Jie Xiao i Elijah Roberts. "A spatially resolved stochastic model reveals the role of supercoiling in transcription regulation". PLOS Computational Biology 18, nr 9 (19.09.2022): e1009788. http://dx.doi.org/10.1371/journal.pcbi.1009788.
Pełny tekst źródłaAhmed, Syed Moiz, i Peter Dröge. "Chromatin Architectural Factors as Safeguards against Excessive Supercoiling during DNA Replication". International Journal of Molecular Sciences 21, nr 12 (24.06.2020): 4504. http://dx.doi.org/10.3390/ijms21124504.
Pełny tekst źródłaSalvador, Maria L., Uwe Klein i Lawrence Bogorad. "Endogenous Fluctuations of DNA Topology in the Chloroplast of Chlamydomonas reinhardtii". Molecular and Cellular Biology 18, nr 12 (1.12.1998): 7235–42. http://dx.doi.org/10.1128/mcb.18.12.7235.
Pełny tekst źródłaNeguembor, Maria Victoria, Laura Martin, Álvaro Castells-García, Pablo Aurelio Gómez-García, Chiara Vicario, Davide Carnevali, Jumana AlHaj Abed i in. "Transcription-mediated supercoiling regulates genome folding and loop formation". Molecular Cell 81, nr 15 (sierpień 2021): 3065–81. http://dx.doi.org/10.1016/j.molcel.2021.06.009.
Pełny tekst źródłaGilbert, Nick. "Organisation and Function of DNA Supercoiling in the Human Genome". Biophysical Journal 114, nr 3 (luty 2018): 13a. http://dx.doi.org/10.1016/j.bpj.2017.11.113.
Pełny tekst źródłaAlcorlo, Martín, Margarita Salas i José M. Hermoso. "In Vivo DNA Binding of Bacteriophage GA-1 Protein p6". Journal of Bacteriology 189, nr 22 (14.09.2007): 8024–33. http://dx.doi.org/10.1128/jb.01047-07.
Pełny tekst źródłaAdkins, Melissa W., i Jessica K. Tyler. "The Histone Chaperone Asf1p Mediates Global Chromatin Disassemblyin Vivo". Journal of Biological Chemistry 279, nr 50 (26.09.2004): 52069–74. http://dx.doi.org/10.1074/jbc.m406113200.
Pełny tekst źródłaBlot, Nicolas, Ramesh Mavathur, Marcel Geertz, Andrew Travers i Georgi Muskhelishvili. "Homeostatic regulation of supercoiling sensitivity coordinates transcription of the bacterial genome". EMBO reports 7, nr 7 (16.06.2006): 710–15. http://dx.doi.org/10.1038/sj.embor.7400729.
Pełny tekst źródłaRozprawy doktorskie na temat "Genome supercoiling"
Corless, Samuel. "Role of DNA supercoiling in genome structure and regulation". Thesis, University of Edinburgh, 2014. http://hdl.handle.net/1842/9623.
Pełny tekst źródłaJohnson, James. "Large scale simulations of genome organisation in living cells". Thesis, University of Edinburgh, 2018. http://hdl.handle.net/1842/31206.
Pełny tekst źródłaBrambilla, Elisa. "Investigation of E. coli genome complexity by means of fluorescent reporters of gene expression". Thesis, Paris 6, 2014. http://www.theses.fr/2014PA066607/document.
Pełny tekst źródłaEscherichia coli is able to survive in many different environments. The information necessary for this adaptation is encoded in the chromosome. This circular molecule is condensed in a compact DNA-protein structure, called the nucleoid. The chromosome is not uniform, and shows uneven distributions of nucleoid-associated proteins (NAPs) binding sites, AT-rich sequences and general protein occupancy domains. It has been demonstrated that the position of important genes is highly conserved in ?-Proteobacteria. These differences along the chromosome and the conserved position of important genes suggest that the position of the gene can influence gene expression. To test this hypothesis, I studied the expression of a fluorescent reporter gene inserted in different positions around the chromosome. The expression of the reporter is driven by differently regulated promoters, one repressed by the important NAP H-NS, one non regulated and one subject to supercoiling and stringent control. We studied the dynamical expression of these promoters in different growth conditions, growth phases, upon nutritional upshift and under stress. We showed that the expression of the H-NS dependent promoter depends on the location on the chromosome, because H-NS repression is enhanced in presence of AT-rich sequences. We also studied the influence of a divergent gene on the reporter expression as a function of chromosomal position, and showed that this influence depends on the location of the gene. With our study we have been therefore able to show the impact of chromosomal position on gene expression and to give a new perspective on genome complexity
Guha, Sarmistha. "Altering DNA topology in mycobacteria: impact of perturbation of DNA gyrase on physiology and gene expression". Thesis, 2018. https://etd.iisc.ac.in/handle/2005/5304.
Pełny tekst źródłaUsongo, Valentine. "Genetic studies on the role of type IA DNA topoisomerases in DNA metabolism and genome maintenance in Escherichia coli". Thèse, 2013. http://hdl.handle.net/1866/10878.
Pełny tekst źródłaDNA supercoiling is important for all cellular processes that require strand separation and is regulated by the opposing enzymatic effects of DNA topoisomerases. Gyrase uses ATP to introduce negative supercoils while topoisomerase I (topA) and topoisomerase IV relax negative supercoils. Cells lacking topoisomerase I are only viable if they have compensatory mutations in gyrase genes that reduce the negative supercoiling level of the chromosome to allow bacterial growth. One such mutation leads to the production of a thermosensitive gyrase (gyrB(Ts)). Gyrase driven supercoiling during transcription in the absence of topoisomerase I causes the accumulation of hypernegatively supercoiled plasmid DNAs due to the formation of R-loops. Overproducing RNase HI (rnhA), an enzyme that degrades the RNA moiety of R-loops, prevents the accumulation of hypernegative supercoils. In the absence of RNase HI alone, R-loops are equally formed and can be used to prime DNA replication independently of oriC/DnaA, a phenomenon known as constitutive stable DNA replication (cSDR). To better understand the link between R-loop formation and hypernegative supercoiling, we constructed a conditional topA rnhA gyrB(Ts) mutant with RNase HI being conditionally expressed from a plasmid borne gene. We found that the DNA of topA rnhA gyrB(Ts) cells was extensively relaxed instead of being hypernegatively supercoiled following the depletion of RNase HI. Relaxation was found to be unrelated to the activity of topoisomerase IV. Cells of topA rnhA gyrB(Ts) formed long filaments full of DNA, consistent with segregation defect. Overproducing topoisomerase III (topB), an enzyme that can perform decatenation, corrected the segregation problems without restoring supercoiling. We found that extracts of topA rnhA gyrB(Ts) cells inhibited gyrase supercoiling activity of wild type cells extracts in vitro, suggesting that the depletion of RNase HI triggered a cell response that inhibited the supercoiling activity of gyrase. Gyrase supercoiling assays in vivo as well as in crude cell extracts revealed that the ATP dependent supercoiling reaction of gyrase was inhibited while the ATP independent relaxation reaction was unaffected. Genetic suppressors of a triple topA rnhA gyrB(Ts) strain that restored supercoiling and corrected the chromosome segregation defects mostly mapped to genes that affected DNA replication, R-loop metabolism and fimbriae formation. The second part of this project aimed at understanding the roles of type IA DNA topoisomerases (topoisomerase I and topoisomerase III) in chromosome segregation and genome maintenance in E. coli. To investigate the role of type IA DNA topoisomerases in chromosome segregation we employed genetic approaches combined with flow cytometry, Western blot analysis and microscopy (for the examination of cell morphology). We found that the Par- phenotypes (formation of large unsegregated nucleoid in midcell) and chromosome segregation defects of a gyrB(Ts) mutant at the nonpermissive temperature were corrected by deleting topA only in the presence of topB. Moreover, overproducing topoisomerase III was shown to correct the Par- phenotype without correcting the growth defect, but overproducing topoisomerase IV, the major cellular decatenase, failed to correct the defects. Our results suggest that type IA topoisomerases play a role in chromosome segregation when gyrase is inefficient. To investigate the role of type IA DNA topoisomerases in genome maintenance, in the third part of the project, we employed genetic approaches combined with suppressor screens, spot assays and microscopy. We found that cells lacking topoisomerase I suffered from supercoiling-dependent growth defects and chromosome segregation defects that could be corrected by deleting recQ, recA or overproducing topoisomerase III and by an oriC15::aph suppressor mutation isolated in the first part of the project. Cells lacking both type 1A topoisomerases formed very long filaments packed with diffuse and unsegregated DNA. Such phenotypes could be partially corrected by overproducing RNase HI or deleting recA, or by suppressor mutations isolated in the first part of the project, that affected cSDR (dnaT18::aph and rne59::aph). Thus, in E. coli, type IA DNA topoisomerases play a role in genome maintenance by inhibiting inappropriate replication from oriC and R-loops and by preventing RecA-dependent chromosome segregation defect through their action with RecQ. The work reported here reveals that inappropriate and unregulated replication is a major source of genome instability. Preventing such replication will ensures proper chromosome segregation leading to a stable genome. RNase HI and type IA DNA topoisomerases play a leading role in preventing unregulated replication. RNase HI achieves this role by modulating ATP dependent gyrase activity and by preventing replication from R-loops (cSDR). Type IA DNA topoisomerases ensure the maintenance of a stable genome by preventing inappropriate replication from oriC and R-loops and by acting with RecQ to prevent RecA dependent-chromosome segregation defects.
Części książek na temat "Genome supercoiling"
Jean, Andrew St. "Local Genetic Context, Supercoiling, and Gene Expression". W Organization of the Prokaryotic Genome, 203–15. Washington, DC, USA: ASM Press, 2014. http://dx.doi.org/10.1128/9781555818180.ch12.
Pełny tekst źródłaHiggins, N. Patrick. "DNA Supercoiling and Its Consequences for Chromosome Structure and Function". W Organization of the Prokaryotic Genome, 189–202. Washington, DC, USA: ASM Press, 2014. http://dx.doi.org/10.1128/9781555818180.ch11.
Pełny tekst źródłaBenedetti, Fabrizio, Dusan Racko, Julien Dorier i Andrzej Stasiak. "Introducing Supercoiling into Models of Chromosome Structure". W Modeling the 3D Conformation of Genomes, 115–38. Boca Raton : Taylor & Francis, 2018. | Series: Series in computational biophysics ; 4: CRC Press, 2019. http://dx.doi.org/10.1201/9781315144009-6.
Pełny tekst źródłaWang, James C., i A. Simon Lynch. "Effects of DNA Supercoiling on Gene Expression". W Regulation of Gene Expression in Escherichia coli, 127–47. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4684-8601-8_7.
Pełny tekst źródłaGellert, Martin, i Rolf Menzel. "DNA Supercoiling as a Regulator of Bacterial Gene Expression". W New Frontiers in the Study of Gene Functions, 51–59. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4613-1845-3_4.
Pełny tekst źródłaDrlica, Karl, Muhammad Malik, Jian-Ying Wang, Andrzej Sasiak i Richard R. Sinden. "Chapter 15 Analysis of DNA supercoiling". W Methods in Gene Technology Volume 2, 253–80. Elsevier, 1995. http://dx.doi.org/10.1016/s1873-9768(06)80039-3.
Pełny tekst źródłaStreszczenia konferencji na temat "Genome supercoiling"
Grohens, Théotime, Sam Meyer i Guillaume Beslon. "A Genome-Wide Evolutionary Simulation of the Transcription-Supercoiling Coupling". W The 2021 Conference on Artificial Life. Cambridge, MA: MIT Press, 2021. http://dx.doi.org/10.1162/isal_a_00434.
Pełny tekst źródłaLillian, Todd D., i N. C. Perkins. "Electrostatics and Self Contact in an Elastic Rod Approximation for DNA". W ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/detc2009-86632.
Pełny tekst źródła