Gotowa bibliografia na temat „Genetic mapping”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Genetic mapping”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Genetic mapping"
Salava, J., Y. Wang, B. Krška, J. Polák, P. Komínek, R. W. Miller, W. M. Dowler, G. L. Reighard i A. G. Abbott. "Molecular genetic mapping in apricot". Czech Journal of Genetics and Plant Breeding 38, No. 2 (30.07.2012): 65–68. http://dx.doi.org/10.17221/6113-cjgpb.
Pełny tekst źródłaBo, W., Z. Wang, F. Xu, G. Fu, Y. Sui, W. Wu, X. Zhu, D. Yin, Q. Yan i R. Wu. "Shape mapping: genetic mapping meets geometric morphometrics". Briefings in Bioinformatics 15, nr 4 (4.03.2013): 571–81. http://dx.doi.org/10.1093/bib/bbt008.
Pełny tekst źródłaBORMAN, STU. "MAPPING HUMAN GENETIC VARIATION". Chemical & Engineering News 83, nr 8 (21.02.2005): 13. http://dx.doi.org/10.1021/cen-v083n008.p013.
Pełny tekst źródłaDzau, Victor J., Howard J. Jacob, Klaus Lindpainter, Detlev Ganten i Eric S. Lander. "Genetic mapping in hypertension". Journal of Vascular Surgery 15, nr 5 (maj 1992): 930–31. http://dx.doi.org/10.1016/0741-5214(92)90757-y.
Pełny tekst źródłaGulsen, Osman. "Genetic mapping in plants". Journal of Biotechnology 161 (listopad 2012): 7–8. http://dx.doi.org/10.1016/j.jbiotec.2012.07.171.
Pełny tekst źródłaMalke, Horst. "Genetic and Physical Mapping." Bioelectrochemistry and Bioenergetics 29, nr 3 (luty 1993): 373–74. http://dx.doi.org/10.1016/0302-4598(93)85015-l.
Pełny tekst źródłaEbersberger, I., P. Galgoczy, S. Taudien, S. Taenzer, M. Platzer i A. von Haeseler. "Mapping Human Genetic Ancestry". Molecular Biology and Evolution 24, nr 10 (21.07.2007): 2266–76. http://dx.doi.org/10.1093/molbev/msm156.
Pełny tekst źródłaHutchinson, Anna, Jennifer Asimit i Chris Wallace. "Fine-mapping genetic associations". Human Molecular Genetics 29, R1 (3.08.2020): R81—R88. http://dx.doi.org/10.1093/hmg/ddaa148.
Pełny tekst źródłaRyma, Guefrouchi, i Kholladi Mohamed-Khireddine. "Genetic Algorithm With Hill Climbing for Correspondences Discovery in Ontology Mapping". Journal of Information Technology Research 12, nr 4 (październik 2019): 153–70. http://dx.doi.org/10.4018/jitr.2019100108.
Pełny tekst źródłaMynett-Johnson, Lesley A., i Patrick McKeon. "The molecular genetics of affective disorders: An overview". Irish Journal of Psychological Medicine 13, nr 4 (grudzień 1996): 155–61. http://dx.doi.org/10.1017/s0790966700004444.
Pełny tekst źródłaRozprawy doktorskie na temat "Genetic mapping"
Parts, Leopold. "Genetic mapping of cellular traits". Thesis, University of Cambridge, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.609665.
Pełny tekst źródłaMelville, Scott Andrew Biotechnology & Biomolecular Sciences Faculty of Science UNSW. "Disease gene mapping in border collie dogs". Awarded by:University of New South Wales. School of Biotechnology and Biomolecular Sciences, 2006. http://handle.unsw.edu.au/1959.4/25511.
Pełny tekst źródłaEinarsdottir, Elisabet. "Mapping genetic diseases in northern Sweden". Doctoral thesis, Umeå universitet, Medicinsk biovetenskap, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-499.
Pełny tekst źródłaEinarsdóttir, Elísabet. "Mapping genetic diseases in northern Sweden". Umeå : Department of Medical Biosciences, Umeå University, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-499.
Pełny tekst źródłaMacGregor, Stuart. "Genetic linkage mapping in complex pedigrees". Thesis, University of Edinburgh, 2003. http://hdl.handle.net/1842/12507.
Pełny tekst źródłaJohanneson, Bo. "Genetic Mapping of Susceptibility Genes for Systemic Lupus Erythematosus". Doctoral thesis, Uppsala University, Department of Genetics and Pathology, 2002. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-2950.
Pełny tekst źródłaSystemic lupus erythematosus (SLE) is a complex autoimmune disease with unknown etiology. The aim of this thesis was to identify susceptibility regions through genetic mapping, using model-based linkage analysis on nuclear and extended SLE multicase families.
In the first paper we performed a genome scan on 19 genetically homogenous Icelandic and Swedish families. One region at 2q37 was identified with a significant linkage with contribution from both populations (Z=4.24). Five other regions 2q11, 4p13, 9p22, 9p13 and 9q13 showed suggestive linkage (Z>2.0).
In the second paper, 87 families from 10 different countries were analysed only for chromosome 1. One region at 1q31 showed significant linkage (Z=3.79) with contribution from families from all populations, including Mexicans and Europeans. Four other regions 1p36, 1p21, 1q23, and 1q25, showed levels of suggestive linkage. Linkage for most regions was highly dependent on what population was used, which indicated strong genetic heterogeneity in the genetic susceptibility for SLE.
In the two last papers, we used the positional candidate gene strategy, in order to investigate candidate genes in two regions linked to SLE. For the Bcl-2 gene (at 18q21) we could not detect any association with SLE using three different markers. However, when we investigated the tightly linked low-affinity family of FcγR genes (at 1q23), we could find association for two risk alleles in the FcγRIIA and FcγRIIIA genes. The risk alleles were transmitted to SLE patients on one specific haplotype and therefore are not independent risk alleles.
The results show that model-based linkage analysis is a strong approach in the search for susceptibility genes behind complex diseases like SLE.
Guo, Youling, i 郭友玲. "Genetic and genomic mapping of common diseases". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2012. http://hub.hku.hk/bib/B50533861.
Pełny tekst źródłapublished_or_final_version
Psychiatry
Doctoral
Doctor of Philosophy
Zenger, Kyall Richard. "Genetic linkage maps and population genetics of macropods". Phd thesis, Australia : Macquarie University, 2002. http://hdl.handle.net/1959.14/47604.
Pełny tekst źródłaThesis (PhD)--Macquarie University, Division of Environmental and Life Sciences, Department of Biological Sciences, 2002.
Bibliography: leaves 136-157.
General introduction -- Molecular markers for comparative and quantitative studies in macropods -- Genetic linkage map construction in the tammar wallaby (M. eugenii) -- Intraspecific variation, sex-biased dispersal and phylogeography of the eastern grey kangaroo (M. giganteus) -- General discussion.
The analysis of DNA using molecular techniques is an important tool for studies of evolutionary relationships, population genetics and genome organisation. The use of molecular markers within marsupials is primarily limited by their availability and success of amplification. Within this study, 77 macropodid type II microsatellite loci and two type I genetic markers were characterised within M. eugenii to evaluate polymorphic levels and cross-species amplification artifacts. Results indicated that 65 microsatellite loci amplified a single locus in M. eugenii with 44 exhibiting high levels of variability. The success of crossspecies amplification of microsatellite loci was inversely proportional to the evolutionary distance between the macropod species. It is revealed that the majority of species within the Macropodidae are capable of using many of the available heterologous microsatellites. When comparing the degree of variability between source-species and M. eugenii, most were significantly higher within source species (P < 0.05). These differences were most likely caused by ascertainment bias in microsatellite selection for both length and purity. -- The production of a marsupial genetic linkage map is perhaps one of the most important objectives in marsupial research. This study used a total of 353 informative meioses and 64 genetic markers to construct a framework genetic linkage map for M. eugenii. Nearly all markers (93.7%) formed a significant linkage (LOD > 3.0) with at least one other marker. More than 70% (828 cM) of the genome had been mapped when compared with chiasmata data. Nine linkage groups were identified, with all but one (LG7; X-linked) allocated to the autosomes. Theses groups ranged in size from 15.7 cM to 176.5 cM, and have an average distance of 16.2 cM between adjacent markers. Of the autosomal linkage groups, LG2 and LG3 were assigned to chromosome 1 and LG4 localised to chromosome 3 based on physical localisation of genes. Significant sex-specific distortions towards reduced female recombination rates were revealed in 22% of comparisons. Positive interference was observed within all the linkage groups analysed. When comparing the X-chromosome data to closely related species it is apparent that it is conserved both in synteny and gene order. -- The investigation of population dynamics of eastern grey kangaroos has been limited to a few ecological studies. The present investigation provides analysis of mtDNA and microsatellite data to infer both historical and contemporary patterns of population structuring and dispersal. The average level of genetic variation across sample locations was exceedingly high (h = 0.95, HE = 0.82), and is one of the highest observed for marsupials. Contrary to ecological studies, both genic and genotypic analyses reveal weak genetic structure of populations where high levels of dispersal may be inferred up to 230 km. The movement of individuals was predominantly male-biased (average N,m = 22.61, average N p = 2.73). However, neither sex showed significant isolation by distance. On a continental scale, there was strong genetic differentiation and phylogeographic distinction between southern (TAS, VIC and NSW) and northern (QLD) Australian populations, indicating a current and / or historical restriction of geneflow. In addition, it is evident that northern populations are historically more recent, and were derived from a small number of southern eastern grey kangaroo founders. Phylogenetic comparisons between M. g. giganteus and M. g. tasmaniensis, indicated that the current taxonomic status of these subspecies should be revised as there was a lack of genetic differentiation between the populations sampled.
Mode of access: World Wide Web.
xv, 182 leaves ill
Moody, Adrian John. "Mapping genetic resistance to infectious bursal disease". Thesis, University of Reading, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.326754.
Pełny tekst źródłaDuran, Alonso Maria Beatriz. "Genetic mapping of the rat agu gene". Thesis, University of Glasgow, 1997. http://theses.gla.ac.uk/39021/.
Pełny tekst źródłaKsiążki na temat "Genetic mapping"
Vizeacoumar, Franco Joseph, i Andrew Freywald, red. Mapping Genetic Interactions. New York, NY: Springer US, 2021. http://dx.doi.org/10.1007/978-1-0716-1740-3.
Pełny tekst źródłaIvar-Harry, Pawlowitzki, Edwards J. H i Thompson E. A. 1949-, red. Genetic mapping of disease genes. San Diego: Academic Press, 1997.
Znajdź pełny tekst źródłaSpeed, Terry, i Michael S. Waterman, red. Genetic Mapping and DNA Sequencing. New York, NY: Springer New York, 1996. http://dx.doi.org/10.1007/978-1-4612-0751-1.
Pełny tekst źródłaP, Speed T., i Waterman Michael S, red. Genetic mapping and DNA sequencing. New York: Springer, 1996.
Znajdź pełny tekst źródłaBoopathi, N. Manikanda. Genetic Mapping and Marker Assisted Selection. India: Springer India, 2013. http://dx.doi.org/10.1007/978-81-322-0958-4.
Pełny tekst źródłaBoopathi, N. Manikanda. Genetic Mapping and Marker Assisted Selection. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-2949-8.
Pełny tekst źródłaKhalid, Meksem, i Kahl Günter, red. The Handbook of plant genome mapping: Genetic and physical mapping. Weinheim: Wiley-VCH, 2005.
Znajdź pełny tekst źródła1957-, Haines Jonathan L., i Pericak-Vance Margaret Ann, red. Approaches to gene mapping in complex human diseases. New York: Wiley-Liss, 1998.
Znajdź pełny tekst źródła1957-, Haines Jonathan L., i Pericak-Vance Margaret Ann, red. Genetic analysis of complex diseases. Wyd. 2. New York, NY: Wiley-Liss, 2006.
Znajdź pełny tekst źródłade, Vienne D., red. Molecular markers in plant genetics and biotechnology. Enfield, NH: Science Publishers, 2003.
Znajdź pełny tekst źródłaCzęści książek na temat "Genetic mapping"
Schuster, Ivan. "Soybean Genetic Mapping". W Soybean Breeding, 253–74. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-57433-2_13.
Pełny tekst źródłaGaspin, Christine, i Thomas Schiex. "Genetic algorithms for genetic mapping". W Lecture Notes in Computer Science, 145–55. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/bfb0026597.
Pełny tekst źródłaEvans, Glen A., i David L. McElligott. "Physical Mapping of Human Chromosomes". W Genetic Engineering, 269–78. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4615-3424-2_15.
Pełny tekst źródłaRathore, Heena. "Genetic Algorithms". W Mapping Biological Systems to Network Systems, 97–106. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29782-8_8.
Pełny tekst źródłaMichelmore, Richard W., Richard V. Kesseli i Edward J. Ryder. "Genetic mapping in lettuce". W Advances in Cellular and Molecular Biology of Plants, 223–39. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-1104-1_12.
Pełny tekst źródłaKnapp, Steven J., Simon T. Berry i Loren H. Rieseberg. "Genetic mapping in sunflowers". W Advances in Cellular and Molecular Biology of Plants, 379–403. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-015-9815-6_22.
Pełny tekst źródłaCoe, E. H. "Genetic Experiments and Mapping". W The Maize Handbook, 189–97. New York, NY: Springer New York, 1994. http://dx.doi.org/10.1007/978-1-4612-2694-9_20.
Pełny tekst źródłaMalhotra, Era Vaidya, i Madhvi Soni. "Markers and Genetic Mapping". W Strawberries, 141–59. Boca Raton, FL : CRC Press, Taylor & Francis Group, 2019.: CRC Press, 2019. http://dx.doi.org/10.1201/b21441-194.
Pełny tekst źródłaBeckmann, Jacques S. "Genetic Mapping, an Overview". W Computational Methods in Genome Research, 75–84. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2451-9_6.
Pełny tekst źródłaLeitão, José Manuel. "Genetic Mapping in Pineapple". W Genetics and Genomics of Pineapple, 61–68. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-00614-3_5.
Pełny tekst źródłaStreszczenia konferencji na temat "Genetic mapping"
Schwarz, Tobias, i Christian Hochberger. "Technology Mapping of Genetic Circuits". W ICCAD '22: IEEE/ACM International Conference on Computer-Aided Design. New York, NY, USA: ACM, 2022. http://dx.doi.org/10.1145/3508352.3549344.
Pełny tekst źródłaMoreno, Matthew Andres, Wolfgang Banzhaf i Charles Ofria. "Learning an evolvable genotype-phenotype mapping". W GECCO '18: Genetic and Evolutionary Computation Conference. New York, NY, USA: ACM, 2018. http://dx.doi.org/10.1145/3205455.3205597.
Pełny tekst źródłaDunwei Gong i Xiaoyan Sun. "A modified contract mapping genetic algorithm". W Proceedings of the IEEE International Symposium on Industrial Electronics ISIE-02. IEEE, 2002. http://dx.doi.org/10.1109/isie.2002.1026092.
Pełny tekst źródłaMerelo, Juan J., i José-Mario García-Valdez. "Mapping evolutionary algorithms to a reactive, stateless architecture". W GECCO '18: Genetic and Evolutionary Computation Conference. New York, NY, USA: ACM, 2018. http://dx.doi.org/10.1145/3205651.3208317.
Pełny tekst źródła"COINCIDENCE BASED MAPPING EXTRACTION WITH GENETIC ALGORITHMS". W 3rd International Conference on Web Information Systems and Technologies. SciTePress - Science and and Technology Publications, 2007. http://dx.doi.org/10.5220/0001271901760183.
Pełny tekst źródłaZhu, Qianyu, Yifei Yang, Haotian Li, Haichuan Yang, Baohang Zhang i Shangce Gao. "Chaotic Mapping Genetic Algorithm with Multiple Strategies". W 2023 15th International Conference on Advanced Computational Intelligence (ICACI). IEEE, 2023. http://dx.doi.org/10.1109/icaci58115.2023.10146188.
Pełny tekst źródłaSiegel, Howard Jay, i Muthucumaru Meheswaran. "Mapping Tasks onto Heterogeneous Computing Systems". W Anais Estendidos do Simpósio Brasileiro de Arquitetura de Computadores e Processamento de Alto Desempenho. Sociedade Brasileira de Computação, 1997. http://dx.doi.org/10.5753/sbac-pad_estendido.1997.22647.
Pełny tekst źródłaChapman, Colin D., Kazuhiro Saitou i Mark J. Jakiela. "Genetic Algorithms As an Approach to Configuration and Topology Design". W ASME 1993 Design Technical Conferences. American Society of Mechanical Engineers, 1993. http://dx.doi.org/10.1115/detc1993-0338.
Pełny tekst źródłaSapin, Emmanuel, Kenneth De Jong i Amarda Shehu. "Mapping Multiple Minima in Protein Energy Landscapes with Evolutionary Algorithms". W GECCO '15: Genetic and Evolutionary Computation Conference. New York, NY, USA: ACM, 2015. http://dx.doi.org/10.1145/2739482.2768439.
Pełny tekst źródłaFontaine, Matthew C., Scott Lee, L. B. Soros, Fernando De Mesentier Silva, Julian Togelius i Amy K. Hoover. "Mapping hearthstone deck spaces through MAP-elites with sliding boundaries". W GECCO '19: Genetic and Evolutionary Computation Conference. New York, NY, USA: ACM, 2019. http://dx.doi.org/10.1145/3321707.3321794.
Pełny tekst źródłaRaporty organizacyjne na temat "Genetic mapping"
Williams, Rebecca L., i Amy Moser. Mapping Genetic Modifiers of Mammary Tumor Susceptibility. Fort Belvoir, VA: Defense Technical Information Center, sierpień 2001. http://dx.doi.org/10.21236/ada398591.
Pełny tekst źródłaMoser, Amy R. Mapping Genetic Modifiers of Mammary Tumor Susceptibility. Fort Belvoir, VA: Defense Technical Information Center, sierpień 2002. http://dx.doi.org/10.21236/ada413038.
Pełny tekst źródłaMoser, Amy R. Mapping Genetic Modifiers of Mammary Tumor Susceptibility. Fort Belvoir, VA: Defense Technical Information Center, listopad 2002. http://dx.doi.org/10.21236/ada417279.
Pełny tekst źródłaBelanger, Faith, Nativ Dudai i Nurit Katzir. Genetic Linkage Mapping of Basil (Ocimum basilicum). United States Department of Agriculture, marzec 2010. http://dx.doi.org/10.32747/2010.7593385.bard.
Pełny tekst źródłaZhang, Hongbin, Shahal Abbo, Weidong Chen, Amir Sherman, Dani Shtienberg i Frederick Muehlbauer. Integrative Physical and Genetic Mapping of the Chickpea Genome for Fine Mapping and Analysis of Agronomic Traits. United States Department of Agriculture, marzec 2010. http://dx.doi.org/10.32747/2010.7592122.bard.
Pełny tekst źródłaZhang, Hongbin B., David J. Bonfil i Shahal Abbo. Genomics Tools for Legume Agronomic Gene Mapping and Cloning, and Genome Analysis: Chickpea as a Model. United States Department of Agriculture, marzec 2003. http://dx.doi.org/10.32747/2003.7586464.bard.
Pełny tekst źródłaHerman, Gail E. Comprehensive Clinical Phenotyping & Genetic Mapping for the Discovery of Autism Susceptibility Genes. Fort Belvoir, VA: Defense Technical Information Center, grudzień 2012. http://dx.doi.org/10.21236/ada607156.
Pełny tekst źródłaKing, Mary-Claire, i Warren Winkelstein Jr. Genetic Alterations in Familial Breast Cancer: Mapping and Cloning Genes Other than BRCA1. Fort Belvoir, VA: Defense Technical Information Center, wrzesień 1996. http://dx.doi.org/10.21236/ada328004.
Pełny tekst źródłaHerman, Gail E., Emily Hansen, Wolfgang Sadee, Ray Smith, Mary Beth Dewitt i Eric Seiber. Comprehensive Clinical Phenotyping and Genetic Mapping for the Discovery of Autism Susceptibility Genes. Fort Belvoir, VA: Defense Technical Information Center, marzec 2013. http://dx.doi.org/10.21236/ada585946.
Pełny tekst źródłaKing, Mary-Claire. Genetic Alterations in Familial Breast Cancer: Mapping and Cloning Genes Other Than BRCAl. Fort Belvoir, VA: Defense Technical Information Center, wrzesień 1997. http://dx.doi.org/10.21236/ada346685.
Pełny tekst źródła