Gotowa bibliografia na temat „Generative AI”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Generative AI”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Generative AI"
Koda, Masahide. "Generative AI". Okayama Igakkai Zasshi (Journal of Okayama Medical Association) 136, nr 3 (2.12.2024): 139–40. https://doi.org/10.4044/joma.136.139.
Pełny tekst źródłaKrishna, Guntamukkala Gopi. "Generative AI". International Journal of Advanced Engineering and Nano Technology 10, nr 8 (30.08.2023): 1–3. http://dx.doi.org/10.35940/ijaent.g0474.0810823.
Pełny tekst źródłaEuchner, Jim. "Generative AI". Research-Technology Management 66, nr 3 (20.04.2023): 71–74. http://dx.doi.org/10.1080/08956308.2023.2188861.
Pełny tekst źródłaSwaroopa, Pethota. "StoryCraft AI: Exploring Generative Approaches to Story Narration through AI". International Scientific Journal of Engineering and Management 03, nr 04 (23.04.2024): 1–9. http://dx.doi.org/10.55041/isjem01633.
Pełny tekst źródłaRathod, Rohan. "Renaissance on Generative AI". International Journal for Research in Applied Science and Engineering Technology 12, nr 6 (30.06.2024): 1354–59. http://dx.doi.org/10.22214/ijraset.2024.63324.
Pełny tekst źródłaLuttrell, Regina, i Nicholas Bowman. "Generating Deep Discussion Around Generative AI". Newhouse Impact Journal 1, nr 1 (2024): 1–2. http://dx.doi.org/10.14305/jn.29960819.2024.1.1.10.
Pełny tekst źródłaKars, Muhammet Emir. "Generative AI in Education". London Journal of Social Sciences, nr 6 (20.09.2023): 144–51. http://dx.doi.org/10.31039/ljss.2023.6.114.
Pełny tekst źródłaJohnson, Russell. "Guiding generative AI". Nature Chemical Biology 21, nr 3 (25.02.2025): 311. https://doi.org/10.1038/s41589-025-01854-y.
Pełny tekst źródłaAli, Safinah, Prerna Ravi, Randi Williams, Daniella DiPaola i Cynthia Breazeal. "Constructing Dreams Using Generative AI". Proceedings of the AAAI Conference on Artificial Intelligence 38, nr 21 (24.03.2024): 23268–75. http://dx.doi.org/10.1609/aaai.v38i21.30374.
Pełny tekst źródłaAgrawal, Vishakha. "Systems for Generative AI: Challenges and Opportunities". INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 09, nr 01 (23.01.2025): 1–7. https://doi.org/10.55041/ijsrem30153.
Pełny tekst źródłaRozprawy doktorskie na temat "Generative AI"
Lacan, Alice. "Transcriptomics data generation with deep generative models". Electronic Thesis or Diss., université Paris-Saclay, 2025. http://www.theses.fr/2025UPASG010.
Pełny tekst źródłaThis thesis explores deep generative models to improve synthetic transcriptomics data generation, addressing data scarcity in phenotypes classification tasks. We focus on Variational Autoencoders (VAEs), Generative Adversarial Networks (GANs), and diffusion models (DDPM/DDIM), assessing their ability to balance realism and diversity in high-dimensional tabular datasets. First, we adapt quality metrics for gene expression and introduce a knowledge-based self-attention module within GANs (AttGAN) to improve the fidelity-diversity trade-off. A main contribution is boosting classification performance using minimal real samples augmented with synthetic data. Secondly, another contribution was the first adaptation of diffusion models to transcriptomic data, demonstrating competitiveness with VAEs and GANs. We also introduce an interpolation analysis bringing perspectives on data diversity and the identification of biomarkers. Finally, we present GMDA (Generative Modeling with Density Alignment), a resource efficient alternative to GANs that balances realism and diversity by aligning locally real and synthetic sample densities. This framework allows controlled exploration of instance space, stable training, and frugality across datasets. Ultimately, this thesis provides comprehensiveinsights and methodologies to advance synthetic transcriptomics data generation
TOMA, ANDREA. "PHY-layer Security in Cognitive Radio Networks through Learning Deep Generative Models: an AI-based approach". Doctoral thesis, Università degli studi di Genova, 2020. http://hdl.handle.net/11567/1003576.
Pełny tekst źródłaMisino, Eleonora. "Deep Generative Models with Probabilistic Logic Priors". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/24058/.
Pełny tekst źródłaMennborg, Alexander. "AI-Driven Image Manipulation : Image Outpainting Applied on Fashion Images". Thesis, Luleå tekniska universitet, Institutionen för system- och rymdteknik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-85148.
Pełny tekst źródłaAlabdallah, Abdallah. "Human Understandable Interpretation of Deep Neural Networks Decisions Using Generative Models". Thesis, Högskolan i Halmstad, Halmstad Embedded and Intelligent Systems Research (EIS), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-41035.
Pełny tekst źródłaPANFILO, DANIELE. "Generating Privacy-Compliant, Utility-Preserving Synthetic Tabular and Relational Datasets Through Deep Learning". Doctoral thesis, Università degli Studi di Trieste, 2022. http://hdl.handle.net/11368/3030920.
Pełny tekst źródłaTwo trends have rapidly been redefining the artificial intelligence (AI) landscape over the past several decades. The first of these is the rapid technological developments that make increasingly sophisticated AI feasible. From a hardware point of view, this includes increased computational power and efficient data storage. From a conceptual and algorithmic viewpoint, fields such as machine learning have undergone a surge and synergies between AI and other disciplines have resulted in considerable developments. The second trend is the growing societal awareness around AI. While institutions are becoming increasingly aware that they have to adopt AI technology to stay competitive, issues such as data privacy and explainability have become part of public discourse. Combined, these developments result in a conundrum: AI can improve all aspects of our lives, from healthcare to environmental policy to business opportunities, but invoking it requires the use of sensitive data. Unfortunately, traditional anonymization techniques do not provide a reliable solution to this conundrum. They are insufficient in protecting personal data, but also reduce the analytic value of data through distortion. However, the emerging study of deep-learning generative models (DLGM) may form a more refined alternative to traditional anonymization. Originally conceived for image processing, these models capture probability distributions underlying datasets. Such distributions can subsequently be sampled, giving new data points not present in the original dataset. However, the overall distribution of synthetic datasets, consisting of data sampled in this manner, is equivalent to that of the original dataset. In our research activity, we study the use of DLGM as an enabling technology for wider AI adoption. To do so, we first study legislation around data privacy with an emphasis on the European Union. In doing so, we also provide an outline of traditional data anonymization technology. We then provide an introduction to AI and deep-learning. Two case studies are discussed to illustrate the field’s merits, namely image segmentation and cancer diagnosis. We then introduce DLGM, with an emphasis on variational autoencoders. The application of such methods to tabular and relational data is novel and involves innovative preprocessing techniques. Finally, we assess the developed methodology in reproducible experiments, evaluating both the analytic utility and the degree of privacy protection through statistical metrics.
Gopinathan, Muraleekrishna. "Toward embodied navigation through vision and language". Thesis, Edith Cowan University, Research Online, Perth, Western Australia, 2025. https://ro.ecu.edu.au/theses/2894.
Pełny tekst źródłaHaidar, Ahmad. "Responsible Artificial Intelligence : Designing Frameworks for Ethical, Sustainable, and Risk-Aware Practices". Electronic Thesis or Diss., université Paris-Saclay, 2024. https://www.biblio.univ-evry.fr/theses/2024/interne/2024UPASI008.pdf.
Pełny tekst źródłaArtificial Intelligence (AI) is rapidly transforming the world, redefining the relationship between technology and society. This thesis investigates the critical need for responsible and sustainable development, governance, and usage of AI and Generative AI (GAI). The study addresses the ethical risks, regulatory gaps, and challenges associated with AI systems while proposing actionable frameworks for fostering Responsible Artificial Intelligence (RAI) and Responsible Digital Innovation (RDI).The thesis begins with a comprehensive review of 27 global AI ethical declarations to identify dominant principles such as transparency, fairness, accountability, and sustainability. Despite their significance, these principles often lack the necessary tools for practical implementation. To address this gap, the second study in the research presents an integrative framework for RAI based on four dimensions: technical, AI for sustainability, legal, and responsible innovation management.The third part of the thesis focuses on RDI through a qualitative study of 18 interviews with managers from diverse sectors. Five key dimensions are identified: strategy, digital-specific challenges, organizational KPIs, end-user impact, and catalysts. These dimensions enable companies to adopt sustainable and responsible innovation practices while overcoming obstacles in implementation.The fourth study analyzes emerging risks from GAI, such as misinformation, disinformation, bias, privacy breaches, environmental concerns, and job displacement. Using a dataset of 858 incidents, this research employs binary logistic regression to examine the societal impact of these risks. The results highlight the urgent need for stronger regulatory frameworks, corporate digital responsibility, and ethical AI governance. Thus, this thesis provides critical contributions to the fields of RDI and RAI by evaluating ethical principles, proposing integrative frameworks, and identifying emerging risks. It emphasizes the importance of aligning AI governance with international standards to ensure that AI technologies serve humanity sustainably and equitably
Hagström, Adrian, i Rustam Stanikzai. "Writer identification using semi-supervised GAN and LSR method on offline block characters". Thesis, Högskolan i Halmstad, Akademin för informationsteknologi, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-43316.
Pełny tekst źródłaAbdelghani, Rania. "Guider les esprits de demain : agents conversationnels pour entraîner la curiosité et la métacognition chez les jeunes apprenants". Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0152.
Pełny tekst źródłaEpistemic curiosity—the desire to actively seek information for its inherent pleasure—is a complex phenomenon extensively studied across various domains. Several researchers in psychology, neuroscience, and computer science have repeatedly highlighted its foundational role in cognitive development and in fostering lifelong learning. Further, epistemic curiosity is considered key for cultivating a flexible mindset capable of adapting to the world’s uncertainties. These insights have spurred significant interest in the educational field, recognizing curiosity as essential for helping individuals be active and in control of their learning. These properties are crucial for addressing some of today’s major educational challenges, namely offering students individualized support to suit their competencies and motivations, and helping them become able to learn autonomously and independently in their dynamic and uncertain environments. Despite this well-documented importance of curiosity in education, its practical implementation and promotion in the classroom remains limited. Notably, one of the primary expressions of curiosity— question-asking (QA)—is nearly absent in most of today’s educational settings. Several reports show that students often spend a lot of time answering teachers’ questions rather than asking their own. And when they do ask questions, they are typically low-level and memory-based, as opposed to curious questions that seek novel information. In this context, this thesis aims to develop educational technologies that can foster children’s curiosity-driven learning by practicing curious QA behaviors, and their related metacognitive (MC) skills. Ultimately, we implemented interventions to train three dimensions: 1) Linguistic QA Skills: We implement a conversational agent to train the ability to formulate curious questions using compound questioning words and correct interrogative constructions. It helps children generate curious questions during reading-comprehension tasks, by providing specific cues. The effectiveness of different cue structures (a sentence vs. series of keywords) and implementations (hand-generated vs. GPT-3-generated content) is studied. 2) Curiosity-related metacognitive Skills: We create animated videos to give declarative knowledge about curiosity and its related MC skills: the ability to self reflect, make educated guesses, formulate efficient questions, and evaluate newly-acquired information. We also propose sessions to practice these skills during reading-comprehension tasks using specific cues given by conversational agents we designed to train procedural MC. 3) Social Perceptions and beliefs: We create animated videos to address the negative constructs learners tend to have about curiosity. They explain the importance of curiosity and how to control it during learning. Over 150 French students aged 9 to 11 were recruited to test these trainings of the three dimensions. Combined, these latter enhanced students’ MC sensitivity and perception of curiosity. At their turn, these factors facilitated students’ divergent QA behaviors which, at their turn, led to stronger learning progress and positive, affordable learning experiences. But despite the positive results, our methods had limitations, particularly their short duration. We suggest testing longer-lasting interventions to examine their long-term effects on curiosity. Finally, this thesis highlights the need to continue exploring QA and MC research in the age of Generative Artificial Intelligence (GAI). Indeed, while GAI facilitates access to information, it still requires good QA abilities and MC monitoring to prevent misinformation and facilitate its detection. We thus propose a framework to link efficient GAI use in education to QA and MC skills, and GAI literacy. We also present a behavioral study we intend to conduct to test this framework
Książki na temat "Generative AI"
Taulli, Tom. Generative AI. Berkeley, CA: Apress, 2023. http://dx.doi.org/10.1007/978-1-4842-9367-6.
Pełny tekst źródłaHuang, Ken, Yang Wang, Ben Goertzel, Yale Li, Sean Wright i Jyoti Ponnapalli, red. Generative AI Security. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-54252-7.
Pełny tekst źródłaSingh, Akansha, i Krishna Kant Singh, red. Multimodal Generative AI. Singapore: Springer Nature Singapore, 2025. https://doi.org/10.1007/978-981-96-2355-6.
Pełny tekst źródłaLyu, Zhihan, red. Applications of Generative AI. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-46238-2.
Pełny tekst źródłaNarciso, Paolo. Generative AI in Education. Berkeley, CA: Apress, 2024. http://dx.doi.org/10.1007/979-8-8688-0844-9.
Pełny tekst źródłaPratschke, B. Mairéad. Generative AI and Education. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-67991-9.
Pełny tekst źródłaOkadome, Takeshi. Essentials of Generative AI. Singapore: Springer Nature Singapore, 2025. https://doi.org/10.1007/978-981-96-0029-8.
Pełny tekst źródłaBouzid, Ahmed, Paolo Narciso i Weiye Ma. Generative AI For Executives. Berkeley, CA: Apress, 2024. https://doi.org/10.1007/979-8-8688-0950-7.
Pełny tekst źródłaKulkarni, Akshay, Adarsha Shivananda, Anoosh Kulkarni i Dilip Gudivada. Applied Generative AI for Beginners. Berkeley, CA: Apress, 2023. http://dx.doi.org/10.1007/978-1-4842-9994-4.
Pełny tekst źródłaKansal, Aarushi. Building Generative AI-Powered Apps. Berkeley, CA: Apress, 2024. http://dx.doi.org/10.1007/979-8-8688-0205-8.
Pełny tekst źródłaCzęści książek na temat "Generative AI"
Taulli, Tom. "AI Fundamentals". W Generative AI, 47–76. Berkeley, CA: Apress, 2023. http://dx.doi.org/10.1007/978-1-4842-9367-6_3.
Pełny tekst źródłaDas, Ravindra. "Introduction to Generative AI, Natural Language Processing, and the Digital Person". W Generative AI, 66–109. Boca Raton: CRC Press, 2024. http://dx.doi.org/10.1201/9781003503781-3.
Pełny tekst źródłaDas, Ravindra. "Introduction to Phishing". W Generative AI, 1–37. Boca Raton: CRC Press, 2024. http://dx.doi.org/10.1201/9781003503781-1.
Pełny tekst źródłaDas, Ravindra. "Overview of Artificial Intelligence, Neural Networks, and Machine Learning". W Generative AI, 38–65. Boca Raton: CRC Press, 2024. http://dx.doi.org/10.1201/9781003503781-2.
Pełny tekst źródłaDas, Ravindra. "Review of Cybersecurity Metrics". W Generative AI, 110–42. Boca Raton: CRC Press, 2024. http://dx.doi.org/10.1201/9781003503781-4.
Pełny tekst źródłaDas, Ravindra. "Conclusions". W Generative AI, 143–55. Boca Raton: CRC Press, 2024. http://dx.doi.org/10.1201/9781003503781-5.
Pełny tekst źródłaTaulli, Tom. "The Impact on Major Industries". W Generative AI, 175–88. Berkeley, CA: Apress, 2023. http://dx.doi.org/10.1007/978-1-4842-9367-6_8.
Pełny tekst źródłaTaulli, Tom. "Introduction to Generative AI". W Generative AI, 1–20. Berkeley, CA: Apress, 2023. http://dx.doi.org/10.1007/978-1-4842-9367-6_1.
Pełny tekst źródłaTaulli, Tom. "Core Generative AI Technology". W Generative AI, 77–91. Berkeley, CA: Apress, 2023. http://dx.doi.org/10.1007/978-1-4842-9367-6_4.
Pełny tekst źródłaTaulli, Tom. "The Future". W Generative AI, 189–202. Berkeley, CA: Apress, 2023. http://dx.doi.org/10.1007/978-1-4842-9367-6_9.
Pełny tekst źródłaStreszczenia konferencji na temat "Generative AI"
Vinothkumar, S., S. Varadhaganapathy, R. Shanthakumari, S. Dhanushya, S. Guhan i P. Krisvanth. "Utilizing Generative AI for Text-to-Image Generation". W 2024 15th International Conference on Computing Communication and Networking Technologies (ICCCNT), 1–6. IEEE, 2024. http://dx.doi.org/10.1109/icccnt61001.2024.10725454.
Pełny tekst źródłaThakkar, Karan, Kunaal Vadgama, Krish Ranawat, Richa Sharma i Monika Mangla. "Generative AI based Interior Designing". W 2024 International Conference on Electrical Electronics and Computing Technologies (ICEECT), 1–7. IEEE, 2024. http://dx.doi.org/10.1109/iceect61758.2024.10739260.
Pełny tekst źródłaMetwally, Mariam Alaa, i Milad Ghantous. "Detecting Generative AI in Images". W 2024 International Mobile, Intelligent, and Ubiquitous Computing Conference (MIUCC), 214–20. IEEE, 2024. https://doi.org/10.1109/miucc62295.2024.10783626.
Pełny tekst źródłaMenon, Gokulraj, Amal P. Peter, Ebin Jomon, Joe Varghese i M. Anly Antony. "Apparel Customization Using Generative AI". W 2024 10th International Conference on Advanced Computing and Communication Systems (ICACCS), 1486–90. IEEE, 2024. http://dx.doi.org/10.1109/icaccs60874.2024.10717142.
Pełny tekst źródłaKshirsagar, Vanita G., Digvijay G. Bhosale, Shubhangi Suryawanshi, Anita Sachin Mahajan, Pramod Patil, Jyotsna Vilas Barpute, Prashant G. Ahire i Rahul A. Patil. "Generative AI Powered Forensic Device". W 2024 8th International Conference on Computing, Communication, Control and Automation (ICCUBEA), 1–6. IEEE, 2024. https://doi.org/10.1109/iccubea61740.2024.10774908.
Pełny tekst źródłaPushkala, Sriharsha Anand. "Generative AI in battling Fraud". W 2024 IEEE 4th International Conference on ICT in Business Industry & Government (ICTBIG), 1–5. IEEE, 2024. https://doi.org/10.1109/ictbig64922.2024.10911802.
Pełny tekst źródłaCorrea, Nelson, Antonio Correa i Wlodek Zadrozny. "Generative AI for Consumer Communications: Classification, Summarization, Response Generation". W 2024 IEEE ANDESCON, 1–6. IEEE, 2024. http://dx.doi.org/10.1109/andescon61840.2024.10755794.
Pełny tekst źródłaKim, Hyejin S. "RoboManuGen: Robot Data Generation Using Generative AI for Manufacturing". W 2024 15th International Conference on Information and Communication Technology Convergence (ICTC), 2001–4. IEEE, 2024. https://doi.org/10.1109/ictc62082.2024.10827732.
Pełny tekst źródłaThummala, Sruthi, Saketh Thammishetti, Sharanya Varkol, Amarthya Thirunahari i VVS Lakshmi Kanthey. "Event Management System Using Generative AI". W 2024 7th International Conference on Circuit Power and Computing Technologies (ICCPCT), 624–28. IEEE, 2024. http://dx.doi.org/10.1109/iccpct61902.2024.10673057.
Pełny tekst źródłaBorrison, Reuben, Markus Aleksy i Marcel Dix. "Building Metadata Normalization Using Generative AI". W 2024 IEEE 19th Conference on Industrial Electronics and Applications (ICIEA), 1–6. IEEE, 2024. http://dx.doi.org/10.1109/iciea61579.2024.10665241.
Pełny tekst źródłaRaporty organizacyjne na temat "Generative AI"
Cevallos, Adrian, Lucia Latorre, Gianfranco Alicandro, Z’leste Wanner, Ignacio Cerrato, Jose Daniel Zarate, Juana Alvarez i in. Tech Report Generative AI. Inter-American Development Bank, wrzesień 2023. http://dx.doi.org/10.18235/0005105.
Pełny tekst źródłaBrynjolfsson, Erik, Danielle Li i Lindsey Raymond. Generative AI at Work. Cambridge, MA: National Bureau of Economic Research, kwiecień 2023. http://dx.doi.org/10.3386/w31161.
Pełny tekst źródłaEisfeldt, Andrea, Gregor Schubert i Miao Ben Zhang. Generative AI and Firm Values. Cambridge, MA: National Bureau of Economic Research, maj 2023. http://dx.doi.org/10.3386/w31222.
Pełny tekst źródłaBeck, Sedefka, i Donka Brodersen. Generative AI in Economics: Teaching Economics and AI Literacy. The Economics Network, lipiec 2024. http://dx.doi.org/10.53593/n4121a.
Pełny tekst źródłaBown, Oliver. The challenges ahead for generative AI. Redaktor Lachlan Guselli. Monash University, grudzień 2023. http://dx.doi.org/10.54377/aac6-c1f6.
Pełny tekst źródłaSilver, Christina. Using Generative AI for Qualitative Analysis. Instats Inc., 2023. http://dx.doi.org/10.61700/qs6nzkddi20lw469.
Pełny tekst źródłaGans, Joshua. How will Generative AI impact Communication? Cambridge, MA: National Bureau of Economic Research, lipiec 2024. http://dx.doi.org/10.3386/w32690.
Pełny tekst źródłaBick, Alexander, Adam Blandin i David J. Deming. The Rapid Adoption of Generative AI. Federal Reserve Bank of St. Louis, 2024. http://dx.doi.org/10.20955/wp.2024.027.
Pełny tekst źródłaBick, Alexander, Adam Blandin i David Deming. The Rapid Adoption of Generative AI. Cambridge, MA: National Bureau of Economic Research, wrzesień 2024. http://dx.doi.org/10.3386/w32966.
Pełny tekst źródłaNguyen, Aiha, i Alexandra Mateescu. Generative AI's Labor Impact. Data & Society Research Institute, grudzień 2024. https://doi.org/10.69985/gksj7804.
Pełny tekst źródła