Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Generalized Metric Spaces.

Artykuły w czasopismach na temat „Generalized Metric Spaces”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Generalized Metric Spaces”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

BEG, ISMAT, MUJAHID ABBAS i TALAT NAZIR. "GENERALIZED CONE METRIC SPACES". Journal of Nonlinear Sciences and Applications 03, nr 01 (13.02.2010): 21–31. http://dx.doi.org/10.22436/jnsa.003.01.03.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Ali, Basit, Hammad Ali, Talat Nazir i Zakaria Ali. "Existence of Fixed Points of Suzuki-Type Contractions of Quasi-Metric Spaces". Mathematics 11, nr 21 (26.10.2023): 4445. http://dx.doi.org/10.3390/math11214445.

Pełny tekst źródła
Streszczenie:
In order to generalize classical Banach contraction principle in the setup of quasi-metric spaces, we introduce Suzuki-type contractions of quasi-metric spaces and prove some fixed point results. Further, we suggest a correction in the definition of another class of quasi-metrics known as Δ-symmetric quasi-metrics satisfying a weighted symmetry property. We discuss equivalence of various types of completeness of Δ-symmetric quasi-metric spaces. At the end, we consider the existence of fixed points of generalized Suzuki-type contractions of Δ-symmetric quasi-metric spaces. Some examples have been furnished to make sure that generalizations we obtain are the proper ones.
Style APA, Harvard, Vancouver, ISO itp.
3

D, Ramesh Kumar. "Generalized Rational Inequalities in Complex Valued Metric Spaces". Journal of Computational Mathematica 1, nr 2 (30.12.2017): 121–32. http://dx.doi.org/10.26524/cm21.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Adewale, O. K., J. O. Olaleru, H. Olaoluwa i H. Akewe. "Fixed Point Theorems on Generalized Rectangular Metric Spaces". Journal of Mathematical Sciences: Advances and Applications 65, nr 1 (10.04.2021): 59–84. http://dx.doi.org/10.18642/jmsaa_7100122185.

Pełny tekst źródła
Streszczenie:
In this paper, we introduce the notion of generalized rectangular metric spaces which extends rectangular metric spaces introduced by Branciari. Analogues of the some well-known fixed point theorems are proved in this space. With an example, it is shown that a generalized rectangular metric space is neither a G-metric space nor a rectangular metric space. Our results generalize many known results in fixed point theory.
Style APA, Harvard, Vancouver, ISO itp.
5

La Rosa, Vincenzo, i Pasquale Vetro. "Common fixed points for α-ψ-φ-contractions in generalized metric spaces". Nonlinear Analysis: Modelling and Control 19, nr 1 (20.01.2014): 43–54. http://dx.doi.org/10.15388/na.2014.1.3.

Pełny tekst źródła
Streszczenie:
We establish some common fixed point theorems for mappings satisfying an α-ψ-ϕcontractive condition in generalized metric spaces. Presented theorems extend and generalize manyexisting results in the literature. Erratum to “Common fixed points for α-ψ-φ-contractions in generalized metric spaces” In Example 1 of our paper [V. La Rosa, P. Vetro, Common fixed points for α-ψ-ϕcontractions in generalized metric spaces, Nonlinear Anal. Model. Control, 19(1):43–54, 2014] a generalized metric has been assumed. Nevertheless some mistakes have appeared in the statement. The aim of this note is to correct this situation.
Style APA, Harvard, Vancouver, ISO itp.
6

Yang, Hui. "Meir–Keeler Fixed-Point Theorems in Tripled Fuzzy Metric Spaces". Mathematics 11, nr 24 (14.12.2023): 4962. http://dx.doi.org/10.3390/math11244962.

Pełny tekst źródła
Streszczenie:
In this paper, we first propose the concept of a family of quasi-G-metric spaces corresponding to the tripled fuzzy metric spaces (or G-fuzzy metric spaces). Using their properties, we give the characterization of tripled fuzzy metrics. Second, we introduce the notion of generalized fuzzy Meir–Keeler-type contractions in G-fuzzy metric spaces. With the aid of the proposed notion, we show that every orbitally continuous generalized fuzzy Meir–Keeler-type contraction has a unique fixed point in complete G-fuzzy metric spaces. In the end, an example illustrates the validity of our results.
Style APA, Harvard, Vancouver, ISO itp.
7

Karapınar, Erdal. "Discussion onα-ψContractions on Generalized Metric Spaces". Abstract and Applied Analysis 2014 (2014): 1–7. http://dx.doi.org/10.1155/2014/962784.

Pełny tekst źródła
Streszczenie:
We discuss the existence and uniqueness of fixed points ofα-ψcontractive mappings in complete generalized metric spaces, introduced by Branciari. Our results generalize and improve several results in the literature.
Style APA, Harvard, Vancouver, ISO itp.
8

Zhang, Wei, i Chenxi Ouyang. "GENERALIZED CONE METRIC SPACES AND ORDERED SPACES". Far East Journal of Applied Mathematics 101, nr 2 (15.03.2019): 101–12. http://dx.doi.org/10.17654/am101020101.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Brock, Paul. "Probabilistic convergence spaces and generalized metric spaces". International Journal of Mathematics and Mathematical Sciences 21, nr 3 (1998): 439–52. http://dx.doi.org/10.1155/s0161171298000611.

Pełny tekst źródła
Streszczenie:
The categoryPPRS(Δ), whose objects are probabilistic pretopological spaces which satisfy an axiom(Δ)and whose morphisms are continuous mappings, is introduced. Categories consisting of generalized metric spaces as objects and contraction mappings as morphisms are embedded as full subcategories ofPPRS(Δ). The embeddings yield a description of metric spces and their most natural generalizations entirely in terms of convergence criteria.
Style APA, Harvard, Vancouver, ISO itp.
10

Liftaj, Silvana, Eriola Sila i Zamir Selko. "Generalized almost Contractions on Extended Quasi-Cone B-Metric Spaces". WSEAS TRANSACTIONS ON MATHEMATICS 22 (29.11.2023): 894–903. http://dx.doi.org/10.37394/23206.2023.22.98.

Pełny tekst źródła
Streszczenie:
Fixed Point Theory is among the most valued research topics nowadays. Over the years, it has been developed in three directions: by generalizing the metric space, by establishing new contractive conditions, and by applying its results to various fields such as Differential Equations, Integral Equations, Economics, etc. In this paper, we define a new class of cone metric spaces called the class of extended quasi-cone b-metric spaces. Extended quasi-cone b-metric spaces generalize cone metric spaces and quasi-cone b-metric spaces. We have studied topological issues, such as the right and left topologies, right (left) Cauchy, and convergent sequences. Furthermore, there are determined generalized τ-almost contractions, which extend the almost contractions. The highlight of this study is the investigation of the existence and uniqueness of a fixed point for some types of generalized τ-almost contractions in extended quasi-cone b-metric space. We prove some corollaries and theorems for known contractions in extended quasi-cone b-metric spaces. Our results generalize some known theorems given in literature due to the new cone metric spaces and contractions. Concrete examples illustrate theoretical outcomes. In addition, we show an application of the main results to Integral Equations, which provides the applicative side of them.
Style APA, Harvard, Vancouver, ISO itp.
11

SARMA, I. R., J. M. RAO2 i S. S. RAO. "CONTRACTIONS OVER GENERALIZED METRIC SPACES". Journal of Nonlinear Sciences and Applications 02, nr 03 (15.08.2009): 180–82. http://dx.doi.org/10.22436/jnsa.002.03.06.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Khamsi, M. A. "Generalized metric spaces: A survey". Journal of Fixed Point Theory and Applications 17, nr 3 (16.05.2015): 455–75. http://dx.doi.org/10.1007/s11784-015-0232-5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Beshimov, Ruzinazar, i Dilnora Safarova. "Generalized metric spaces and hyperspaces". Bulletin of National University of Uzbekistan: Mathematics and Natural Sciences 3, nr 2 (15.06.2020): 269–77. http://dx.doi.org/10.56017/2181-1318.1103.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Younis, Mudasir, Nicola Fabiano, Zaid Fadail, Zoran Mitrović i Stojan Radenović. "Some new observations on fixed point results in rectangular metric spaces with applications to chemical sciences". Vojnotehnicki glasnik 69, nr 1 (2021): 8–30. http://dx.doi.org/10.5937/vojtehg69-29517.

Pełny tekst źródła
Streszczenie:
Introduction/purpose: This paper considers, generalizes and improves recent results on fixed points in rectangular metric spaces. The aim of this paper is to provide much simpler and shorter proofs of some new results in rectangular metric spaces. Methods: Some standard methods from the fixed point theory in generalized metric spaces are used. Results: The obtained results improve the well-known results in the literature. The new approach has proved that the Picard sequence is Cauchy in rectangular metric spaces. The obtained results are used to prove the existence of solutions to some nonlinear problems related to chemical sciences. Finally, an open question is given for generalized contractile mappings in rectangular metric spaces. Conclusions: New results are given for fixed points in rectangular metric spaces with application to some problems in chemical sciences.
Style APA, Harvard, Vancouver, ISO itp.
15

Kikina, Luljeta, Kristaq Kikina i Kristaq Gjino. "A New Fixed Point Theorem on Generalized Quasimetric Spaces". ISRN Mathematical Analysis 2012 (26.01.2012): 1–9. http://dx.doi.org/10.5402/2012/457846.

Pełny tekst źródła
Streszczenie:
We obtain a new fixed point theorem in generalized quasimetric spaces. This result generalizes, unify, enrich, and extend some theorems of well-known authors from metric spaces to generalized quasimetric spaces.
Style APA, Harvard, Vancouver, ISO itp.
16

Abbas, Mujahid, Bahru Leyew i Safeer Khan. "A new Ф-generalized quasi metric space with some fixed point results and applications". Filomat 31, nr 11 (2017): 3157–72. http://dx.doi.org/10.2298/fil1711157a.

Pełny tekst źródła
Streszczenie:
In this paper, the concept of a new ?-generalized quasi metric space is introduced. A number of well-known quasi metric spaces are retrieved from ?-generalized quasi metric space. Some general fixed point theorems in a ?-generalized quasi metric spaces are proved, which generalize, modify and unify some existing fixed point theorems in the literature. We also give applications of our results to obtain fixed points for contraction mappings in the domain of words and to prove the existence of periodic solutions of delay differential equations.
Style APA, Harvard, Vancouver, ISO itp.
17

Shatanawi, Wasfi, Ahmed Al-Rawashdeh, Hassen Aydi i Hemant Kumar Nashine. "On a Fixed Point for Generalized Contractions in Generalized Metric Spaces". Abstract and Applied Analysis 2012 (2012): 1–13. http://dx.doi.org/10.1155/2012/246085.

Pełny tekst źródła
Streszczenie:
Lakzian and Samet (2010) studied some fixed-point results in generalized metric spaces in the sense of Branciari. In this paper, we study the existence of fixed-point results of mappings satisfying generalized weak contractive conditions in the framework of a generalized metric space in sense of Branciari. Our results modify and generalize the results of Laksian and Samet, as well as, our results generalize several well-known comparable results in the literature.
Style APA, Harvard, Vancouver, ISO itp.
18

Korczak-Kubiak, Ewa, Anna Loranty i Ryszard J. Pawlak. "Baire generalized topological spaces, generalized metric spaces and infinite games". Acta Mathematica Hungarica 140, nr 3 (9.02.2013): 203–31. http://dx.doi.org/10.1007/s10474-013-0304-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Aydi, Hassen, Sana Hadj Amor i Erdal Karapınar. "Berinde-Type Generalized Contractions on Partial Metric Spaces". Abstract and Applied Analysis 2013 (2013): 1–10. http://dx.doi.org/10.1155/2013/312479.

Pełny tekst źródła
Streszczenie:
We consider generalized Berinde-type contractions in the context of partial metric spaces. Such contractions are also known as generalized almost contractions in the literature. In this paper, we extend, generalize, and enrich the results in this direction. Some examples are presented to illustrate our results.
Style APA, Harvard, Vancouver, ISO itp.
20

Abazari, Rasoul. "Statistical convergence in g-metric spaces". Filomat 36, nr 5 (2022): 1461–68. http://dx.doi.org/10.2298/fil2205461a.

Pełny tekst źródła
Streszczenie:
The purpose of this paper is to define statistically convergent sequences with respect to the metrics on generalized metric spaces (g-metric spaces) and investigate basic properties of this statistical form of convergence.
Style APA, Harvard, Vancouver, ISO itp.
21

KAYODE, ADEWALE OLUSOLA, OLALERU JOHNSON, OLAOLUWA HALLOWED i AKEWE HUDSON. "Fixed point theorems on a γ-generalized quasi-metric spaces". Creative Mathematics and Informatics 28, nr 2 (19.06.2019): 135–42. http://dx.doi.org/10.37193/cmi.2019.02.05.

Pełny tekst źródła
Streszczenie:
The concept of \gamma-generalized quasi-metric spaces is newly introduced in this paper with the symmetry assumption removed. The existence of fixed points of our newly introduced (\gamma-\phi)-contraction mappings, defined on \gamma-generalized quasi-metric spaces, is proved. Our results generalize many known related results in literature.
Style APA, Harvard, Vancouver, ISO itp.
22

He, S. Y., L. H. Xie i P. F. Yan. "On *-metric spaces". Filomat 36, nr 18 (2022): 6173–85. http://dx.doi.org/10.2298/fil2218173h.

Pełny tekst źródła
Streszczenie:
Metric spaces are generalized by many scholars. Recently, Khatami and Mirzavaziri use a mapping called t-definer to popularize the triangle inequality and give a generalization of the notion of a metric, which is called a *-metric. In this paper, we prove that every *-metric space is metrizable. Also, we study the total boundedness and completeness of *-metric spaces.
Style APA, Harvard, Vancouver, ISO itp.
23

Hussain, Nawab, Jamal Rezaei Roshan, Vahid Parvaneh i Abdul Latif. "A Unification ofG-Metric, Partial Metric, andb-Metric Spaces". Abstract and Applied Analysis 2014 (2014): 1–14. http://dx.doi.org/10.1155/2014/180698.

Pełny tekst źródła
Streszczenie:
Using the concepts ofG-metric, partial metric, andb-metric spaces, we define a new concept of generalized partialb-metric space. Topological and structural properties of the new space are investigated and certain fixed point theorems for contractive mappings in such spaces are obtained. Some examples are provided here to illustrate the usability of the obtained results.
Style APA, Harvard, Vancouver, ISO itp.
24

Sawano, Yoshihiro, i Tetsu Shimomura. "Generalized fractional integral operators on generalized Orlicz–Morrey spaces of the second kind over non-doubling metric measure spaces". Georgian Mathematical Journal 25, nr 2 (1.06.2018): 303–11. http://dx.doi.org/10.1515/gmj-2018-0018.

Pełny tekst źródła
Streszczenie:
Abstract In this paper, we aim to deal with the boundedness and the weak-type boundedness for the generalized fractional integral operators on generalized Orlicz–Morrey spaces of the second kind over non-doubling metric measure spaces, as an extension of [Y. Sawano and T. Shimomura, Boundedness of the generalized fractional integral operators on generalized Morrey spaces over metric measure spaces, Z. Anal. Anwend. 36 2017, 2, 159–190], [Y. Sawano and T. Shimomura, Generalized fractional integral operators over non-doubling metric measure spaces, Integral Transforms Spec. Funct. 28 2017, 7, 534–546] and [I. Sihwaningrum, H. Gunawan and E. Nakai, Maximal and fractional integral operators on generalized Morrey spaces over metric measure spaces, Math. Nachr., to appear].
Style APA, Harvard, Vancouver, ISO itp.
25

LU, GUANGHUI, i SHUANGPING TAO. "GENERALIZED MORREY SPACES OVER NONHOMOGENEOUS METRIC MEASURE SPACES". Journal of the Australian Mathematical Society 103, nr 2 (27.10.2016): 268–78. http://dx.doi.org/10.1017/s1446788716000483.

Pełny tekst źródła
Streszczenie:
Let $({\mathcal{X}},d,\unicode[STIX]{x1D707})$ be a nonhomogeneous metric measure space satisfying the so-called upper doubling and the geometric doubling conditions. In this paper, the authors give the natural definition of the generalized Morrey spaces on $({\mathcal{X}},d,\unicode[STIX]{x1D707})$, and then investigate some properties of the maximal operator, the fractional integral operator and its commutator, and the Marcinkiewicz integral operator.
Style APA, Harvard, Vancouver, ISO itp.
26

Saleem, Naeem, Iqra Habib i Manuel De la Sen. "Some New Results on Coincidence Points for Multivalued Suzuki-Type Mappings in Fairly Complete Spaces". Computation 8, nr 1 (17.03.2020): 17. http://dx.doi.org/10.3390/computation8010017.

Pełny tekst źródła
Streszczenie:
In this paper, we introduce Suzuki-type ( α , β , γ g ) - generalized and modified proximal contractive mappings. We establish some coincidence and best proximity point results in fairly complete spaces. Also, we provide coincidence and best proximity point results in partially ordered complete metric spaces for Suzuki-type ( α , β , γ g ) - generalized and modified proximal contractive mappings. Furthermore, some examples are presented in each section to elaborate and explain the usability of the obtained results. As an application, we obtain fixed-point results in metric spaces and in partially ordered metric spaces. The results obtained in this article further extend, modify and generalize the various results in the literature.
Style APA, Harvard, Vancouver, ISO itp.
27

Suzuki, Tomonari. "Generalized Metric Spaces Do Not Have the Compatible Topology". Abstract and Applied Analysis 2014 (2014): 1–5. http://dx.doi.org/10.1155/2014/458098.

Pełny tekst źródła
Streszczenie:
We study generalized metric spaces, which were introduced by Branciari (2000). In particular, generalized metric spaces do not necessarily have the compatible topology. Also we prove a generalization of the Banach contraction principle in complete generalized metric spaces.
Style APA, Harvard, Vancouver, ISO itp.
28

FILIP, ALEXANDRU-DARIUS. "Conversions between generalized metric spaces and standard metric spaces with applications in fixed point theory". Carpathian Journal of Mathematics 37, nr 2 (9.06.2021): 345–54. http://dx.doi.org/10.37193/cjm.2021.02.19.

Pełny tekst źródła
Streszczenie:
In this paper we discuss similar problems posed by I. A. Rus in Fixed point theory in partial metric spaces (Analele Univ. de Vest Timişoara, Mat.-Inform., 46 (2008), 149–160) and in Kasahara spaces (Sci. Math. Jpn., 72 (2010), No. 1, 101–110). We start our considerations with an overview of generalized metric spaces with \mathbb{R}_+-valued distance and of generalized contractions on such spaces. After that we give some examples of conversions between generalized metric spaces and standard metric spaces with applications in fixed point theory. Some possible applications to theoretical informatics are also considered.
Style APA, Harvard, Vancouver, ISO itp.
29

Li, Cece, i Dong Zhang. "On generalized metric spaces and generalized convex contractions". Fixed Point Theory 19, nr 2 (1.06.2018): 643–58. http://dx.doi.org/10.24193/fpt-ro.2018.2.51.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Latif, Abdul, Chirasak Mongkolkeha i Wutiphol Sintunavarat. "Fixed Point Theorems for Generalizedα-β-Weakly Contraction Mappings in Metric Spaces and Applications". Scientific World Journal 2014 (2014): 1–14. http://dx.doi.org/10.1155/2014/784207.

Pełny tekst źródła
Streszczenie:
We extend the notion of generalized weakly contraction mappings due to Choudhury et al. (2011) to generalizedα-β-weakly contraction mappings. We show with examples that our new class of mappings is a real generalization of several known classes of mappings. We also establish fixed point results for such mappings in metric spaces. Applying our new results, we obtain fixed point results on ordinary metric spaces, metric spaces endowed with an arbitrary binary relation, and metric spaces endowed with graph.
Style APA, Harvard, Vancouver, ISO itp.
31

Abtahi, Mortaza, Zoran Kadelburg i Stojan Radenovic. "Fixed points and coupled fixed points in partially ordered ν-generalized metric spaces". Applied General Topology 19, nr 2 (4.10.2018): 189. http://dx.doi.org/10.4995/agt.2018.7409.

Pełny tekst źródła
Streszczenie:
<p>New fixed point and coupled fixed point theorems in partially ordered ν-generalized metric spaces are presented. Since the product of two ν-generalized metric spaces is not in general a ν-generalized metric space, a different approach is needed than in the case of standard metric spaces.</p>
Style APA, Harvard, Vancouver, ISO itp.
32

Suzuki, Tomonari. "Completeness of 3-generalized metric spaces". Filomat 30, nr 13 (2016): 3575–85. http://dx.doi.org/10.2298/fil1613575s.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Ugwunnadi, Godwin C., Chinedu Izuchukwu i Oluwatosin T. Mewomo. "Convergence theorems for generalized hemicontractive mapping in p-uniformly convex metric space". Journal of Applied Analysis 26, nr 2 (1.12.2020): 221–29. http://dx.doi.org/10.1515/jaa-2020-2017.

Pełny tekst źródła
Streszczenie:
AbstractIn this paper, we introduce and study an Ishikawa-type iteration process for the class of generalized hemicontractive mappings in 𝑝-uniformly convex metric spaces, and prove both Δ-convergence and strong convergence theorems for approximating a fixed point of generalized hemicontractive mapping in complete 𝑝-uniformly convex metric spaces. We give a surprising example of this class of mapping that is not a hemicontractive mapping. Our results complement, extend and generalize numerous other recent results in CAT(0) spaces.
Style APA, Harvard, Vancouver, ISO itp.
34

Nicolae, Adriana, Donal O'Regan i Adrian Petruşel. "Fixed point theorems for singlevalued and multivalued generalized contractions in metric spaces endowed with a graph". gmj 18, nr 2 (2.05.2011): 307–27. http://dx.doi.org/10.1515/gmj.2011.0019.

Pełny tekst źródła
Streszczenie:
Abstract The purpose of this paper is to present some fixed point results for self-generalized (singlevalued and multivalued) contractions in ordered metric spaces and in metric spaces endowed with a graph. Our theorems generalize and extend some recent results in the literature.
Style APA, Harvard, Vancouver, ISO itp.
35

Ahmed, M. A., A. Kamal i Asmaa M. Abd-Ela. "Convergence theorems in new generalized type of metric spaces and their applications ∗". Bulletin of Pure & Applied Sciences- Mathematics and Statistics 42, nr 2 (25.12.2023): 180–85. http://dx.doi.org/10.48165/bpas.2023.42e.2.6.

Pełny tekst źródła
Streszczenie:
In the present paper we introduce a new generalized type of metric spaces called the right quasi-metric spaces. We state and prove convergence theorems to a fixed point for any map in these spaces. Finally, we give applications of our results. These results generalize the corresponding results in M. A. Ahmed and F. M. Zeyada (On con vergence of a sequence in complete metric spaces and its applications to some iterates of quasi-nonexpansive mappings, J. Math. Anal. Appl., 274(1), 458–465, 2002).
Style APA, Harvard, Vancouver, ISO itp.
36

Mizokami, Takemi, i Fumio Suwada. "On resolutions of generalized metric spaces". Topology and its Applications 146-147 (styczeń 2005): 539–45. http://dx.doi.org/10.1016/j.topol.2003.10.009.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Liu, Chuan, i Shou Lin. "Generalized metric spaces with algebraic structures". Topology and its Applications 157, nr 12 (sierpień 2010): 1966–74. http://dx.doi.org/10.1016/j.topol.2010.04.010.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Altun, Ishak, Ferhan Sola i Hakan Simsek. "Generalized contractions on partial metric spaces". Topology and its Applications 157, nr 18 (grudzień 2010): 2778–85. http://dx.doi.org/10.1016/j.topol.2010.08.017.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Antoniuk, Sylwia, i Paweł Waszkiewicz. "A duality of generalized metric spaces". Topology and its Applications 158, nr 17 (listopad 2011): 2371–81. http://dx.doi.org/10.1016/j.topol.2011.04.013.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Kumari, P. Sumati, I. Ramabhadra Sarma i J. Madhusudana Rao. "Convergence axioms on generalized metric spaces". Afrika Matematika 28, nr 1-2 (20.04.2016): 35–43. http://dx.doi.org/10.1007/s13370-016-0425-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Good, Chris, i Sergio Macías. "Symmetric products of generalized metric spaces". Topology and its Applications 206 (czerwiec 2016): 93–114. http://dx.doi.org/10.1016/j.topol.2016.03.019.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Mohamad, Abdul Adheem, i Tsukasa Yashiro. "TOPOLOGICAL STUDY OF GENERALIZED METRIC SPACES". JP Journal of Geometry and Topology 22, nr 2 (30.05.2019): 165–88. http://dx.doi.org/10.17654/gt022020165.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Farhat, Yasser, Amel Souhail, Vadakasi Vigneswaran i Muthumari Krishnan. "Special Sequences on Generalized Metric Spaces". European Journal of Pure and Applied Mathematics 15, nr 4 (31.10.2022): 1869–86. http://dx.doi.org/10.29020/nybg.ejpam.v15i4.4592.

Pełny tekst źródła
Streszczenie:
In this article, in a generalized metric space, we will focus on new types of sequences. We introduce three new kinds of Cauchy sequences and study their significance in generalized metric spaces. Also, we give several interesting properties of these sequences.
Style APA, Harvard, Vancouver, ISO itp.
44

Kabil, Mustapha, Maurice Pouzet i Ivo G. Rosenberg. "Free monoids and generalized metric spaces". European Journal of Combinatorics 80 (sierpień 2019): 339–60. http://dx.doi.org/10.1016/j.ejc.2018.02.008.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Conant, Gabriel. "Distance structures for generalized metric spaces". Annals of Pure and Applied Logic 168, nr 3 (marzec 2017): 622–50. http://dx.doi.org/10.1016/j.apal.2016.10.002.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Arutyunov, A. V., i S. E. Zhukovskiy. "Coincidence Points in Generalized Metric Spaces". Set-Valued and Variational Analysis 23, nr 2 (14.12.2014): 355–73. http://dx.doi.org/10.1007/s11228-014-0312-5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Mizokami, Takemi. "On hyperspaces of generalized metric spaces". Topology and its Applications 76, nr 2 (kwiecień 1997): 169–73. http://dx.doi.org/10.1016/s0166-8641(96)00112-5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Abbas, Mujahid, Basit Ali i Salvador Romaguera. "Generalized Contraction and Invariant Approximation Results on Nonconvex Subsets of Normed Spaces". Abstract and Applied Analysis 2014 (2014): 1–5. http://dx.doi.org/10.1155/2014/391952.

Pełny tekst źródła
Streszczenie:
Wardowski (2012) introduced a new type of contractive mapping and proved a fixed point result in complete metric spaces as a generalization of Banach contraction principle. In this paper, we introduce a notion of generalizedF-contraction mappings which is used to prove a fixed point result for generalized nonexpansive mappings on star-shaped subsets of normed linear spaces. Some theorems on invariant approximations in normed linear spaces are also deduced. Our results extend, unify, and generalize comparable results in the literature.
Style APA, Harvard, Vancouver, ISO itp.
49

Khan, Asad Ullah, Maria Samreen, Aftab Hussain i Hamed Al Sulami. "Best Proximity Point Results for Multi-Valued Mappings in Generalized Metric Structure". Symmetry 16, nr 4 (21.04.2024): 502. http://dx.doi.org/10.3390/sym16040502.

Pełny tekst źródła
Streszczenie:
In this paper, we introduce the novel concept of generalized distance denoted as Jθ and call it an extended b-generalized pseudo-distance. With the help of this generalized distance, we define a generalized point to set distance Jθ(u,H★), a generalized Hausdorff type distance and a PJθ-property of a pair (H★,K★) of nonempty subsets of extended b-metric space (U★,ρθ). Additionally, we establish several best proximity point theorems for multi-valued contraction mappings of Nadler type defined on b-metric spaces and extended b-metric spaces. Our findings generalize numerous existing results found in the literature. To substantiate the introduced notion and validate our main results, we provide some concrete examples.
Style APA, Harvard, Vancouver, ISO itp.
50

BERINDE, VASILE, i MITROFAN CHOBAN. "Generalized distances and their associate metrics. Impact on fixed point theory". Creative Mathematics and Informatics 22, nr 1 (2013): 23–32. http://dx.doi.org/10.37193/cmi.2013.01.05.

Pełny tekst źródła
Streszczenie:
In the last years there is an abundance of fixed point theorems in literature, most of them established in various generalized metric spaces. Amongst the generalized spaces considered in those papers, we may find: cone metric spaces, quasimetric spaces (or b-metric spaces), partial metric spaces, G-metric spaces etc. In some recent papers [Haghi, R. H., Rezapour, Sh. and Shahzad, N., Some fixed point generalizations are not real generalizations, Nonlinear Anal., 74 (2011), 1799-1803], [Haghi, R. H., Rezapour, Sh. and Shahzad, N., Be careful on partial metric fixed point results, Topology Appl., 160 (2013), 450-454], [Samet, B., Vetro, C. and Vetro, F., Remarks on G-Metric Spaces, Int. J. Anal., Volume 2013, Article ID 917158, 6 pages http://dx.doi.org/10.1155/2013/917158], the authors pointed out that some of the fixed point theorems transposed from metric spaces to cone metric spaces, partial metric spaces or G-metric spaces, respectively, are sometimes not real generalizations. The main aim of the present note is to inspect what happens in this respect with b-metric spaces.
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii