Gotowa bibliografia na temat „Generalized Metric Spaces”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Generalized Metric Spaces”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Generalized Metric Spaces"
BEG, ISMAT, MUJAHID ABBAS i TALAT NAZIR. "GENERALIZED CONE METRIC SPACES". Journal of Nonlinear Sciences and Applications 03, nr 01 (13.02.2010): 21–31. http://dx.doi.org/10.22436/jnsa.003.01.03.
Pełny tekst źródłaAli, Basit, Hammad Ali, Talat Nazir i Zakaria Ali. "Existence of Fixed Points of Suzuki-Type Contractions of Quasi-Metric Spaces". Mathematics 11, nr 21 (26.10.2023): 4445. http://dx.doi.org/10.3390/math11214445.
Pełny tekst źródłaD, Ramesh Kumar. "Generalized Rational Inequalities in Complex Valued Metric Spaces". Journal of Computational Mathematica 1, nr 2 (30.12.2017): 121–32. http://dx.doi.org/10.26524/cm21.
Pełny tekst źródłaAdewale, O. K., J. O. Olaleru, H. Olaoluwa i H. Akewe. "Fixed Point Theorems on Generalized Rectangular Metric Spaces". Journal of Mathematical Sciences: Advances and Applications 65, nr 1 (10.04.2021): 59–84. http://dx.doi.org/10.18642/jmsaa_7100122185.
Pełny tekst źródłaLa Rosa, Vincenzo, i Pasquale Vetro. "Common fixed points for α-ψ-φ-contractions in generalized metric spaces". Nonlinear Analysis: Modelling and Control 19, nr 1 (20.01.2014): 43–54. http://dx.doi.org/10.15388/na.2014.1.3.
Pełny tekst źródłaYang, Hui. "Meir–Keeler Fixed-Point Theorems in Tripled Fuzzy Metric Spaces". Mathematics 11, nr 24 (14.12.2023): 4962. http://dx.doi.org/10.3390/math11244962.
Pełny tekst źródłaKarapınar, Erdal. "Discussion onα-ψContractions on Generalized Metric Spaces". Abstract and Applied Analysis 2014 (2014): 1–7. http://dx.doi.org/10.1155/2014/962784.
Pełny tekst źródłaZhang, Wei, i Chenxi Ouyang. "GENERALIZED CONE METRIC SPACES AND ORDERED SPACES". Far East Journal of Applied Mathematics 101, nr 2 (15.03.2019): 101–12. http://dx.doi.org/10.17654/am101020101.
Pełny tekst źródłaBrock, Paul. "Probabilistic convergence spaces and generalized metric spaces". International Journal of Mathematics and Mathematical Sciences 21, nr 3 (1998): 439–52. http://dx.doi.org/10.1155/s0161171298000611.
Pełny tekst źródłaLiftaj, Silvana, Eriola Sila i Zamir Selko. "Generalized almost Contractions on Extended Quasi-Cone B-Metric Spaces". WSEAS TRANSACTIONS ON MATHEMATICS 22 (29.11.2023): 894–903. http://dx.doi.org/10.37394/23206.2023.22.98.
Pełny tekst źródłaRozprawy doktorskie na temat "Generalized Metric Spaces"
Sarkis, Ralph. "Lifting Algebraic Reasoning to Generalized Metric Spaces". Electronic Thesis or Diss., Lyon, École normale supérieure, 2024. http://www.theses.fr/2024ENSL0025.
Pełny tekst źródłaAlgebraic reasoning is ubiquitous in mathematics and computer science, and it has been generalized to many different settings. In 2016, Mardare, Panangaden, and Plotkin introduced quantitative algebras, that is, metric spaces equipped with operations that are nonexpansive relative to the metric. They proved counterparts to important results in universal algebra, and in particular they provided a sound and complete deduction system generalizing Birkhoff's equational logic by replacing equality with equality up to \varepsilon. This allowed them to give algebraic axiomatizations for several important metrics like the Hausdorff and Kantorovich distances.In this thesis, we make two modifications to Mardare et al.'s framework. First, we replace metrics with a more general notion that captures pseudometrics, partial orders, probabilistic metrics, and more. Second, we do not require the operations in a quantitative algebra to be nonexpansive. We provide a sound and complete deduction system, we construct free quantitative algebras, and we demonstrate the value of our generalization by proving that any monad on generalized metric spaces that lifts a monad on sets can be presented with a quantitative algebraic theory. We apply this last result to obtain an axiomatization for the \L ukaszyk--Karmowski distance
Miravet, Fortuño David. "GENERALIZED FUZZY METRIC SPACES DEFINED BY MEANS OF T-NORMS". Doctoral thesis, Universitat Politècnica de València, 2019. http://hdl.handle.net/10251/124816.
Pełny tekst źródła[CAT] En 1965, L. Zadeh va introduir el concepte de conjunt fuzzy, establint una nova línia d'investigació, coneguda com matemàtica fuzzy. Des d'aquell moment, molts autors han investigat la construcció d'una definició consistent d'espai mètric fuzzy. En 1994, George i Veeramani van introduir i estudiar una noció d'espai mètric fuzzy, realitzant una modificació adequada del concepte donat per Kramosil i Michalek. Aquests conceptes han estat estudiats i desenvolupats en diversos sentits durant els últims 25 anys. Amb la intenció de contribuir a aquest desenvolupament de la teoria fuzzy, en aquesta tesi hem introduït i estudiat els següents continguts: 1. Hem introduït el concepte d'espai mètric extés M0, que és una extensió adequada d'una GV -mètrica fuzzy M on el paràmetre t pot prendre el valor 0. A més, hem estudiat conceptes relacionats amb la convergència i les successions de Cauchy en aquest context, així com teoremes sobre contractivitat i punt fixe. 2. Hem provat l'existència de successions contractives en el sentit de D. Mihet en un GV -espai mètric fuzzy que no són Cauchy. Conseqüentment, hem aportat i estudiat un concepte apropiat de successió estrictament contractiva i hem corregit el Lema 3.2 de [V. Gregori and J.J. Miñana, On fuzzy psi-contractive sequences and fixed point theorems, Fuzzy Sets and Systems 300 (2016), 93-101]. 3. Hem introduït i estudiat una noció de (GV -)espai mètric parcial fuzzy (X,P,*) sense cap tipus de condició addicional sobre la t-norma contínua *. A continuació, hem definit una topologia T_P sobre X deduïda de P i hem demostrat que (X, T_P) es un espai T0. 4. Hem relacionat el ja mencionat concepte de GV -espai mètric parcial fuzzy amb la noció de GV -espai quasi-mètric fuzzy definit per Gregori i Romaguera en [V. Gregori and S. Romaguera, Fuzzy quasi-metric spaces, Applied General Topology 5 (2004), 129-136]. S'ha estudiat una dualitat entre ambdós espais, imitant les tècniques utilitzades per Matthews en [S.G.Matthews, Partial metric topology, Annals of the New York Academy of Sciences 728 (1994), 183-197].
[EN] In 1965, L. Zadeh introduced the concept of fuzzy set, and thus established a new topic of research, known as fuzzy mathematics. Since then, several authors have been investigating the approach of a consistent fuzzy metric space theory. In 1994, George and Veeramani introduced and studied a concept of fuzzy metric space which was a proper modification of the concept given by Kramosil and Michalek. These notions have been studied and developed in several ways during the last 25 years. With the purpose of contributing to the development of the study of the fuzzy theory, in this thesis we have introduced and studied the following items: 1. We have introduced the concept of extended fuzzy metric M0 which is an appropriate extension of a GV -fuzzy metric M where the parameter t can take the value 0. Furthermore, we have studied convergence and Cauchyness concepts in this context, as well as contractivity and fixed point theorems. 2. We have proved the existence of contractive sequences in the sense of D. Mihet in a GV -fuzzy metric space which are not Cauchy. Then we have given and studied an appropriate concept of strictly contractive sequence and we have corrected Lemma 3.2 of [V. Gregori and J.J. Miñana, On fuzzy psi-contractive sequences and fixed point theorems, Fuzzy Sets and Systems 300 (2016), 93-101]. 3. We have introduced and studied a concept of (GV -)fuzzy partial metric space (X,P,*) without any extra conditions on the continuous t-norm *. Then we have defined a topology T_P on X deduced from P and we have proved that (X, T_P) is a T0 space. 4. We have related the aforementioned notion of GV -fuzzy partial metric space with the concept of GV -fuzzy quasi-metric space given by Gregori and Romaguera in [V. Gregori and S. Romaguera, Fuzzy quasi-metric spaces, Applied General Topology 5 (2004), 129-136]. A duality is studied by mimicking the techniques used in [S.G.Matthews, Partial metric topology, Annals of the New York Academy of Sciences 728 (1994), 183-197] by Matthews.
Miravet Fortuño, D. (2019). GENERALIZED FUZZY METRIC SPACES DEFINED BY MEANS OF T-NORMS [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/124816
TESIS
Tran, Anh Tuyet. "1p spaces". CSUSB ScholarWorks, 2002. https://scholarworks.lib.csusb.edu/etd-project/2238.
Pełny tekst źródłaStares, Ian S. "Extension of functions and generalised metric spaces". Thesis, University of Oxford, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.386678.
Pełny tekst źródłaBabus, Octavian Vladut. "Generalised distributivity and the logic of metric spaces". Thesis, University of Leicester, 2016. http://hdl.handle.net/2381/37701.
Pełny tekst źródłaShi, Xiaohui. "Graev Metrics and Isometry Groups of Polish Ultrametric Spaces". Thesis, University of North Texas, 2013. https://digital.library.unt.edu/ark:/67531/metadc271898/.
Pełny tekst źródłaIvana, Štajner-Papuga. "Uopštena konvolucija". Phd thesis, Univerzitet u Novom Sadu, Prirodno-matematički fakultet u Novom Sadu, 2001. https://www.cris.uns.ac.rs/record.jsf?recordId=5987&source=NDLTD&language=en.
Pełny tekst źródłaIn this thesis the generalized convolution have been defined. This operation with functions has applications in different mathematical theo ries, for example in Probabilistic Metric Spaces, PDE, System and Control Theory, Fuzzy numbers. Some basic properties of this operation has been proved, as well as connection between generalized convolutions based on different classes of semirings. (5, U)-convolution has been defined, as well as convolution based on generalized pseudo-operations.
Jelena, Stojanov. "Anisotropic frameworks for dynamical systems and image processing". Phd thesis, Univerzitet u Novom Sadu, Prirodno-matematički fakultet u Novom Sadu, 2015. https://www.cris.uns.ac.rs/record.jsf?recordId=93698&source=NDLTD&language=en.
Pełny tekst źródłaPredmet istraživanja doktorske disertacije je uporedna analiza klasičnih i specifičnih geometrijskih radnih okruženja i njihovih anizotropnih proširenja; konstrukcija tri Finslerova radna okruženja različitog tipa koja su pogodna za analizu dinamičkog sistema populacije kanceroznih ćelija; razvoj teorije anizotropnog Beltramijevog radnog okruženja i formiranje jednačina evolutivnog toka za različite klase anizotropnih metrika, kao i mogućnost primene dobijenih teorijskih rezultata u digitalnoj obradi slika.
Popa-Fischer, Anca. "Generalized Kähler metrics on complex spaces and a supplement to a Theorem of Fornæss and Narasimhan". [S.l. : s.n.], 2000. http://deposit.ddb.de/cgi-bin/dokserv?idn=960695028.
Pełny tekst źródłaAbbas, Mujahid. "Soft Set Theory: Generalizations, Fixed Point Theorems, and Applications". Doctoral thesis, Universitat Politècnica de València, 2015. http://hdl.handle.net/10251/48470.
Pełny tekst źródłaAbbas, M. (2014). Soft Set Theory: Generalizations, Fixed Point Theorems, and Applications [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/48470
TESIS
Książki na temat "Generalized Metric Spaces"
Lin, Shou, i Ziqiu Yun. Generalized Metric Spaces and Mappings. Paris: Atlantis Press, 2016. http://dx.doi.org/10.2991/978-94-6239-216-8.
Pełny tekst źródłaKarapinar, Erdal, i Ravi P. Agarwal. Fixed Point Theory in Generalized Metric Spaces. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-14969-6.
Pełny tekst źródłaAbate, Marco. Finsler metrics-- a global approach: With applications to geometric function theory. Berlin: Springer-Verlag, 1994.
Znajdź pełny tekst źródłaLin, Shou, i Ziqiu Yun. Generalized Metric Spaces and Mappings. Atlantis Press (Zeger Karssen), 2016.
Znajdź pełny tekst źródłaKarapinar, Erdal, i Ravi P. Agarwal. Fixed Point Theory in Generalized Metric Spaces. Springer International Publishing AG, 2022.
Znajdź pełny tekst źródłaFixed Point Theory in Generalized Metric Spaces. Springer International Publishing AG, 2023.
Znajdź pełny tekst źródłaFundamentals of Signal Processing in Generalized Metric Spaces. CRC Press LLC, 2022.
Znajdź pełny tekst źródłaBusemann, Herbert. Metric Methods of Finsler Spaces and in the Foundations of Geometry. (AM-8). Princeton University Press, 2016.
Znajdź pełny tekst źródłaPopoff, Andrey. Fundamentals of Signal Processing in Generalized Metric Spaces: Algorithms and Applications. Taylor & Francis Group, 2022.
Znajdź pełny tekst źródłaPopoff, Andrey. Fundamentals of Signal Processing in Generalized Metric Spaces: Algorithms and Applications. Taylor & Francis Group, 2022.
Znajdź pełny tekst źródłaCzęści książek na temat "Generalized Metric Spaces"
Kirk, William, i Naseer Shahzad. "Generalized Metric Spaces". W Fixed Point Theory in Distance Spaces, 133–39. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-10927-5_13.
Pełny tekst źródłaLin, Shou, i Ziqiu Yun. "Generalized Metric Spaces". W Atlantis Studies in Mathematics, 147–258. Paris: Atlantis Press, 2016. http://dx.doi.org/10.2991/978-94-6239-216-8_3.
Pełny tekst źródłaLin, Shou, i Ziqiu Yun. "The Origin of Generalized Metric Spaces". W Atlantis Studies in Mathematics, 1–51. Paris: Atlantis Press, 2016. http://dx.doi.org/10.2991/978-94-6239-216-8_1.
Pełny tekst źródłaManav, N. "Fixed-Point Theorems in Generalized Modular Metric Spaces". W Metric Fixed Point Theory, 89–111. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-4896-0_5.
Pełny tekst źródłaLaal Shateri, Tayebe, i Ozgur Ege. "Modular Spaces and Fixed Points of Generalized Contractions". W Metric Fixed Point Theory, 71–87. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-4896-0_4.
Pełny tekst źródłaPaunović, Marija V., Samira Hadi Bonab i Vahid Parvaneh. "Weak-Wardowski Contractions in Generalized Triple-Controlled Modular Metric Spaces and Generalized Triple-Controlled Fuzzy Metric Spaces". W Soft Computing, 45–66. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003312017-4.
Pełny tekst źródłaMoltó, Aníbal, José Orihuela, Stanimir Troyanski i Manuel Valdivia. "Generalized Metric Spaces and Locally Uniformly Rotund Renormings". W A Nonlinear Transfer Technique for Renorming, 49–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-85031-1_3.
Pełny tekst źródłaAydi, Hassen, i Stefan Czerwik. "Fixed Point Theorems in Generalized b-Metric Spaces". W Springer Optimization and Its Applications, 1–9. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-74325-7_1.
Pełny tekst źródłaKonwar, Nabanita. "Results on Generalized Tripled Fuzzy b-Metric Spaces". W Forum for Interdisciplinary Mathematics, 137–50. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-0668-8_8.
Pełny tekst źródłaPopoff, Andrey. "Signal Filtering Algorithms in Spaces with L-group Properties". W Fundamentals of Signal Processing in Generalized Metric Spaces, 93–132. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003275855-3.
Pełny tekst źródłaStreszczenia konferencji na temat "Generalized Metric Spaces"
Goleţ, Ioan, Ciprian Hedrea, Theodore E. Simos, George Psihoyios, Ch Tsitouras i Zacharias Anastassi. "On Generalized Contractions in Probabilistic Metric Spaces". W NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2011: International Conference on Numerical Analysis and Applied Mathematics. AIP, 2011. http://dx.doi.org/10.1063/1.3636943.
Pełny tekst źródłaTang, Yongye, i Yongfu Su. "New Generalized Contractions in Complete Cone Metric Spaces". W 2011 International Symposium on Computer Science and Society (ISCCS). IEEE, 2011. http://dx.doi.org/10.1109/isccs.2011.83.
Pełny tekst źródłaLi, Xiaofan, Yachao Zhang, Shiran Bian, Yanyun Qu, Yuan Xie, Zhongchao Shi i Jianping Fan. "VS-Boost: Boosting Visual-Semantic Association for Generalized Zero-Shot Learning". W Thirty-Second International Joint Conference on Artificial Intelligence {IJCAI-23}. California: International Joint Conferences on Artificial Intelligence Organization, 2023. http://dx.doi.org/10.24963/ijcai.2023/123.
Pełny tekst źródłaŁenski, Włodzimierz, i Bogdan Szal. "On the approximation of functions by matrix means in the generalized Hölder metric". W Function Spaces VIII. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2007. http://dx.doi.org/10.4064/bc79-0-9.
Pełny tekst źródłaPistone, Paolo. "On Generalized Metric Spaces for the Simply Typed Lambda-Calculus". W 2021 36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS). IEEE, 2021. http://dx.doi.org/10.1109/lics52264.2021.9470696.
Pełny tekst źródłaDahiya, Anita, Asha Rani i Manoj Kumar. "Fixed points for cyclic µ-expansions in generalized metric spaces". W RECENT ADVANCES IN FUNDAMENTAL AND APPLIED SCIENCES: RAFAS2016. Author(s), 2017. http://dx.doi.org/10.1063/1.4990341.
Pełny tekst źródłaFadail, Zaid Mohammed, i Abd Ghafur Bin Ahmad. "Fixed point results of T-Kannan contraction on generalized distance in cone metric spaces". W PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCES. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4882558.
Pełny tekst źródłaKosal, Isil Arda, i Mahpeyker Ozturk. "Best proximity points for elliptic generalized geraghty contraction mappings in elliptic valued metric spaces". W 7TH INTERNATIONAL EURASIAN CONFERENCE ON MATHEMATICAL SCIENCES AND APPLICATIONS (IECMSA-2018). Author(s), 2018. http://dx.doi.org/10.1063/1.5078470.
Pełny tekst źródłaRamadana, Yusuf, i Hendra Gunawan. "Boundedness of sublinear operator generated by Calderón-Zygmund operator on generalized weighted Morrey spaces over quasi-metric measure spaces". W INTERNATIONAL CONFERENCE ON MATHEMATICAL ANALYSIS AND ITS APPLICATIONS 2022 (IConMAA 2022): Analysis, Uncertainty, and Optimization. AIP Publishing, 2024. http://dx.doi.org/10.1063/5.0191768.
Pełny tekst źródłaTummala, Kusuma, A. Sree Rama Murthy, V. Ravindranath, P. Harikrishna i N. V. V. S. Suryanarayana. "Common fixed points of generalized (α, η)-geraghty rational type contraction in b-metric spaces". W CONTEMPORARY INNOVATIONS IN ENGINEERING AND MANAGEMENT. AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0158562.
Pełny tekst źródłaRaporty organizacyjne na temat "Generalized Metric Spaces"
Lynch, James F. A Higgs Universe and the flow of time. Woods Hole Oceanographic Institution, kwiecień 2024. http://dx.doi.org/10.1575/1912/69338.
Pełny tekst źródła