Artykuły w czasopismach na temat „Gaussian-Type atomic orbitals”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 46 najlepszych artykułów w czasopismach naukowych na temat „Gaussian-Type atomic orbitals”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Gomes, Andr� Severo Pereira, and Rog�rio Custodio. "Exact Gaussian expansions of Slater-type atomic orbitals." Journal of Computational Chemistry 23, no. 10 (2002): 1007–12. http://dx.doi.org/10.1002/jcc.10090.
Pełny tekst źródłaDesmarais, N., G. Dancausse, and S. Fliszár. "A simple quality test for self-consistent-field atomic orbitals." Canadian Journal of Chemistry 71, no. 2 (1993): 175–79. http://dx.doi.org/10.1139/v93-025.
Pełny tekst źródłaMohammed, Tawfik Mahmood. "Mathematical modeling of the electronic structure of Titanium dioxide \((TiO_2 )_6\) nanoparticles." University of Aden Journal of Natural and Applied Sciences 24, no. 2 (2022): 519–26. http://dx.doi.org/10.47372/uajnas.2020.n2.a19.
Pełny tekst źródłaMitroy, J. "A Hartree - Fock Program for Atomic Structure Calculations." Australian Journal of Physics 52, no. 6 (1999): 973. http://dx.doi.org/10.1071/ph99042.
Pełny tekst źródłaKuang, Jiyun, and C. D. Lin. "Molecular integrals over spherical Gaussian-type orbitals: I." Journal of Physics B: Atomic, Molecular and Optical Physics 30, no. 11 (1997): 2529–48. http://dx.doi.org/10.1088/0953-4075/30/11/007.
Pełny tekst źródłaDacosta, Herbert F. M., Milan Trsic, and Alfredo M. Simas. "Hydrogen-type orbitals in terms of Gaussian functions." International Journal of Quantum Chemistry 65, no. 2 (1997): 143–50. http://dx.doi.org/10.1002/(sici)1097-461x(1997)65:2<143::aid-qua5>3.0.co;2-w.
Pełny tekst źródłaBerlu, Lilian, and Philip Hoggan. "Useful Integrals for Ab-Initio Molecular Quantum Similarity Measurements Using Slater Type Atomic Orbitals." Journal of Theoretical and Computational Chemistry 02, no. 02 (2003): 147–61. http://dx.doi.org/10.1142/s0219633603000513.
Pełny tekst źródłaTanaka, Kiyoaki. "X-ray molecular orbital analysis. I. Quantum mechanical and crystallographic framework." Acta Crystallographica Section A Foundations and Advances 74, no. 4 (2018): 345–56. http://dx.doi.org/10.1107/s2053273318005478.
Pełny tekst źródłaRaynaud, Christophe, Laurent Maron, Jean-Pierre Daudey, and Franck Jolibois. "Reconsidering Car–Parrinello molecular dynamics using direct propagation of molecular orbitals developed upon Gaussian type atomic orbitals." Phys. Chem. Chem. Phys. 6, no. 17 (2004): 4226–32. http://dx.doi.org/10.1039/b402163k.
Pełny tekst źródłaFernández Rico, J., R. López, I. Ema, and G. Ramírez. "Deformed atoms in molecules: analytical representation of atomic densities for Gaussian type orbitals." Journal of Molecular Structure: THEOCHEM 727, no. 1-3 (2005): 115–21. http://dx.doi.org/10.1016/j.theochem.2005.02.028.
Pełny tekst źródłaNjapba, S. Augustine, and Galadanci M. S. Garba. "Density functional theory study of the nuclear magnetic resonance properties and natural bond orbital analysis of germanium-phenyl nanocluster." Dutse Journal of Pure and Applied Sciences 10, no. 2c (2024): 162–75. http://dx.doi.org/10.4314/dujopas.v10i2c.16.
Pełny tekst źródłaPinchon, Didier, and Philip E. Hoggan. "Gaussian approximation of exponential type orbitals based on B functions." International Journal of Quantum Chemistry 109, no. 2 (2009): 135–44. http://dx.doi.org/10.1002/qua.21705.
Pełny tekst źródłaWang, Jian, and Alexei A. Stuchebrukhov. "DFT calculation of electron tunneling currents: Real-space (grid) molecular orbitals vs. Gaussian-type molecular orbitals." International Journal of Quantum Chemistry 80, no. 4-5 (2000): 591–97. http://dx.doi.org/10.1002/1097-461x(2000)80:4/5<591::aid-qua8>3.0.co;2-j.
Pełny tekst źródłaBoettger, J. C., M. D. Jones, and R. C. Albers. "Structural properties of crystalline uranium from linear combination of Gaussian-type orbitals calculations." International Journal of Quantum Chemistry 75, no. 4-5 (1999): 911–15. http://dx.doi.org/10.1002/(sici)1097-461x(1999)75:4/5<911::aid-qua55>3.0.co;2-x.
Pełny tekst źródłaKuang, Jiyun, and C. D. Lin. "Molecular integrals over spherical Gaussian-type orbitals: II. Modified with plane-wave phase factors." Journal of Physics B: Atomic, Molecular and Optical Physics 30, no. 11 (1997): 2549–67. http://dx.doi.org/10.1088/0953-4075/30/11/008.
Pełny tekst źródłaPlatonenko, Alexander, Sergei Piskunov, Thomas C. K. Yang, et al. "Electronic Structure of Mg-, Si-, and Zn-Doped SnO2 Nanowires: Predictions from First Principles." Materials 17, no. 10 (2024): 2193. http://dx.doi.org/10.3390/ma17102193.
Pełny tekst źródłaBoettger, Jonathan Carl. "Spin-polarized fully relativistic linear combinations of Gaussian-type orbitals calculations for fcc plutonium." International Journal of Quantum Chemistry 95, no. 4-5 (2003): 380–86. http://dx.doi.org/10.1002/qua.10588.
Pełny tekst źródłaDomnin, Anton V., Ilia E. Mikhailov, and Robert A. Evarestov. "DFT Study of WS2-Based Nanotubes Electronic Properties under Torsion Deformations." Nanomaterials 13, no. 19 (2023): 2699. http://dx.doi.org/10.3390/nano13192699.
Pełny tekst źródłaPalmer, Michael H. "The ab initio Calculation of Nuclear Quadrupole Coupling Constants with Special Reference to 33S." Zeitschrift für Naturforschung A 47, no. 1-2 (1992): 203–16. http://dx.doi.org/10.1515/zna-1992-1-235.
Pełny tekst źródłaIshida, Kazuhiro. "ACE algorithm for the rapid evaluation of the electron-repulsion integral over Gaussian-type orbitals." International Journal of Quantum Chemistry 59, no. 3 (1996): 209–18. http://dx.doi.org/10.1002/(sici)1097-461x(1996)59:3<209::aid-qua4>3.0.co;2-1.
Pełny tekst źródłaCesco, J. C., C. C. Denner, G. O. Giubergia, et al. "Implementation of atomic basis set composed of 1s Gaussian and 1s Slater-type orbitals to carry out quantum mechanics molecular calculations." Journal of Computational Chemistry 20, no. 6 (1999): 604–9. http://dx.doi.org/10.1002/(sici)1096-987x(19990430)20:6<604::aid-jcc6>3.0.co;2-o.
Pełny tekst źródłaKalinin, N. V., and V. A. Saleev. "Ab initio modeling of Raman and infrared spectra of calcite." Computer Optics 42, no. 2 (2018): 263–66. http://dx.doi.org/10.18287/2412-6179-2018-42-2-263-266.
Pełny tekst źródłaToader, Ana Maria, Maria Cristina Buta, and Fanica Cimpoesu. "On the calculation of lanthanide systems. The spectral parameters of praseodymium trivalent ion." Chemistry Journal of Moldova 18, no. 2 (2023): 78–86. http://dx.doi.org/10.19261/cjm.2023.1146.
Pełny tekst źródłaJursic, Branko S. "Computation of geometries and frequencies of singlet and triplet nitromethane with density functional theory using Gaussian-type orbitals." International Journal of Quantum Chemistry 64, no. 2 (1997): 263–69. http://dx.doi.org/10.1002/(sici)1097-461x(1997)64:2<263::aid-qua15>3.0.co;2-a.
Pełny tekst źródłaUlian, Gianfranco, and Giovanni Valdrè. "Thermomechanical, electronic and thermodynamic properties of ZnS cubic polymorphs: an ab initio investigation on the zinc-blende–rock-salt phase transition." Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials 75, no. 6 (2019): 1042–59. http://dx.doi.org/10.1107/s2052520619012630.
Pełny tekst źródłaHu, Anguang, and Brett I. Dunlap. "Three-center molecular integrals and derivatives using solid harmonic Gaussian orbital and Kohn–Sham potential basis sets." Canadian Journal of Chemistry 91, no. 9 (2013): 907–15. http://dx.doi.org/10.1139/cjc-2012-0485.
Pełny tekst źródłaKotlyar, V. V., A. A. Kovalev, and A. P. Porfirev. "Measurement of the orbital angular momentum of an astigmatic Hermite–Gaussian beam." Computer Optics 43, no. 3 (2019): 356–67. http://dx.doi.org/10.18287/2412-6179-2019-43-3-356-367.
Pełny tekst źródłaPinheiro da Silva, Braian, Wagner T. Buono, Leonardo J. Pereira, Daniel S. Tasca, Kaled Dechoum, and Antonio Z. Khoury. "Spin to orbital angular momentum transfer in frequency up-conversion." Nanophotonics 11, no. 4 (2021): 771–78. http://dx.doi.org/10.1515/nanoph-2021-0493.
Pełny tekst źródłaJursic, Branko S. "Density functional calculations of difluorodiazete structures with Gaussian-orbital-type approach." International Journal of Quantum Chemistry 57, no. 2 (1996): 213–17. http://dx.doi.org/10.1002/(sici)1097-461x(1996)57:2<213::aid-qua7>3.0.co;2-0.
Pełny tekst źródłaLasar, Christian, and Thorsten Klüner. "Explicitly correlated orbital optimized contracted pair correlation methods: Foundations and applications." Journal of Theoretical and Computational Chemistry 17, no. 04 (2018): 1850024. http://dx.doi.org/10.1142/s0219633618500244.
Pełny tekst źródłaSaleev, Vladimir, and Alexandra Shipilova. "First-principles calculations of LiNbO3 optical properties: From far-infrared to ultraviolet." Modern Physics Letters B 32, no. 05 (2018): 1850063. http://dx.doi.org/10.1142/s021798491850063x.
Pełny tekst źródłaCoursault, Delphine, and Etienne Brasselet. "Nanostructured silica spin–orbit optics for modal vortex beam shaping." Nanophotonics 11, no. 4 (2021): 805–12. http://dx.doi.org/10.1515/nanoph-2021-0579.
Pełny tekst źródłaIshimoto, Takayoshi, Masanori Tachikawa, and Umpei Nagashima. "Analytical optimization of exponent values in protonic and deuteronic Gaussian-type functions by elimination of translational and rotational motions from multi-component molecular orbital scheme." International Journal of Quantum Chemistry 108, no. 3 (2007): 472–81. http://dx.doi.org/10.1002/qua.21540.
Pełny tekst źródłaJursic, Branko S., and Zoran Zdravkovski. "Theoretical investigation of the conrotatory ring opening of cyclobutene and 1, 2-dihydro-1, 2-diazacyclobutadienes with ab initio and density functional Gaussian-type-orbital approach." International Journal of Quantum Chemistry 56, no. 2 (1995): 115–23. http://dx.doi.org/10.1002/qua.560560206.
Pełny tekst źródłaMathar, Richard J. "Erratum: Mutual conversion of three flavors of gaussian type orbitals." International Journal of Quantum Chemistry, 2009, NA. http://dx.doi.org/10.1002/qua.22353.
Pełny tekst źródłaShaw, Robert A. "The completeness properties of Gaussian‐type orbitals in quantum chemistry." International Journal of Quantum Chemistry 120, no. 17 (2020). http://dx.doi.org/10.1002/qua.26264.
Pełny tekst źródłaLehtola, Susi. "Importance profiles. Visualization of atomic basis set requirements." Electronic Structure, March 8, 2024. http://dx.doi.org/10.1088/2516-1075/ad31ca.
Pełny tekst źródłaGangal, Krish, İpek Gerz, Tanvi Goyal, Ajeeth Iyer, Vaibhav Vaiyakarnam, and Larry McMahan. "Modeling Hartree-Fock approximations of the Schrödinger Equation for multielectron atoms from Helium to Xenon using STO-nG basis sets." Journal of Emerging Investigators, 2023. http://dx.doi.org/10.59720/22-211.
Pełny tekst źródłaQin, Xinming, Honghui Shang, and Jinlong Yang. "Efficient implementation of analytical gradients for periodic hybrid functional calculations within fitted numerical atomic orbitals from NAO2GTO." Frontiers in Chemistry 11 (July 27, 2023). http://dx.doi.org/10.3389/fchem.2023.1232425.
Pełny tekst źródłaKim, Inkoo, Daun Jeong, Won-Joon Son, et al. "Kohn–Sham time-dependent density functional theory with Tamm–Dancoff approximation on massively parallel GPUs." npj Computational Materials 9, no. 1 (2023). http://dx.doi.org/10.1038/s41524-023-01041-4.
Pełny tekst źródłaEsteve-Paredes, Juan José, and Juan José Palacios. "A comprehensive study of the velocity, momentum and position matrix elements for Bloch states: Application to a local orbital basis." SciPost Physics Core 6, no. 1 (2023). http://dx.doi.org/10.21468/scipostphyscore.6.1.002.
Pełny tekst źródłaKang, Byungkyun, Joshua Vincent, Yongbin Lee, Liqin Ke, Peter A. Crozier, and Qiang Zhu. "Modeling surface spin polarization on ceria-supported Pt nanoparticles." Journal of Physics: Condensed Matter, March 30, 2022. http://dx.doi.org/10.1088/1361-648x/ac62a3.
Pełny tekst źródłaMendoza-López, L. A., J. G. Acosta-Montes, J. A. Bernal-Orozco, et al. "Frequency Conversion of Optical Vortex Arrays Through Four-Wave Mixing in Hot Atomic Gases." Frontiers in Physics 10 (July 11, 2022). http://dx.doi.org/10.3389/fphy.2022.895023.
Pełny tekst źródłaSlama, Marwa, Hela Habli, Soulef Jellali, and Mounir Ben El Hadj Rhouma. "Computational study of the electronic structure of the Srm+Kr (m=0, 1) van der Waals complexes." Physica Scripta, June 21, 2022. http://dx.doi.org/10.1088/1402-4896/ac7aea.
Pełny tekst źródłaLi, Shanggeng, Fanghua Zhu, Yawen Zhou та ін. "First theoretical probe for alkynyl bridged thiophene modified coumarin nonlinear optical materials with D-π-A and A-π-D-π-A structures". Journal of Nonlinear Optical Physics & Materials 31, № 02 (2022). http://dx.doi.org/10.1142/s0218863522500084.
Pełny tekst źródłaGhavami Sabouri, Saeed. "Generation of vortex beams with non-uniform phase jumps azimuthal locations." Journal of Optics, March 1, 2023. http://dx.doi.org/10.1088/2040-8986/acc043.
Pełny tekst źródła