Gotowa bibliografia na temat „Gauge group SU(N)”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Gauge group SU(N)”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Gauge group SU(N)"
LEE, JULIAN, i SANG-JIN SIN. "DUALITY IN SU(N) × SU(N′) PRODUCT GROUP FROM M THEORY". Modern Physics Letters A 14, nr 07 (7.03.1999): 527–38. http://dx.doi.org/10.1142/s0217732399000584.
Pełny tekst źródłaKoorambas, E. "Vector Gauge Boson Dark Matter for the SU(N) Gauge Group Model". International Journal of Theoretical Physics 52, nr 12 (23.08.2013): 4374–88. http://dx.doi.org/10.1007/s10773-013-1756-3.
Pełny tekst źródłaHamanaka, Hiroaki, i Akira Kono. "Unstable K1-group and homotopy type of certain gauge groups". Proceedings of the Royal Society of Edinburgh: Section A Mathematics 136, nr 1 (luty 2006): 149–55. http://dx.doi.org/10.1017/s0308210500004480.
Pełny tekst źródłaLabastida, J. M. F., i Carlos Lozano. "The Vafa–Witten theory for gauge group $SU(N)$". Advances in Theoretical and Mathematical Physics 3, nr 5 (1999): 1201–25. http://dx.doi.org/10.4310/atmp.1999.v3.n5.a1.
Pełny tekst źródłaKETOV, SERGEI V., i SHIN SASAKI. "SU(2)×U(1) NONANTICOMMUTATIVE N = 2 SUPERSYMMETRIC GAUGE THEORY". International Journal of Modern Physics A 20, nr 17 (10.07.2005): 4021–34. http://dx.doi.org/10.1142/s0217751x05020963.
Pełny tekst źródłaSakai, Tadakatsu. "Duality in Supersymmetric SU(N) Gauge Theory with a Symmetric Tensor". Modern Physics Letters A 12, nr 14 (10.05.1997): 1025–34. http://dx.doi.org/10.1142/s0217732397001047.
Pełny tekst źródłaSUN, WEI-MIN, i FAN WANG. "A NOTE ON THE AVERAGING TECHNIQUE IN SU(N) GAUGE THEORY". Modern Physics Letters A 17, nr 19 (21.06.2002): 1277–80. http://dx.doi.org/10.1142/s0217732302007405.
Pełny tekst źródłaTanimura, N., W. Scheid i O. Tanimura. "SU (N) lattice-gauge theory in the Migdal renormalization group model". Physics Letters B 264, nr 3-4 (sierpień 1991): 401–6. http://dx.doi.org/10.1016/0370-2693(91)90368-z.
Pełny tekst źródłaDoria, Renato. "Non-abelian whole gauge symmetry". JOURNAL OF ADVANCES IN PHYSICS 10, nr 3 (6.10.2015): 2834–70. http://dx.doi.org/10.24297/jap.v10i3.1323.
Pełny tekst źródłaJUNGMAN, GERARD. "FURTHER TOPOLOGICAL PROOFS OF GRIBOV AMBIGUITIES". Modern Physics Letters A 07, nr 10 (28.03.1992): 849–53. http://dx.doi.org/10.1142/s0217732392003487.
Pełny tekst źródłaRozprawy doktorskie na temat "Gauge group SU(N)"
Vairinhos, Hélvio. "Large-N reduced models of SU(N) lattice guage theories". Thesis, University of Oxford, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.670101.
Pełny tekst źródłaBursa, Francis. "Phase transitions in SU(N) lattice gauge theory". Thesis, University of Oxford, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.437179.
Pełny tekst źródłaPomeroy, Neil B. "Multi-instantons and supersymmetric SU(N) gauge theories". Thesis, Durham University, 2002. http://etheses.dur.ac.uk/3757/.
Pełny tekst źródłaSlater, Matthew J. "Instanton effects in supersymmetric SU(N) gauge theories". Thesis, Durham University, 1998. http://etheses.dur.ac.uk/4812/.
Pełny tekst źródłaPickup, Thomas. "Investigating the conformal window of SU(N) gauge theories". Thesis, University of Oxford, 2011. http://ora.ox.ac.uk/objects/uuid:79a22d60-86b2-4e53-abd6-50edbc979e42.
Pełny tekst źródłaGarcía, Vera Miguel Francisco. "Investigating the large N limit of SU(N) Yang-Mills gauge theories on the lattice". Doctoral thesis, Humboldt-Universität zu Berlin, 2017. http://dx.doi.org/10.18452/18123.
Pełny tekst źródłaIn this thesis we present results for the topological susceptibility “chi”, and investigate the property of factorization in the 't Hooft large N limit of SU(N) pure Yang-Mills gauge theory. A key component in the lattice gauge theory computation of chi is the estimation of the topological charge density correlator, which is affected by a severe signal to noise problem. To alleviate this problem, we introduce a novel algorithm that uses a multilevel type approach to compute the correlation function of observables smoothed with the Yang-Mills gradient flow. When applied to our observables, the results show an scaling of the error which is better than the one of standard Monte-Carlo simulations. We compute the topological susceptibility in the pure Yang-Mills gauge theory for the gauge groups with N = 4, 5, 6 and three different lattice spacings. In order to deal with the freezing of topology, we use open boundary conditions. In addition, we employ the theoretically sound definition of the topological charge density through the gradient flow. Our final result in the limit N to infinity, represents a new quality in the verification of the Witten-Veneziano formula. Lastly, we use the lattice formulation to verify the factorization of the expectation value of the product of gauge invariant operators in the large N limit. We work with Wilson loops smoothed with the Yang-Mills gradient flow and simulations up to the gauge group SU(8). The large N extrapolations at finite lattice spacing and in the continuum are compatible with factorization. Our data allow us not only to verify factorization, but also to test the 1/N scaling up to very high precision, where we find it to agree very well with a quadratic series in 1/N as predicted originally by 't Hooft for the case of the pure Yang-Mills gauge theory.
Tighe, John Francis. "Derivative expansions of the exact renormalisation group and SU(NN) gauge theory". Thesis, University of Southampton, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.368120.
Pełny tekst źródłaCOCCIA, LORENZO. "On the planar limit of 3d T_rho^sigma[SU(N)] theories". Doctoral thesis, Università degli Studi di Milano-Bicocca, 2022. http://hdl.handle.net/10281/364338.
Pełny tekst źródłaIn this thesis we discuss a limit of 3d T^sigma _rho[SU(N)] quiver gauge theories in which the number of nodes is large and the ranks scale quadratically with the length of the quiver. The sphere free energies and topologically twisted indices are obtained using supersymmetric localization. Both scale quartically with the length of the quiver and quadratically with $N$, with trilogarithm functions depending on the quiver data as coefficients. Previously discussed theories with $N^2 \ln N$ scaling arise as limiting cases. The IR SCFTs have well-behaved supergravity duals in Type IIB: the free energies match precisely with holographic results and the indices, in case of a universal twist, correctly reproduce the entropy of an universal black hole which can be embedded in the holographically dual solutions. Each balanced 3d quiver theory is linked to a 5d parent, whose matrix model is related and dominated by the same saddle point, leading to close relations between BPS observables. In particular, we compute the expectation value of Wilson loops in antisymmetric representations, finding perfect agreement with the gravity side in a particular example.
Liebgott, Paulo Juliano. "Monopolos magnéticos Z2 em teorias de Yang-Mills-Higgs com simetria de gauge SU(n)". Florianópolis, SC, 2009. http://repositorio.ufsc.br/xmlui/handle/123456789/93224.
Pełny tekst źródłaMade available in DSpace on 2012-10-24T18:37:40Z (GMT). No. of bitstreams: 1 263132.pdf: 526017 bytes, checksum: 5840fcf1dc0e49a55cf108092da716f2 (MD5)
Monopolos magnéticos têm sido objetos de grande interesse nos últimos anos, principalmente por serem previstos em algumas teorias de grande unificação e por, possivelmente, serem relevantes no fenômeno do confinamento em QCD. Consideramos uma teoria de Yang-Mills-Higgs com simetria de gauge SU(n) quebrada espontaneamente em SO(n) que apresenta condições topológicas necessárias para a existência de monopolos Z2. Construímos as formas assintóticas desses monopolos, considerando duas quebras distintas do SU(n) em SO(n), e verificamos que os monopolos fundamentais estão associados aos pesos da representação definidora da álgebra so(n)v.
Sommer, Rainer [Gutachter], Ulrich [Gutachter] Wolff i Biagio [Gutachter] Lucini. "Investigating the large N limit of SU(N) Yang-Mills gauge theories on the lattice / Gutachter: Rainer Sommer, Ulrich Wolff, Biagio Lucini". Berlin : Humboldt-Universität zu Berlin, 2017. http://d-nb.info/1189328984/34.
Pełny tekst źródłaKsiążki na temat "Gauge group SU(N)"
Boudreau, Joseph F., i Eric S. Swanson. Quantum field theory. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198708636.003.0024.
Pełny tekst źródłaMercati, Flavio. Best Matching: Technical Details. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198789475.003.0005.
Pełny tekst źródłaIntegrability, Quantization, and Geometry. American Mathematical Society, 2021.
Znajdź pełny tekst źródłaCzęści książek na temat "Gauge group SU(N)"
Grabovsky, Andrey. "SU(N) Group". W Introduction to Strong Interactions, 1–38. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003272403-1.
Pełny tekst źródłaCline, James M. "Nonperturbative Aspects of SU(N) Gauge Theory". W SpringerBriefs in Physics, 131–44. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-56168-0_14.
Pełny tekst źródłaZeidler, Eberhard. "The Noncommutative Yang–Mills SU(N)-Gauge Theory". W Quantum Field Theory III: Gauge Theory, 843–70. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-22421-8_16.
Pełny tekst źródłade Forcrand, Philippe, i Oliver Jahn. "Monte Carlo Overrelaxation for SU(N) Gauge Theories". W Lecture Notes in Computational Science and Engineering, 67–73. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/3-540-28504-0_6.
Pełny tekst źródłaTestard, D. "Representations of the group of equivariant loops in SU(N)". W Lecture Notes in Mathematics, 326–41. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/bfb0077365.
Pełny tekst źródłaStruckmeier, Jürgen, Horst Stöcker i David Vasak. "Covariant Hamiltonian Representation of Noether’s Theorem and Its Application to SU(N) Gauge Theories". W New Horizons in Fundamental Physics, 317–31. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-44165-8_24.
Pełny tekst źródłaMolchanov, V. F. "Maximal Degenerate Series Representations of the Universal Covering of the Group SU(n,n)". W Lie Groups and Lie Algebras, 313–36. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-5258-7_20.
Pełny tekst źródłaMenges, Uta, Jonas Hielscher, Annalina Buckmann, Annette Kluge, M. Angela Sasse i Imogen Verret. "Why IT Security Needs Therapy". W Computer Security. ESORICS 2021 International Workshops, 335–56. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-95484-0_20.
Pełny tekst źródła"SU(N) Compact Lie Groups". W Lattice Quantum Field Theory of the Dirac and Gauge Fields, 9–28. WORLD SCIENTIFIC, 2020. http://dx.doi.org/10.1142/9789811209703_0002.
Pełny tekst źródłaNovikov, V. A. "Instantons in SU(N) supergluodynamics". W Instantons in Gauge Theories, 366–73. WORLD SCIENTIFIC, 1994. http://dx.doi.org/10.1142/9789812794345_0040.
Pełny tekst źródłaStreszczenia konferencji na temat "Gauge group SU(N)"
LUCINI, B., M. TEPER i U. WENGER. "FEATURES OF SU(N) GAUGE THEORIES". W Proceedings of the International Conference. WORLD SCIENTIFIC, 2004. http://dx.doi.org/10.1142/9789812702845_0039.
Pełny tekst źródłaDoria, Renato, i Mario Junior de Oliveira Neves. "Feynman rules for an intrinsic gauge model SU(N) x SU(N)". W 5th International School on Field Theory and Gravitation. Trieste, Italy: Sissa Medialab, 2009. http://dx.doi.org/10.22323/1.081.0022.
Pełny tekst źródłaVelytsky, Alexander. "Entanglement entropy in SU(N) gauge theory". W The XXVI International Symposium on Lattice Field Theory. Trieste, Italy: Sissa Medialab, 2009. http://dx.doi.org/10.22323/1.066.0256.
Pełny tekst źródłaLau, Richard, i Michael Teper. "SO(2N) and SU(N) gauge theories". W 31st International Symposium on Lattice Field Theory LATTICE 2013. Trieste, Italy: Sissa Medialab, 2014. http://dx.doi.org/10.22323/1.187.0187.
Pełny tekst źródłaKoshelkin, Andrey. "Hadronization in SU(N) Gauge Field Theory". W Sixth International Conference on Quarks and Nuclear Physics. Trieste, Italy: Sissa Medialab, 2012. http://dx.doi.org/10.22323/1.157.0124.
Pełny tekst źródłaLau, Richard, i Michael Teper. "Deconfining temperatures in SO(N) and SU(N) gauge theories". W The 32nd International Symposium on Lattice Field Theory. Trieste, Italy: Sissa Medialab, 2015. http://dx.doi.org/10.22323/1.214.0228.
Pełny tekst źródłaRafibakhsh, Shahnoosh, Mojtaba Eshraghi i Mohammad Javad Kahnemuii. "Magnetic monopoles and Abelian gauge fixing in SU(4) gauge group". W XITH CONFERENCE ON QUARK CONFINEMENT AND HADRON SPECTRUM. AIP Publishing LLC, 2016. http://dx.doi.org/10.1063/1.4938725.
Pełny tekst źródłaOgilvie, Michael, i Peter N. Meisinger. "High Temperature Confinement in SU(N) Gauge Theories". W The XXVI International Symposium on Lattice Field Theory. Trieste, Italy: Sissa Medialab, 2009. http://dx.doi.org/10.22323/1.066.0202.
Pełny tekst źródłaTeper, Michael J. "Lattice Field Theory and SU(N) Gauge Theories". W Proceedings of the International School of Subnuclear Physics. WORLD SCIENTIFIC, 2003. http://dx.doi.org/10.1142/9789812796653_0001.
Pełny tekst źródłaSannino, Francesco. "Chiral phase transition for SU(N) gauge theories". W New directions in quantum chromodynamics. AIP, 1999. http://dx.doi.org/10.1063/1.1301680.
Pełny tekst źródła