Gotowa bibliografia na temat „Gaseous”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Gaseous”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Gaseous"

1

PEIMBERT, M. "Gaseous Nebulae: Physics of Thermal Gaseous Nebulae." Science 229, nr 4714 (16.08.1985): 644. http://dx.doi.org/10.1126/science.229.4714.644.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Gonchar, N., i M. Morkin. "A SENSITIVITY EVALUATION OF GAS-LIFT PROBE INCLUDED INTO CLADDING FAILURE DETECTION SYSTEM BY THE MODEL OF GASEOUS FISSION PRODUCT SOLUTION/DEGASSING INTO LEAD COOLANT". PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. SERIES: NUCLEAR AND REACTOR CONSTANTS 2021, nr 1 (26.03.2021): 135–44. http://dx.doi.org/10.55176/2414-1038-2021-1-135-144.

Pełny tekst źródła
Streszczenie:
Gas-lift probe is an element of cladding failure detection system of perspective lead cooled reactor. Its function is local measurement of gaseous fission product activity in the coolant and the most defected fuel assembly localization. In the coolant leaving the defected fuel assembly the specific activity of gaseous fission products is higher than the average one in the primary circuit. In the barbotage channel of gas-lift probe gaseous fission products diffuse through the bubble interface surface into the volume of the bubbles. The bubbles deliver gaseous fission product to interface surface in the separation volume. The gas enriched with radioactive gaseous fission product goes to measurement volume of the probe. The more significant the damage and the closer the defective fuel assembly is located to the probe input, the more gaseous fission product activity will be registered. The paper presents a model of gaseous activity transfer from cladding defect to probe measuring volume. The gaseous activity transfer is described on the basis of the inert gases dissolution/degassing processes in lead. The gas-lift probe sensitivity was estimated as the ratio of the entry velocity of gaseous activity into the measurement volume to the exit one into the coolant through fuel assemblies cladding defects. A gas-lift probe sensitivity for exposed fuel surface calculated as an example. Gaseous fission products with significant gamma radiation are considered. The calculation results are presented in the article.
Style APA, Harvard, Vancouver, ISO itp.
3

Likal'ter, Alexander A. "Gaseous metals". Uspekhi Fizicheskih Nauk 162, nr 7 (1992): 119. http://dx.doi.org/10.3367/ufnr.0162.199207c.0119.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Likal'ter, Alexander A. "Gaseous metals". Soviet Physics Uspekhi 35, nr 7 (31.07.1992): 591–605. http://dx.doi.org/10.1070/pu1992v035n07abeh002249.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

van der Graaf, H. "Gaseous detectors". Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 628, nr 1 (luty 2011): 27–30. http://dx.doi.org/10.1016/j.nima.2010.06.280.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Sugimoto, Daiichiro. "Gaseous Models". Symposium - International Astronomical Union 113 (1985): 207–18. http://dx.doi.org/10.1017/s0074180900147394.

Pełny tekst źródła
Streszczenie:
We can understand physics of self-gravitating system in terms of gaseous models in so far that their global natures and effects of self-gravity are concerned. Here summarized what are known in idealized gaseous models. They include gravothermal collapse/expansion in linear and non-linear regimes, and post-collapse evolution with gravothermal oscillation. Also discussed are their relations with discrete system and with treatment in statistical mechanics.
Style APA, Harvard, Vancouver, ISO itp.
7

Ruskin, Keith J. "Gaseous Anomaly". Anesthesiology 88, nr 6 (1.06.1998): 1696. http://dx.doi.org/10.1097/00000542-199806000-00055.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Hao-Hui, Tang, Guo Jun-Jun, Wang Xiao-Lian i Xu Zi-Zong. "A new gaseous detector — micro mesh gaseous structure". Chinese Physics C 33, nr 9 (25.08.2009): 777–80. http://dx.doi.org/10.1088/1674-1137/33/9/013.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Blecha, Tomas, Vaclav Smitka, Michal Bodnar i Jiri Stulik. "Simultaneous Detection of NH3 and NO2 by Modified Impedance Spectroscopy in Sensors Based on Carbon Nanotubes". Energies 15, nr 3 (25.01.2022): 855. http://dx.doi.org/10.3390/en15030855.

Pełny tekst źródła
Streszczenie:
There are many gaseous substances that need to be monitored for possible damage to health or the environment. This requires many sensors. The solution to reducing the number of sensors is to use one sensor to detect several gaseous substances simultaneously. Efforts to simplify sensor systems thus lead to the use of a sensor with a suitable sensitive layer and to finding a suitable method of detecting individual gaseous substances within one sensor. The aim is to find a suitable method to detect various gaseous substances acting on the sensor. For this purpose, modified impedance spectroscopy in the high-frequency range is applied, where the scattering parameters of the sensor based on carbon nanotubes are measured under the action of NO2 and NH3 gases. For this method of detection of gaseous substances, a suitable sensor platform structure was designed to enable the measurement of the electrical properties of the sensor in the GHz range. Based on the obtained results, it is possible to use one sensor to detect different types of gaseous substances.
Style APA, Harvard, Vancouver, ISO itp.
10

Mautz, Karl E., Michael L. Parsons i Carleton B. Moore. "Application of a Gas Sampling Introduction System for Inductively Coupled Plasma Spectroscopy and Analyses of Various Plasma Gases". Applied Spectroscopy 41, nr 2 (luty 1987): 219–26. http://dx.doi.org/10.1366/000370287774987001.

Pełny tekst źródła
Streszczenie:
An inductively coupled plasma spectrometer was modified for gaseous sample introduction. The system uses a gas proportioner utilizing rotameters to achieve sample gas concentrations and mixing with the sample argon gas. Modifications of instruments were performed to enhance stability and compatability of gaseous sample introduction. Instrument performance was characterized for optimization of spectral signals produced from plasma gases. Spectral analyses of gaseous samples including CF4, SF6, O2, N2, air, and mixtures of CF4-O2 and CF4-O2/N2 were performed. Identification of plasma gas and plasma-induced byproducts, both atomic and molecular, were determined.
Style APA, Harvard, Vancouver, ISO itp.

Rozprawy doktorskie na temat "Gaseous"

1

Combs, Roger J. "Gaseous diffusion in liquids". Diss., Virginia Polytechnic Institute and State University, 1986. http://hdl.handle.net/10919/76484.

Pełny tekst źródła
Streszczenie:
Diffusivity of nonreactive gases in liquids provides a means of interpreting structure in the liquid state. Structural models of the liquid state include Hildebrand's condensed gas model and Eyring's pseudo-lattice model. The former model predicts a linear dependence of diffusivity with temperature while the latter model predicts linear dependence of log(D) versus 1/T. The limited temperature dependent diffusivity data to date with a typical precision of ± 5% do not permit distinguishing which temperature dependence is more linear. However, the present investigation shows that diffusivities of one gas solute in two nonpolar liquids indirectly supports a linear diffusivity temperature dependence by a Graham's law like relation. At a fixed temperature this relation equates relative diffusivities to the square root of the inverse molecular weights of the respective liquids. Diffusion of gases into nonpolar liquids have previously been measured by two techniques: (1) a pseudo-steady state technique developed by Hildebrand with diffusion through multiple capillaries and (2) a method by Walkley with diffusion through an open tube. Each of these methods requires prior knowledge of solubility of the gas in the liquid. An apparatus is constructed which combines these methods into a single experiment. Simultaneous solution of the two equations which describe the combined experiment yields both the solubility and diffusion coefficient. Diffusivities and solubilities of nitrogen, argon and oxygen into liquids of carbon tetrachloride and benzene as well as oxygen into water have been studied. The results compare favorably with the Literature. The diffusion cell for this technique consists of a capillary disk, which is flooded with liquid. Gas is admitted into the space over the open solvent. With temperature and pressure constant, volume uptake of the gas in the solvent is monitored. Time-volume uptake data is evaluated by the two diffusion equations. Although the experiment is conceptually easy, a small gas volume change over a prolonged period of time poses problems in data collection and experiment control. The data collection and control is simplified by dedicating a Microcomputer Interfaced Data Acquisition System (MIDAS) to the experiment.
Ph. D.
Style APA, Harvard, Vancouver, ISO itp.
2

Noble, Anthony James. "Pion transfer in gaseous hydrogen". Thesis, University of British Columbia, 1986. http://hdl.handle.net/2429/26016.

Pełny tekst źródła
Streszczenie:
The experiment consisted of stopping negative pions in a high pressure gas target to measure the transfer rate π-p → π-d in mixtures of H2, D2 and HD gas. The gamma rays from the decay of the π ⁰ in π -p → n + π ⁰ were detected in coincidence using two large sodium iodide crystals. The probability that a pion be transferred to a deuteron from a pionic hydrogen complex was described in terms of a phenomenological model parameterized by B and ∧. Fits to the data yielded B = 0.77 ±0.14 and ∧ = 0.21 ±0.04. These values implied that the hydrogen capture ratio in an equal mix of H2 and D2 was F(H₂D₂) = 0.45 ±0.01. The capture ratio for HD was measured to be F(HD) = 0.355 ±0.021. The ratio F(H₂D₂)/F(HD) indicated that there was likely to be internal transfer in the breakup of π-HD favouring the π-d complex at about a 60% level.
Science, Faculty of
Physics and Astronomy, Department of
Graduate
Style APA, Harvard, Vancouver, ISO itp.
3

Hunter, Ian Norman. "The viscosity of gaseous mixtures". Thesis, University of Oxford, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.253386.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

McKenna, Fiona Christine. "Spectroscopic studies of gaseous nebulae". Thesis, Queen's University Belfast, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.263493.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Kirk, Martin. "Reactions of gaseous borane intermediates". Thesis, University of Leeds, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.305836.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Clarke, Elizabeth Diane. "Probabilistic models of gaseous dispersion". Thesis, University of Sheffield, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.387651.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Bremer, Malcolm Neal. "The gaseous environment of quasars". Thesis, University of Cambridge, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.281988.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Ho, Minh Tuan. "Kinetic modeling of the transient flows of the single gases and gaseous mixtures". Thesis, Aix-Marseille, 2015. http://www.theses.fr/2015AIXM4741/document.

Pełny tekst źródła
Streszczenie:
Un gaz à l'intérieur d’un microsystème ou d’un milieu poreux est dans un état hors équilibre, car le libre parcours moyen des molécules est comparable à la dimension caractéristique du milieu. Ce même état degaz, appelé raréfié, se retrouve en haute altitude ou dans un équipement de vide à basse pression. Ces gaz raréfiés suivent des types d’écoulements qui peuvent être décrits par des modèles cinétiques dérivés de l'équation de Boltzmann. Dans ce travail nous présentons les principaux modèles et leurs mises en oeuvre numériquepour la simulation des écoulements de gaz raréfiés. Parmi les modèles utilisés nous présentons les deux modèles complets de l'équation de Boltzmann, le modèle de Shakhov(S-model) pour un gaz monoatomique et le modèle de McCormack pour un mélange de gaz toujours monoatomiques. La méthode des vitesses discrètes est utilisée pour la discrétisation numérique dans l'espace des vitesses moléculaires et le schéma de type TVD est mis en œuvre dans l'espace physique. L’aspect original de ce travail se situe sur les régimes transitoires et, en particuliersur les comportements non-stationnaires des transferts de chaleur et de masse. Cependant, pour certaines configurations nous considérons uniquement les conditions stationnaires des écoulements et un schéma implicite est développé afin de réduire le coût de calcul. En utilisant ces approches numériques, nous présentons les résultats pour plusieurs types d’écoulements non-stationnaires, de gaz raréfiés monoatomiqueset de mélanges binaires de gaz monoatomiques
A gas inside the microsystems or the porous media is in its non-equilibrium state, due to the fact that the molecular mean free path is comparable to the characteristic dimension of the media. The same state of a gas, called rarefied, is found at high altitude or in the vacuum equipment working at low pressure. All these types of flow can be described by the kinetic models derived from the Boltzmann equation. This thesis presents the development of the numerical tools for the modeling and simulations of the rarefied gas flows. The two models of the full Boltzmann equation, the Shakhov model (S-model) for the single gas and the McCormack model for the gas mixture, are considered. The discrete velocity method is used to the numerical discretization in the molecular velocity space and the TVD-like scheme is implemented in the physical space. The main aspect of this work is centered around the transient properties of the gas flows and, especially, on the transient heat and mass transfer behaviors. However, for some configurations only steady-state solutions are considered and the implicit scheme is developed to reduce the computational cost. Using the proposed numerical approach several types of the transient rarefied single gas flows as well as the binary mixture of the monoatomic gases are studied
Style APA, Harvard, Vancouver, ISO itp.
9

Gal-Ed, Reuven. "Pulsating catalytic combustion of gaseous fuels". Diss., Georgia Institute of Technology, 1988. http://hdl.handle.net/1853/15649.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Moss, Diane Patricia. "Gaseous ammonia exchange in wheat crops". Thesis, Imperial College London, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.271216.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Książki na temat "Gaseous"

1

Nettleton, Michael A. Gaseous Detonations. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3149-7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Angelo, Joseph A. Gaseous matter. New York, NY: Facts on File, 2011.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

International Symposium on Gaseous Dielectrics. (6th 1990 Knoxville, Tenn.). Gaseous dielectrics VI. New York, N.Y: Plenum Press, 1991.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

1937-, Christophorou L. G., i James David R. 1948-, red. Gaseous dielectrics VII. New York: Plenum, 1994.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

G, Christophorou L., i Olthoff James Kenneth 1958-, red. Gaseous dielectrics IX. New York: London, 2001.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Christophorou, Loucas G. Gaseous Dielectrics VIII. Boston, MA: Springer US, 1998.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Christophorou, Loucas G. Gaseous Dielectrics IX. Boston, MA: Springer US, 2001.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Abbrescia, Marcello, Vladimir Peskov i Paulo Fonte. Resistive Gaseous Detectors. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2018. http://dx.doi.org/10.1002/9783527698691.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Christophorou, Loucas G., i James K. Olthoff, red. Gaseous Dielectrics IX. Boston, MA: Springer US, 2001. http://dx.doi.org/10.1007/978-1-4615-0583-9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Christophorou, Loucas G., i David R. James, red. Gaseous Dielectrics VII. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4899-1295-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Części książek na temat "Gaseous"

1

Clavin, Paul. "Gaseous Detonations". W Coherent Structures in Complex Systems, 182–89. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/3-540-44698-2_11.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Gillott, Cedric. "Gaseous Exchange". W Entomology, 449–65. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-017-4380-8_15.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Titov, Maxim. "Gaseous Detectors". W Handbook of Particle Detection and Imaging, 239–64. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-13271-1_11.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Dusseau, Jean-Yves, Patrick Duroselle i Jean Freney. "Gaseous Sterilization". W Russell, Hugo & Ayliffe's, 306–32. Oxford, UK: Wiley-Blackwell, 2012. http://dx.doi.org/10.1002/9781118425831.ch15c.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Hilke, H. J., i W. Riegler. "Gaseous Detectors". W Particle Physics Reference Library, 91–136. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-35318-6_4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Lengrand, Jean-Claude, i Tatiana T. Elizarova. "Gaseous Microflows". W Microfluidics, 25–87. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118599839.ch2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Gesser, H. D. "Gaseous Fuels". W Applied Chemistry: A Textbook for Engineers and Technologists, 93–113. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/978-1-4615-0531-0_6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Sugimoto, Daiichiro. "Gaseous Models". W Dynamics of Star Clusters, 207–18. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-5335-2_23.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Hilke, H. J. "Gaseous Detectors". W Detectors for Particles and Radiation. Part 1: Principles and Methods, 72–106. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-03606-4_4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Hanby, Victor Ian. "Gaseous Fuels". W Combustion and Pollution Control in Heating Systems, 78–88. London: Springer London, 1994. http://dx.doi.org/10.1007/978-1-4471-2071-1_7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Streszczenia konferencji na temat "Gaseous"

1

FRANCKE, TOM, i VLADIMIR PESKOV. "MICROPATTERN GASEOUS DETECTORS". W Proceedings of the 42nd Workshop of the INFN ELOISATRON Project. WORLD SCIENTIFIC, 2004. http://dx.doi.org/10.1142/9789812702951_0012.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Va’vra, J. "Gaseous wire detectors". W Instrumentation in elementary particle physics. AIP, 1998. http://dx.doi.org/10.1063/1.55070.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Hessel, Randy P., Neerav Abani, Salvador M. Aceves i Daniel L. Flowers. "Gaseous Fuel Injection Modeling Using a Gaseous Sphere Injection Methodology". W Powertrain & Fluid Systems Conference and Exhibition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2006. http://dx.doi.org/10.4271/2006-01-3265.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Kolbe, M., i Q. A. Baker. "Gaseous Explosions in Pipes". W ASME 2005 Pressure Vessels and Piping Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/pvp2005-71220.

Pełny tekst źródła
Streszczenie:
Gaseous explosions occurring in industrial piping and process systems have been recorded and documented since the early days of industrialization. Despite the efforts put forth by the academic and scientific communities in understanding these phenomena, these explosions are still occurring in industry. Often times, operating companies that suffered the explosions were unaware of the possibilities of explosion in their piping systems and as a result, installed control and safety systems were not adequate. The mitigation of gaseous explosions in pipes requires a basic understanding of combustion and detonation theory. These events are not confined to chemical and petroleum refining facilities; potentially, they can occur in any system where a flammable mixture can form in pipes. Gaseous explosions arise from the formation of a fuel and oxidizer mixture. Although many systems are known to carry both a fuel and an inert gas to dilute or suppress combustion, the flammability limits of this mixture are often a point of uncertainty. However, it must be understood that there are several factors that can lead a flammable mixture to a strong deflagration or potentially even a detonation. The following paper will discuss the basics of gaseous pipe explosions by defining the chemical and physical limits of both deflagrations and detonations. Examples of industrial accidents involving unique gaseous pipe explosions are provided in the paper as well as recommendations for prevention and mitigation of gaseous pipe explosions.
Style APA, Harvard, Vancouver, ISO itp.
5

Holtkämper, Thorsten. "Real-time gaseous phenomena". W the 2nd international conference. New York, New York, USA: ACM Press, 2003. http://dx.doi.org/10.1145/602330.602335.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Graur, I. A. "Gaseous Flows in Microchannels". W RAREFIED GAS DYNAMICS: 24th International Symposium on Rarefied Gas Dynamics. AIP, 2005. http://dx.doi.org/10.1063/1.1941626.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Chupp, T. E., R. A. Loveman, M. E. Wagshul, A. M. Bernstein, W. Fong, A. K. Thompson, D. Tieger i in. "Polarized gaseous 3He targets". W International symposium on high−energy spin physics. AIP, 1989. http://dx.doi.org/10.1063/1.38356.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Park, Sang Il, i Myoung Jun Kim. "Vortex fluid for gaseous phenomena". W the 2005 ACM SIGGRAPH/Eurographics symposium. New York, New York, USA: ACM Press, 2005. http://dx.doi.org/10.1145/1073368.1073406.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Young, Colin G. "Electronic Gaseous Fuel Carburetion System". W 4th International Pacific Conference on Automotive Engineering. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1987. http://dx.doi.org/10.4271/871293.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Jones, J., A. Over i G. Funk. "Microgravity gaseous combustion flight hardware". W 2001 Conference and Exhibit on International Space Station Utilization. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2001. http://dx.doi.org/10.2514/6.2001-5046.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Raporty organizacyjne na temat "Gaseous"

1

Kurita, C. H. Gaseous Nitrogen Heat Exchanger. Office of Scientific and Technical Information (OSTI), sierpień 1988. http://dx.doi.org/10.2172/1031178.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Okoh, J. M., J. Pinion i S. Thiensatit. Gaseous phase coal surface modification. Office of Scientific and Technical Information (OSTI), maj 1992. http://dx.doi.org/10.2172/5129161.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Russell, R. G., i M. G. Otey. Arsenic removal from gaseous streams. Office of Scientific and Technical Information (OSTI), listopad 1989. http://dx.doi.org/10.2172/5136273.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Skone, Timothy J. Gaseous Diffusion Enrichment Facility, Decommissioning. Office of Scientific and Technical Information (OSTI), listopad 2010. http://dx.doi.org/10.2172/1509065.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Skone, Timothy J. Gaseous Diffusion Uranium Enrichment, Operations. Office of Scientific and Technical Information (OSTI), listopad 2010. http://dx.doi.org/10.2172/1509066.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Hohorst, F. A. Generation of gaseous tritium standards. Office of Scientific and Technical Information (OSTI), wrzesień 1994. http://dx.doi.org/10.2172/10187803.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Turk, B. S., T. Merkel, A. Lopez-Ortiz, R. P. Gupta, J. W. Portzer, G. N. Krishnan, B. D. Freeman i G. K. Fleming. NOVEL TECHNOLOGIES FOR GASEOUS CONTAMINANTS CONTROL. Office of Scientific and Technical Information (OSTI), wrzesień 2001. http://dx.doi.org/10.2172/793531.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

B. S. Turk, R. P. Gupta, S. Gangwal, L. G. Toy, J. R. Albritton, G. Henningsen, P. Presler-Jur i J. Trembly. NOVEL TECHNOLOGIES FOR GASEOUS CONTAMINANTS CONTROL. Office of Scientific and Technical Information (OSTI), kwiecień 2008. http://dx.doi.org/10.2172/1027121.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Pinion, J., i J. Okoh. Gaseous phase surface modification of coal. Office of Scientific and Technical Information (OSTI), styczeń 1990. http://dx.doi.org/10.2172/6677992.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Bliss, Mary. Gaseous Sulfate Solubility in Glass: Experimental Method. Office of Scientific and Technical Information (OSTI), listopad 2013. http://dx.doi.org/10.2172/1113600.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii