Artykuły w czasopismach na temat „Gas Turbine Swirl Injectors”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Gas Turbine Swirl Injectors”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
McGuirk, J. J. "The aerodynamic challenges of aeroengine gas-turbine combustion systems". Aeronautical Journal 118, nr 1204 (czerwiec 2014): 557–99. http://dx.doi.org/10.1017/s0001924000009386.
Pełny tekst źródłaWoo, Seongphil, Jungho Lee, Yeoungmin Han i Youngbin Yoon. "Experimental Study of the Combustion Efficiency in Multi-Element Gas-Centered Swirl Coaxial Injectors". Energies 13, nr 22 (19.11.2020): 6055. http://dx.doi.org/10.3390/en13226055.
Pełny tekst źródłaSo, Younseok, Yeoungmin Han i Sejin Kwon. "Combustion Characteristics of Multi-Element Swirl Coaxial Jet Injectors under Varying Momentum Ratios". Energies 14, nr 13 (5.07.2021): 4064. http://dx.doi.org/10.3390/en14134064.
Pełny tekst źródłaBaba-Ahmadi, M. H., i G. R. Tabor. "Inlet Conditions for Large Eddy Simulation of Gas-Turbine Swirl Injectors". AIAA Journal 46, nr 7 (lipiec 2008): 1782–90. http://dx.doi.org/10.2514/1.35259.
Pełny tekst źródłaPham, Vu Thanh Nam. "AN IMAGE PROCESSING APPROACH FOR DETERMINING THE SPRAY CONE ANGLE OF A PRESSURE SWIRL INJECTOR EQUIPPED IN A GAS-TURBINE ENGINE". Journal of Science and Technique 16, nr 2 (29.08.2022): 33–47. http://dx.doi.org/10.56651/lqdtu.jst.v16.n02.265.
Pełny tekst źródłaJohnson, M. R., D. Littlejohn, W. A. Nazeer, K. O. Smith i R. K. Cheng. "A comparison of the flowfields and emissions of high-swirl injectors and low-swirl injectors for lean premixed gas turbines". Proceedings of the Combustion Institute 30, nr 2 (styczeń 2005): 2867–74. http://dx.doi.org/10.1016/j.proci.2004.07.040.
Pełny tekst źródłaWANG, SHANWU, VIGOR YANG, GEORGE HSIAO, SHIH-YANG HSIEH i HUKAM C. MONGIA. "Large-eddy simulations of gas-turbine swirl injector flow dynamics". Journal of Fluid Mechanics 583 (4.07.2007): 99–122. http://dx.doi.org/10.1017/s0022112007006155.
Pełny tekst źródłaVandervort, C. L. "9 ppm NOx/CO Combustion System for “F” Class Industrial Gas Turbines". Journal of Engineering for Gas Turbines and Power 123, nr 2 (1.01.2001): 317–21. http://dx.doi.org/10.1115/1.1362661.
Pełny tekst źródłaLezsovits, Ferenc, Sándor Könczöl i Krisztián Sztankó. "CO emission reduction of a HRSG duct burner". Thermal Science 14, nr 3 (2010): 845–54. http://dx.doi.org/10.2298/tsci1003845l.
Pełny tekst źródłaCorrea, S. M., A. J. Dean i I. Z. Hu. "Combustion Technology for Low-Emissions Gas-Turbines:Selected Phenomena Beyond NOx". Journal of Energy Resources Technology 118, nr 3 (1.09.1996): 193–200. http://dx.doi.org/10.1115/1.2793862.
Pełny tekst źródłaDurbin, M. D., M. D. Vangsness, D. R. Ballal i V. R. Katta. "Study of Flame Stability in a Step Swirl Combustor". Journal of Engineering for Gas Turbines and Power 118, nr 2 (1.04.1996): 308–15. http://dx.doi.org/10.1115/1.2816592.
Pełny tekst źródłaKuharonak, G. M., M. Klesso, A. Predko i D. Telyuk. "Organization of Six-Cylinder Tractor Diesel Working Process". Science & Technique 20, nr 5 (7.10.2021): 427–33. http://dx.doi.org/10.21122/2227-1031-2021-20-5-427-433.
Pełny tekst źródłaSung, Hong-Gye. "Combustion dynamics in a model lean-premixed gas turbine with a swirl stabilized injector". Journal of Mechanical Science and Technology 21, nr 3 (marzec 2007): 495–504. http://dx.doi.org/10.1007/bf02916311.
Pełny tekst źródłaMardani, Amir, Rezapour Rastaaghi i Fazlollahi Ghomshi. "Liquid petroleum gas flame in a double-swirl gas turbine model combustor: Lean blow-out, pollutant, preheating". Thermal Science, nr 00 (2020): 139. http://dx.doi.org/10.2298/tsci190623139m.
Pełny tekst źródłaTolpadi, A. K., D. L. Burrus i R. J. Lawson. "Numerical Computation and Validation of Two-Phase Flow Downstream of a Gas Turbine Combustor Dome Swirl Cup". Journal of Engineering for Gas Turbines and Power 117, nr 4 (1.10.1995): 704–12. http://dx.doi.org/10.1115/1.2815456.
Pełny tekst źródłaCheng, R. K., D. Littlejohn, P. A. Strakey i T. Sidwell. "Laboratory investigations of a low-swirl injector with H2 and CH4 at gas turbine conditions". Proceedings of the Combustion Institute 32, nr 2 (2009): 3001–9. http://dx.doi.org/10.1016/j.proci.2008.06.141.
Pełny tekst źródłaFord, C. L., J. F. Carrotte i A. D. Walker. "The application of porous media to simulate the upstream effects of gas turbine injector swirl vanes". Computers & Fluids 77 (kwiecień 2013): 143–51. http://dx.doi.org/10.1016/j.compfluid.2013.03.001.
Pełny tekst źródłaCao, Cheng, Yaping Gao, Shaolin Wang, Fuqiang Liu, Cunxi Liu, Yong Mu, Deqing Mei i Gang Xu. "Numerical Investigation on Mechanism of Swirling Flow of the Prefilming Air-Blast Fuel Injector". Energies 16, nr 2 (5.01.2023): 650. http://dx.doi.org/10.3390/en16020650.
Pełny tekst źródłaChoi, Myeung Hwan, Jeongwoo An i Jaye Koo. "Breakup Mechanism of a Jet in the L-Shape Crossflow of a Gas Turbine Combustor". Energies 15, nr 9 (5.05.2022): 3360. http://dx.doi.org/10.3390/en15093360.
Pełny tekst źródłaKim, Lina, Ji-Seok Hong, Won Cheol Jeong, Kwang-Hee Yoo, Jong-Chan Kim i Hong-Gye Sung. "Turbulent Combustion Characteristics of a Swirl Injector in a Gas Turbine Annular Combustor Using LES and Level-set Flamelet". Journal of the Korean Society of Propulsion Engineers 18, nr 2 (1.04.2014): 1–9. http://dx.doi.org/10.6108/kspe.2014.18.2.001.
Pełny tekst źródłaDavis, D. W., P. L. Therkelsen, D. Littlejohn i R. K. Cheng. "Effects of hydrogen on the thermo-acoustics coupling mechanisms of low-swirl injector flames in a model gas turbine combustor". Proceedings of the Combustion Institute 34, nr 2 (styczeń 2013): 3135–43. http://dx.doi.org/10.1016/j.proci.2012.05.050.
Pełny tekst źródłaAkinyemi, Oladapo S., i Lulin Jiang. "Development and combustion characterization of a novel twin-fluid fuel injector in a swirl-stabilized gas turbine burner operating on straight vegetable oil". Experimental Thermal and Fluid Science 102 (kwiecień 2019): 279–90. http://dx.doi.org/10.1016/j.expthermflusci.2018.11.014.
Pełny tekst źródłaAnand, Rahul, PR Ajayalal, Vikash Kumar, A. Salih i K. Nandakumar. "Spray and atomization characteristics of gas-centered swirl coaxial injectors". International Journal of Spray and Combustion Dynamics 9, nr 2 (5.08.2016): 127–40. http://dx.doi.org/10.1177/1756827716660225.
Pełny tekst źródłaLittlejohn, D., i R. K. Cheng. "Fuel effects on a low-swirl injector for lean premixed gas turbines". Proceedings of the Combustion Institute 31, nr 2 (styczeń 2007): 3155–62. http://dx.doi.org/10.1016/j.proci.2006.07.146.
Pełny tekst źródłaKhalil, Ahmed E. E., i Ashwani K. Gupta. "Distributed swirl combustion for gas turbine application". Applied Energy 88, nr 12 (grudzień 2011): 4898–907. http://dx.doi.org/10.1016/j.apenergy.2011.06.051.
Pełny tekst źródłaJia, Lei, Shi Liu, Yao Song Huang, Neng Wang, Fu Zhen Wang i Zhi Hong Li. "Numerical Simulation of Burner for Micro Gas Turbine". Advanced Materials Research 569 (wrzesień 2012): 51–55. http://dx.doi.org/10.4028/www.scientific.net/amr.569.51.
Pełny tekst źródłaFu, Qing-fei. "Numerical simulation of the internal flow of swirl atomizer under ambient pressure". Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 230, nr 15 (8.08.2016): 2650–59. http://dx.doi.org/10.1177/0954406215598803.
Pełny tekst źródłaChong, Cheng Tung, i Simone Hochgreb. "Flow Field of a Model Gas Turbine Swirl Burner". Advanced Materials Research 622-623 (grudzień 2012): 1119–24. http://dx.doi.org/10.4028/www.scientific.net/amr.622-623.1119.
Pełny tekst źródłaSon, Jinwoo, Chae Hoon Sohn, Gujeong Park i Youngbin Yoon. "Spray Patterns and Injection Characteristics of Gas-Centered Swirl Coaxial Injectors". Journal of Aerospace Engineering 30, nr 5 (wrzesień 2017): 04017035. http://dx.doi.org/10.1061/(asce)as.1943-5525.0000745.
Pełny tekst źródłaPark, Gujeong, Jungho Lee, Ingyu Lee i Youngbin Yoon. "Spray Characteristics of Gas-Centered Swirl Coaxial Injectors according to Injection Conditions". Journal of ILASS-Korea 19, nr 4 (31.12.2014): 167–73. http://dx.doi.org/10.15435/jilasskr.2014.19.4.167.
Pełny tekst źródłaWoo, Seongphil, Jungho Lee, Ingyu Lee, Seunghan Kim, Yeoungmin Han i Youngbin Yoon. "Analyzing Combustion Efficiency According to Spray Characteristics of Gas-Centered Swirl-Coaxial Injector". Aerospace 10, nr 3 (10.03.2023): 274. http://dx.doi.org/10.3390/aerospace10030274.
Pełny tekst źródłaKang, Zhongtao, Qinglian Li, Jiaqi Zhang i Peng Cheng. "Effects of gas liquid ratio on the atomization characteristics of gas-liquid swirl coaxial injectors". Acta Astronautica 146 (maj 2018): 24–32. http://dx.doi.org/10.1016/j.actaastro.2018.02.026.
Pełny tekst źródłaPerevoschikov, S. I. "PROCEDURE OF PARAMETRIC DIAGNOSTICS OF GAS PUMPING UNITSWITH TURBINE DRIVE". Oil and Gas Studies, nr 5 (1.11.2016): 101–8. http://dx.doi.org/10.31660/0445-0108-2016-5-101-108.
Pełny tekst źródłaJeong, Gijeong, Yeseung Lee, Juntae Yoon, Hyeontaek Jo i Youngbin Yoon. "ATOMIZATION AND DISTRIBUTION OF DROPLETS IN GAS-LIQUID SPRAYS BY COAXIAL SWIRL INJECTORS". Atomization and Sprays 30, nr 8 (2020): 607–26. http://dx.doi.org/10.1615/atomizspr.2020033825.
Pełny tekst źródłaWang, Xingjian, Liwei Zhang, Yixing Li, Shiang-Ting Yeh i Vigor Yang. "Supercritical combustion of gas-centered liquid-swirl coaxial injectors for staged-combustion engines". Combustion and Flame 197 (listopad 2018): 204–14. http://dx.doi.org/10.1016/j.combustflame.2018.07.018.
Pełny tekst źródłaZhang, Liwei, Xingjian Wang, Yixing Li, Shiang-Ting Yeh i Vigor Yang. "Supercritical fluid flow dynamics and mixing in gas-centered liquid-swirl coaxial injectors". Physics of Fluids 30, nr 7 (lipiec 2018): 075106. http://dx.doi.org/10.1063/1.5026786.
Pełny tekst źródłaGreenberg, Steven J., Neil K. McDougald, Christopher K. Weakley, Robert M. Kendall i Leonel O. Arellano. "Surface-Stabilized Fuel Injectors With Sub-Three PPM NOx Emissions for a 5.5 MW Gas Turbine Engine". Journal of Engineering for Gas Turbines and Power 127, nr 2 (1.04.2005): 276–85. http://dx.doi.org/10.1115/1.1839920.
Pełny tekst źródłaHu, Bo, Yulong Yao, Minfeng Wang, Chuan Wang i Yanming Liu. "Flow and Performance of the Disk Cavity of a Marine Gas Turbine at Varying Nozzle Pressure and Low Rotation Speeds: A Numerical Investigation". Machines 11, nr 1 (5.01.2023): 68. http://dx.doi.org/10.3390/machines11010068.
Pełny tekst źródłaAdzic, Miroljub, Marija Zivkovic, Vasko Fotev, Aleksandar Milivojevic i Vuk Adzic. "Influential parameters of nitrogen oxides emissions for microturbine swirl burner with pilot burner". Chemical Industry 64, nr 4 (2010): 357–63. http://dx.doi.org/10.2298/hemind100319019a.
Pełny tekst źródłaSemenov, A. N., i A. A. Sazanov. "Improving the efficiency of assembly technology for fuel injectors of gas-turbine engines by management of functional parameters of spray package parts". Izvestiya MGTU MAMI 8, nr 1-2 (10.03.2014): 79–84. http://dx.doi.org/10.17816/2074-0530-67748.
Pełny tekst źródłaLiu, Jiao, Jinfu Liu, Daren Yu, Myeongsu Kang, Weizhong Yan, Zhongqi Wang i Michael Pecht. "Fault Detection for Gas Turbine Hot Components Based on a Convolutional Neural Network". Energies 11, nr 8 (17.08.2018): 2149. http://dx.doi.org/10.3390/en11082149.
Pełny tekst źródłaRelation, H. L., J. L. Battaglioli i W. F. Ng. "Numerical Simulations of Nonreacting Flows for Industrial Gas Turbine Combustor Geometries". Journal of Engineering for Gas Turbines and Power 120, nr 3 (1.07.1998): 460–67. http://dx.doi.org/10.1115/1.2818167.
Pełny tekst źródłaIm, Ji-Hyuk, Seongho Cho, Youngbin Yoon i Insang Moon. "Comparative Study of Spray Characteristics of Gas-Centered and Liquid-Centered Swirl Coaxial Injectors". Journal of Propulsion and Power 26, nr 6 (listopad 2010): 1196–204. http://dx.doi.org/10.2514/1.48436.
Pełny tekst źródłaSkachkov, S. V., i D. D. Shpakovskiy. "Numerical simulation of gas flow in jet nozzle". Journal of «Almaz – Antey» Air and Space Defence Corporation, nr 3 (30.09.2016): 41–46. http://dx.doi.org/10.38013/2542-0542-2016-3-41-46.
Pełny tekst źródłaDu, Haifen, Daimei Xie, Wei Jiang, Tong Chen i Jianshu Gao. "Numerical Study on Heat Transfer Enhancement of Swirl Chamber on Gas Turbine Blade". International Journal of Turbo & Jet-Engines 35, nr 4 (19.12.2018): 403–12. http://dx.doi.org/10.1515/tjj-2016-0049.
Pełny tekst źródłaChong, Cheng Tung, i Simone Hochgreb. "Spray Flame Study Using a Model Gas Turbine Swirl Burner". Applied Mechanics and Materials 316-317 (kwiecień 2013): 17–22. http://dx.doi.org/10.4028/www.scientific.net/amm.316-317.17.
Pełny tekst źródłaStone, C., i S. Menon. "Swirl control of combustion instabilities in a gas turbine combustor". Proceedings of the Combustion Institute 29, nr 1 (styczeń 2002): 155–60. http://dx.doi.org/10.1016/s1540-7489(02)80024-4.
Pełny tekst źródłaMeier, W., X. R. Duan i P. Weigand. "Investigations of swirl flames in a gas turbine model combustor". Combustion and Flame 144, nr 1-2 (styczeń 2006): 225–36. http://dx.doi.org/10.1016/j.combustflame.2005.07.009.
Pełny tekst źródłaWeigand, P., W. Meier, X. R. Duan, W. Stricker i M. Aigner. "Investigations of swirl flames in a gas turbine model combustor". Combustion and Flame 144, nr 1-2 (styczeń 2006): 205–24. http://dx.doi.org/10.1016/j.combustflame.2005.07.010.
Pełny tekst źródłaLee, Jungsoo, Hyungyu Lee, Donghwa Kim i Jinsoo Cho. "Pre-swirl Vane Geometry Optimization to Improve Discharge Coefficient of Gas Turbine Pre-swirl System". Transactions of the Korean Society of Mechanical Engineers - B 42, nr 2 (28.02.2018): 101–10. http://dx.doi.org/10.3795/ksme-b.2018.42.2.101.
Pełny tekst źródła