Gotowa bibliografia na temat „Gas turbine swirl injector”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Gas turbine swirl injector”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Gas turbine swirl injector"
Pham, Vu Thanh Nam. "AN IMAGE PROCESSING APPROACH FOR DETERMINING THE SPRAY CONE ANGLE OF A PRESSURE SWIRL INJECTOR EQUIPPED IN A GAS-TURBINE ENGINE". Journal of Science and Technique 16, nr 2 (29.08.2022): 33–47. http://dx.doi.org/10.56651/lqdtu.jst.v16.n02.265.
Pełny tekst źródłaMcGuirk, J. J. "The aerodynamic challenges of aeroengine gas-turbine combustion systems". Aeronautical Journal 118, nr 1204 (czerwiec 2014): 557–99. http://dx.doi.org/10.1017/s0001924000009386.
Pełny tekst źródłaSo, Younseok, Yeoungmin Han i Sejin Kwon. "Combustion Characteristics of Multi-Element Swirl Coaxial Jet Injectors under Varying Momentum Ratios". Energies 14, nr 13 (5.07.2021): 4064. http://dx.doi.org/10.3390/en14134064.
Pełny tekst źródłaWANG, SHANWU, VIGOR YANG, GEORGE HSIAO, SHIH-YANG HSIEH i HUKAM C. MONGIA. "Large-eddy simulations of gas-turbine swirl injector flow dynamics". Journal of Fluid Mechanics 583 (4.07.2007): 99–122. http://dx.doi.org/10.1017/s0022112007006155.
Pełny tekst źródłaWoo, Seongphil, Jungho Lee, Yeoungmin Han i Youngbin Yoon. "Experimental Study of the Combustion Efficiency in Multi-Element Gas-Centered Swirl Coaxial Injectors". Energies 13, nr 22 (19.11.2020): 6055. http://dx.doi.org/10.3390/en13226055.
Pełny tekst źródłaLezsovits, Ferenc, Sándor Könczöl i Krisztián Sztankó. "CO emission reduction of a HRSG duct burner". Thermal Science 14, nr 3 (2010): 845–54. http://dx.doi.org/10.2298/tsci1003845l.
Pełny tekst źródłaDurbin, M. D., M. D. Vangsness, D. R. Ballal i V. R. Katta. "Study of Flame Stability in a Step Swirl Combustor". Journal of Engineering for Gas Turbines and Power 118, nr 2 (1.04.1996): 308–15. http://dx.doi.org/10.1115/1.2816592.
Pełny tekst źródłaSung, Hong-Gye. "Combustion dynamics in a model lean-premixed gas turbine with a swirl stabilized injector". Journal of Mechanical Science and Technology 21, nr 3 (marzec 2007): 495–504. http://dx.doi.org/10.1007/bf02916311.
Pełny tekst źródłaMardani, Amir, Rezapour Rastaaghi i Fazlollahi Ghomshi. "Liquid petroleum gas flame in a double-swirl gas turbine model combustor: Lean blow-out, pollutant, preheating". Thermal Science, nr 00 (2020): 139. http://dx.doi.org/10.2298/tsci190623139m.
Pełny tekst źródłaCheng, R. K., D. Littlejohn, P. A. Strakey i T. Sidwell. "Laboratory investigations of a low-swirl injector with H2 and CH4 at gas turbine conditions". Proceedings of the Combustion Institute 32, nr 2 (2009): 3001–9. http://dx.doi.org/10.1016/j.proci.2008.06.141.
Pełny tekst źródłaRozprawy doktorskie na temat "Gas turbine swirl injector"
Homitz, Joseph. "A Lean-Premixed Hydrogen Injector with Vane Driven Swirl for Application in Gas Turbines". Thesis, Virginia Tech, 2006. http://hdl.handle.net/10919/36334.
Pełny tekst źródła
Numerous efforts have been made to develop gas turbine fuel injectors that premix methane/natural gas and air in fuel lean proportions prior to the reaction zone. Application of this technique to hydrogen combustion has been limited due to hydrogen's high flame rate and the concern of the reaction zone propagating into the premixing injector, commonly referred to as flashback. In this investigation, a lean-premixing hydrogen injector has been developed for application in small gas turbines. The performance of this injector was characterized and predictions about the injector's performance operating under combustor inlet conditions of a PT6-20 Turboprop have been made.
Master of Science
Anning, Grant Hugh Gary. "The Effect of Fuel Injector Geometry on the Flow Structure of a Swirl Stabilized Gas Turbine Burner". University of Cincinnati / OhioLINK, 2002. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1024672199.
Pełny tekst źródłaCheng, Liangta. "Combined PIV/PLIF measurements in a high-swirl fuel injector flowfield". Thesis, Loughborough University, 2013. https://dspace.lboro.ac.uk/2134/11936.
Pełny tekst źródłaAhmad, N. T. "Swirl stabilised gas turbine combustion". Thesis, University of Leeds, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.356423.
Pełny tekst źródłaMehdi, Ahad. "Effect of swirl distortion on gas turbine operability". Thesis, Cranfield University, 2014. http://dspace.lib.cranfield.ac.uk/handle/1826/12129.
Pełny tekst źródłaAbdulsada, Mohammed. "Flashback and blowoff characteristics of gas turbine swirl combustor". Thesis, Cardiff University, 2011. http://orca.cf.ac.uk/24193/.
Pełny tekst źródłaGhulam, Mohamad. "Characterization of Swirling Flow in a Gas Turbine Fuel Injector". University of Cincinnati / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1563877023803877.
Pełny tekst źródłaRunyon, Jon. "Gas turbine fuel flexibility : pressurized swirl flame stability, thermoacoustics, and emissions". Thesis, Cardiff University, 2017. http://orca.cf.ac.uk/100686/.
Pełny tekst źródłaSharma, Anshu. "Numerical Investigation of a Swirl Induced Flameless Combustor for Gas Turbine Applications". University of Cincinnati / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1613731788158991.
Pełny tekst źródłaAbdullah, Abu Hasan. "The application of high inlet swirl angles for broad operating range turbocharger compressor". Thesis, University of Bath, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.320555.
Pełny tekst źródłaKsiążki na temat "Gas turbine swirl injector"
B, Kennedy J., Russell S i United States. National Aeronautics and Space Administration., red. Fuel-injector/air-swirl characterization. [Washington, DC: National Aeronautics and Space Administration, 1988.
Znajdź pełny tekst źródłaB, Kennedy J., Russell S i United States. National Aeronautics and Space Administration., red. Fuel-injector/air-swirl characterization. [Washington, DC: National Aeronautics and Space Administration, 1988.
Znajdź pełny tekst źródłaUnited States. National Aeronautics and Space Administration., red. FUEL INJECTOR PATTERNATION EVALUATION IN ADVANCED LIQUID-FUELED, HIGH PRESSURE, GAS TURBINE COMBUSTORS, USING... NASA/TM-1998-206292... APR. [S.l: s.n., 1999.
Znajdź pełny tekst źródłaSmall gas turbine combustor study: Fuel injector performance in a transpiration-cooled liner. [Washington, DC]: National Aeronautics and Space Administration, 1985.
Znajdź pełny tekst źródłaExperimental Results for a High Swirl, Ultra Compact Combustor for Gas Turbine Engines. Storming Media, 2003.
Znajdź pełny tekst źródłaCzęści książek na temat "Gas turbine swirl injector"
Ghose, Prakash, i A. Datta. "Effect of Inlet Swirl and Turbulence Levels on Combustion Performance in a Model Kerosene Spray Gas Turbine Combustor". W Lecture Notes in Mechanical Engineering, 493–504. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-7831-1_46.
Pełny tekst źródłaPandey, Rahul, i Krishnakant Agrawal. "Development of a Numerical Tool for Studying Turbulent Fuel–air Mixing in Swirl-Based Gas Turbine Combustion Chambers". W Lecture Notes in Mechanical Engineering, 199–211. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-6490-8_17.
Pełny tekst źródła"Flow And Flame Dynamics Of Lean Premixed Swirl Injectors". W Combustion Instabilities In Gas Turbine Engines, 213–76. Reston ,VA: American Institute of Aeronautics and Astronautics, 2006. http://dx.doi.org/10.2514/5.9781600866807.0213.0276.
Pełny tekst źródłaDomingues, Rafael, i Francisco Brójo. "Conversion of Gas Turbine Combustors to Operate with a Hydrogen-Air Mixture: Modifications and Pollutant Emission Analysis". W Hydrogen Energy - New Insights [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.106224.
Pełny tekst źródłaRocco Jr., Leopoldo. "Disintegration of Liquid Sheet Produced by Swirl Injector". W Energetic Materials Research, Applications, and New Technologies, 133–45. IGI Global, 2018. http://dx.doi.org/10.4018/978-1-5225-2903-3.ch006.
Pełny tekst źródłaPalm, R., S. Grundmann, M. Weismüller, S. Šarić, S. Jakirlić i C. Tropea. "Experimental characterization and modelling of inflow conditions for a gas turbine swirl combustor". W Engineering Turbulence Modelling and Experiments 6, 835–44. Elsevier, 2005. http://dx.doi.org/10.1016/b978-008044544-1/50080-7.
Pełny tekst źródłaStreszczenia konferencji na temat "Gas turbine swirl injector"
Wang, Shanwu, Shih-Yang Hsieh i Vigor Yang. "Numerical simulation of gas turbine swirl-stabilized injector dynamics". W 39th Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2001. http://dx.doi.org/10.2514/6.2001-334.
Pełny tekst źródłaHedman, Paul O., Thomas H. Fletcher, Stewart G. Graham, G. Wayne Timothy, Daniel V. Flores i Jason K. Haslam. "Observations of Flame Behavior in a Laboratory-Scale Pre-Mixed Natural Gas/Air Gas Turbine Combustor From PLIF Measurements of OH". W ASME Turbo Expo 2002: Power for Land, Sea, and Air. ASMEDC, 2002. http://dx.doi.org/10.1115/gt2002-30052.
Pełny tekst źródłaRana, Rampada, Muthuveerappan Nagalingam i Saptarshi Basu. "Numerical Behaviour of Primary Air Flow Field of a Swirl Injector Under High Pressure and High Temperature Condition". W ASME 2021 Gas Turbine India Conference. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/gtindia2021-76449.
Pełny tekst źródłaStraub, Douglas L., i Geo A. Richards. "Effect of Axial Swirl Vane Location on Combustion Dynamics". W ASME 1999 International Gas Turbine and Aeroengine Congress and Exhibition. American Society of Mechanical Engineers, 1999. http://dx.doi.org/10.1115/99-gt-109.
Pełny tekst źródłaAltaher, Mohamed A., Hu Li i Gordon E. Andrews. "Co-Firing of Kerosene and Biodiesel With Natural Gas in a Low NOx Radial Swirl Combustor". W ASME Turbo Expo 2012: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/gt2012-68597.
Pełny tekst źródłaKumar, Sonu, Swetaprovo Chaudhuri i Saptarshi Basu. "On Effect of the Flare Angle on the Behaviour of the Flow Field of Twin-Radial Swirlers/High Shear Injector". W ASME 2019 Gas Turbine India Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/gtindia2019-2537.
Pełny tekst źródłaChatterjee, Souvick, Samiran Samanta, Achintya Mukhopadhyay, Koushik Ghosh i Swarnendu Sen. "Effect of a Confined Outer Air Stream on Instability of an Annular Liquid Sheet Exposed to Gas Flow". W ASME 2012 Gas Turbine India Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/gtindia2012-9605.
Pełny tekst źródłaLi, Jianing, Mahmoud Hamza, Arul Kumaran, Umesh Bhayaraju i San-Mou Jeng. "Study of Development of a Novel Dual Phase Airblast Injector for Gas Turbine Combustor". W ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/gt2016-56340.
Pełny tekst źródłaStringer, F. W., i A. N. Irwin. "Design Features Influencing the Distribution of Fuel Within the Spray From an Air Blast Fuel Injector". W ASME 1992 International Gas Turbine and Aeroengine Congress and Exposition. American Society of Mechanical Engineers, 1992. http://dx.doi.org/10.1115/92-gt-235.
Pełny tekst źródłaTherkelsen, Peter L., David Littlejohn i Robert K. Cheng. "Parametric Study of Low-Swirl Injector Geometry on its Operability". W ASME Turbo Expo 2012: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/gt2012-68436.
Pełny tekst źródła