Artykuły w czasopismach na temat „Gas solid interaction”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Gas solid interaction”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Dolmatov, A. I., i S. A. Polyviany. "Interaction of Solid Particles from a Gas Stream with the Surface of a Flat Nozzle". METALLOFIZIKA I NOVEISHIE TEKHNOLOGII 43, nr 3 (1.06.2021): 319–28. http://dx.doi.org/10.15407/mfint.43.03.0319.
Pełny tekst źródłaSychov, Maxim М., Sergey V. Mjakin, Alexander I. Ponyaev i Victor V. Belyaev. "Acid-Base (Donor-Acceptor) Properties of Solids and Relations with Functional Properties". Advanced Materials Research 1117 (lipiec 2015): 147–51. http://dx.doi.org/10.4028/www.scientific.net/amr.1117.147.
Pełny tekst źródłaLi, Zhengquan, Kaiwei Chu, Renhu Pan, Aibing Yu i Jiaqi Yang. "Computational Study of Gas-Solid Flow in a Horizontal Stepped Pipeline". Mathematical Problems in Engineering 2019 (15.09.2019): 1–15. http://dx.doi.org/10.1155/2019/2545347.
Pełny tekst źródłaSharma, Renu, Karl Weiss, Michael McKelvy i William Glaunsinger. "Gas reaction chamber for gas-solid interaction studies by high-resolution TEM". Proceedings, annual meeting, Electron Microscopy Society of America 52 (1994): 494–95. http://dx.doi.org/10.1017/s0424820100170207.
Pełny tekst źródłaLiu, Xiao Li, Wen Jing Si i Chun Ying Zhu. "Research on the Gas Migration Regularity of Municipal Solid Waste Landfill in the Solid-Liquid-Gas-Heat Interaction". Advanced Materials Research 243-249 (maj 2011): 2216–19. http://dx.doi.org/10.4028/www.scientific.net/amr.243-249.2216.
Pełny tekst źródłaGiampaolo, Ciriaco, i Socio A. Mottana. "A new experimental technique for gas-solid interaction studies." Rendiconti Lincei 1, nr 2 (czerwiec 1990): 165–69. http://dx.doi.org/10.1007/bf03001891.
Pełny tekst źródłaHrach, Rudolf, Jiří Šimek i Věra Hrachová. "Study of plasma—solid interaction in electronegative gas mixtures". Czechoslovak Journal of Physics 56, nr 12 (grudzień 2006): 1437–44. http://dx.doi.org/10.1007/s10582-006-0456-0.
Pełny tekst źródłaDoss, E. D., i M. G. Srinivasan. "Modeling of Wall Friction for Multispecies Solid-Gas Flows". Journal of Fluids Engineering 108, nr 4 (1.12.1986): 486–88. http://dx.doi.org/10.1115/1.3242608.
Pełny tekst źródłaMironov, D. V., V. M. Mironov, V. F. Mazanko, D. S. Gertsriken i P. V. Peretyatku. "Interaction of metals and alloys with gas media under spark discharges". Resource-Efficient Technologies, nr 3 (28.08.2018): 19–36. http://dx.doi.org/10.18799/24056537/2018/3/199.
Pełny tekst źródłaMironov, D. V., V. M. Mironov, V. F. Mazanko, D. S. Gertsriken i P. V. Peretyatku. "Interaction of metals and alloys with gas media under spark discharges". Resource-Efficient Technologies, nr 3 (28.08.2018): 19–36. http://dx.doi.org/10.18799/24056529/2018/3/199.
Pełny tekst źródłaWashino, K., H. S. Tan, A. D. Salman i M. J. Hounslow. "Direct numerical simulation of solid–liquid–gas three-phase flow: Fluid–solid interaction". Powder Technology 206, nr 1-2 (styczeń 2011): 161–69. http://dx.doi.org/10.1016/j.powtec.2010.07.015.
Pełny tekst źródłaZongyang, Li, Bi Lin i Chen Jianqiang. "Gas-Solid Interface Interactions Based on Molecular Dynamics Simulations". Journal of Physics: Conference Series 2235, nr 1 (1.05.2022): 012066. http://dx.doi.org/10.1088/1742-6596/2235/1/012066.
Pełny tekst źródłaYang, Youqing, Pengtao Sun i Zhen Chen. "Combined MPM-DEM for Simulating the Interaction Between Solid Elements and Fluid Particles". Communications in Computational Physics 21, nr 5 (27.03.2017): 1258–81. http://dx.doi.org/10.4208/cicp.oa-2016-0050.
Pełny tekst źródłaNiu, Dong, i Hongtao Gao. "Thermal Conductivity of Ordered Porous Structures Coupling Gas and Solid Phases: A Molecular Dynamics Study". Materials 14, nr 9 (26.04.2021): 2221. http://dx.doi.org/10.3390/ma14092221.
Pełny tekst źródłaYang, Mingyang, Qiang Sheng, Lin Guo, Hu Zhang i Guihua Tang. "How Gas–Solid Interaction Matters in Graphene-Doped Silica Aerogels". Langmuir 38, nr 7 (7.02.2022): 2238–47. http://dx.doi.org/10.1021/acs.langmuir.1c02777.
Pełny tekst źródłaGavrilov, K. I., i V. P. Lyubivoi. "Solid-liquid interaction in activating gas-free powder-system combustion". Combustion, Explosion, and Shock Waves 25, nr 4 (1990): 446–48. http://dx.doi.org/10.1007/bf00751554.
Pełny tekst źródłaTAKEUCHI, Hideki, Kyoji YAMAMOTO i Toru HYAKUTAKE. "Molecular dynamics study of gas-solid interaction for diatomic molecule". Proceedings of Conference of Chugoku-Shikoku Branch 2004.42 (2004): 373–74. http://dx.doi.org/10.1299/jsmecs.2004.42.373.
Pełny tekst źródłaGenevaux, J. M., i D. Bernardin. "THE LATTICE GAS METHOD AND INTERACTION WITH AN ELASTIC SOLID". Journal of Fluids and Structures 10, nr 8 (listopad 1996): 873–92. http://dx.doi.org/10.1006/jfls.1996.0057.
Pełny tekst źródłaGolovin, A. A. "Thermocapillary interaction between a solid particle and a gas bubble". International Journal of Multiphase Flow 21, nr 4 (sierpień 1995): 715–19. http://dx.doi.org/10.1016/0301-9322(95)00001-e.
Pełny tekst źródłaHrma, P., J. Bartoň i T. L. Tolt. "Interaction between solid, liquid and gas during glass batch melting". Journal of Non-Crystalline Solids 84, nr 1-3 (lipiec 1986): 370–80. http://dx.doi.org/10.1016/0022-3093(86)90799-4.
Pełny tekst źródłaMohammad Nejad, Shahin, Silvia Nedea, Arjan Frijns i David Smeulders. "The Influence of Gas–Wall and Gas–Gas Interactions on the Accommodation Coefficients for Rarefied Gases: A Molecular Dynamics Study". Micromachines 11, nr 3 (19.03.2020): 319. http://dx.doi.org/10.3390/mi11030319.
Pełny tekst źródłaZhang, Xinwei, Yonggang Yu i Yubo Hu. "Experimental Study on Gas–Liquid–Solid Interaction Characteristics in the Launch Tube". Journal of Marine Science and Engineering 10, nr 9 (3.09.2022): 1239. http://dx.doi.org/10.3390/jmse10091239.
Pełny tekst źródłaHadjoudis, E. "Gas-Solid Reactions : Part VI. Interaction of Solid Chalcones With Bromine and Iodine Vapours". Molecular Crystals and Liquid Crystals 134, nr 1 (kwiecień 1986): 237–44. http://dx.doi.org/10.1080/00268948608079587.
Pełny tekst źródłaYang, P., J. Xiang, M. Chen, F. Fang, D. Pavlidis, J. P. Latham i C. C. Pain. "The immersed-body gas-solid interaction model for blast analysis in fractured solid media". International Journal of Rock Mechanics and Mining Sciences 91 (styczeń 2017): 119–32. http://dx.doi.org/10.1016/j.ijrmms.2016.10.006.
Pełny tekst źródłaShen, Wei Jun, Xi Zhe Li, Jia Liang Lu i Xiao Hua Liu. "The Fluid-Solid Coupling Seepage Mathematical Model of Shale Gas". Applied Mechanics and Materials 275-277 (styczeń 2013): 598–602. http://dx.doi.org/10.4028/www.scientific.net/amm.275-277.598.
Pełny tekst źródłaDilla, Martin, Ahmet E. Becerikli, Alina Jakubowski, Robert Schlögl i Simon Ristig. "Development of a tubular continuous flow reactor for the investigation of improved gas–solid interaction in photocatalytic CO2 reduction on TiO2". Photochemical & Photobiological Sciences 18, nr 2 (2019): 314–18. http://dx.doi.org/10.1039/c8pp00518d.
Pełny tekst źródłaYang, Changbao, Zhisheng Wang, Zhe Chen, Yuanwei Lyu i Jingyang Zhang. "Numerical Investigation of Unsteady Characteristics of Gas Foil Journal Bearings with Fluid–Structure Interaction". Aerospace 10, nr 7 (5.07.2023): 616. http://dx.doi.org/10.3390/aerospace10070616.
Pełny tekst źródłaWang, Deng Ke, Jian Ping Wei, Heng Jie Qin i Le Wei. "Research on Solid-Gas Coupling Dynamic Model for Loaded Coal Containing Gas". Advanced Materials Research 594-597 (listopad 2012): 446–51. http://dx.doi.org/10.4028/www.scientific.net/amr.594-597.446.
Pełny tekst źródłaWu, Jing, Xiong Chen i Xi Yu. "Numerical Analysis of Fluid-Structure Interaction during Ignition Process for Solid Rocket Motor with Stress-Reliver". Applied Mechanics and Materials 184-185 (czerwiec 2012): 328–32. http://dx.doi.org/10.4028/www.scientific.net/amm.184-185.328.
Pełny tekst źródłaKuzenov, Victor V., Sergei V. Ryzhkov i Aleksey Yu Varaksin. "The Adaptive Composite Block-Structured Grid Calculation of the Gas-Dynamic Characteristics of an Aircraft Moving in a Gas Environment". Mathematics 10, nr 12 (19.06.2022): 2130. http://dx.doi.org/10.3390/math10122130.
Pełny tekst źródłaLevin, V. A., I. S. Manuylovich i V. V. Markov. "Mathematical modeling of shock-wave processes under gas solid boundary interaction". Proceedings of the Steklov Institute of Mathematics 281, nr 1 (lipiec 2013): 37–48. http://dx.doi.org/10.1134/s0081543813040056.
Pełny tekst źródłaLeshansky, A. M., A. A. Golovin i A. Nir. "Thermocapillary interaction between a solid particle and a liquid-gas interface". Physics of Fluids 9, nr 10 (październik 1997): 2818–27. http://dx.doi.org/10.1063/1.869394.
Pełny tekst źródłaMozyrsky, Dima, Vladimir Privman i M. Lawrence Glasser. "Indirect Interaction of Solid-State Qubits via Two-Dimensional Electron Gas". Physical Review Letters 86, nr 22 (28.05.2001): 5112–15. http://dx.doi.org/10.1103/physrevlett.86.5112.
Pełny tekst źródłaNakamura, Masato, Masaru Tsukada i Masakazu Aono. "Interaction of low-velocity rare-gas ions with a solid surface". Surface Science Letters 283, nr 1-3 (marzec 1993): A232. http://dx.doi.org/10.1016/0167-2584(93)90655-3.
Pełny tekst źródłaAmelyushkin, I. A., i A. L. Stasenko. "Simulation of gas-dispersed flow particles’ interaction with a solid body". Journal of Physics: Conference Series 1560 (czerwiec 2020): 012064. http://dx.doi.org/10.1088/1742-6596/1560/1/012064.
Pełny tekst źródłaNakamura, Masato, Masaru Tsukada i Masakazu Aono. "Interaction of low-velocity rare-gas ions with a solid surface". Surface Science 283, nr 1-3 (marzec 1993): 46–51. http://dx.doi.org/10.1016/0039-6028(93)90957-l.
Pełny tekst źródłaSubramanian, V., M. G. Lakshmikantha i J. A. Sekhar. "Dynamic modeling of the interaction of gas and solid phases in multistep reactive micropyretic synthesis". Journal of Materials Research 10, nr 5 (maj 1995): 1235–46. http://dx.doi.org/10.1557/jmr.1995.1235.
Pełny tekst źródłaBabenko P. Yu., Zinoviev A. N., Mikhailov V. S., Tensin D.S. i Shergin A. P. "The ion-solid interaction potential determination from the backscattered particles spectra". Technical Physics Letters 48, nr 7 (2022): 50. http://dx.doi.org/10.21883/tpl.2022.07.54039.19231.
Pełny tekst źródłaGumbs, Godfrey, i Danhong Huang. "INTERBAND ANYON PLASMON EXCITATIONS IN AN ALTERNATING-LAYERED INTERACTING ANYON GAS SYSTEM". International Journal of Modern Physics B 05, nr 10 (czerwiec 1991): 1597–605. http://dx.doi.org/10.1142/s0217979291001504.
Pełny tekst źródłaRegály, Zs. "Torques felt by solid accreting planets". Monthly Notices of the Royal Astronomical Society 497, nr 4 (29.08.2020): 5540–49. http://dx.doi.org/10.1093/mnras/staa2181.
Pełny tekst źródłaPeng, Xu, Guoning Rao, Bin Li, Shunyao Wang i Wanghua Chen. "Investigation on the Gas–Solid Two-Phase Flow in the Interaction between Plane Shock Wave and Quartz Sand Particles". Applied Sciences 10, nr 24 (10.12.2020): 8859. http://dx.doi.org/10.3390/app10248859.
Pełny tekst źródłaZhou, An Ning, Tie Shuan Zhang, Xiu Bin Ren i Li Zhen Zheng. "CFD Modeling of the Fast Pyrolysis of Coal in Cold Flow Fluidized Bed". Advanced Materials Research 396-398 (listopad 2011): 209–12. http://dx.doi.org/10.4028/www.scientific.net/amr.396-398.209.
Pełny tekst źródłaChang, Cheng, i Su Hua. "Analysis on Thermal-Fluid-Solid Interaction of Straight Pad Finger Seal Performance". Applied Mechanics and Materials 249-250 (grudzień 2012): 498–504. http://dx.doi.org/10.4028/www.scientific.net/amm.249-250.498.
Pełny tekst źródłaBao, Fubing, Zhihong Mao i Limin Qiu. "Study of gaseous velocity slip in nano-channel using molecular dynamics simulation". International Journal of Numerical Methods for Heat & Fluid Flow 24, nr 6 (29.07.2014): 1338–47. http://dx.doi.org/10.1108/hff-04-2013-0145.
Pełny tekst źródłaZhang, Fengyan, i Haidong Wang. "Optimization of Drilling Parameters in Influence Area of Gas–Solid Interaction during Parallel Drilling Hole". Processes 11, nr 8 (7.08.2023): 2371. http://dx.doi.org/10.3390/pr11082371.
Pełny tekst źródłaLiu, Tong, Min Shan Liu i Qi Wu Dong. "The Influence of Solid Wall-Fluid Molecular Interaction on Transport Properties of Gases in a Mini/micro Channel". Advanced Materials Research 354-355 (październik 2011): 9–18. http://dx.doi.org/10.4028/www.scientific.net/amr.354-355.9.
Pełny tekst źródłaBorisov, Sergey, Julia Gloukhovskaya, Sergey Dobrovolskiy, Alexander Myakochin i Igor Podporin. "Mechanism of the powder material particle in different phase states—solid substrate interaction". MATEC Web of Conferences 362 (2022): 01005. http://dx.doi.org/10.1051/matecconf/202236201005.
Pełny tekst źródłaCocco, Giorgio, G. Mulas i Liliana Schiffini. "Gas-Solid Interaction in Milling Processes: Mechanochemical Hydrogenation Reactions via Metal Hydrides". Materials Science Forum 179-181 (luty 1995): 281–86. http://dx.doi.org/10.4028/www.scientific.net/msf.179-181.281.
Pełny tekst źródłaChalon, F., i F. Montheillet. "The Interaction of Two Spherical Gas Bubbles in an Infinite Elastic Solid". Journal of Applied Mechanics 70, nr 6 (1.11.2003): 789–98. http://dx.doi.org/10.1115/1.1629110.
Pełny tekst źródłaSerdyuk, Y. V., i S. M. Gubanski. "Computer modeling of interaction of gas discharge plasma with solid dielectric barriers". IEEE Transactions on Dielectrics and Electrical Insulation 12, nr 4 (sierpień 2005): 725–35. http://dx.doi.org/10.1109/tdei.2005.1511098.
Pełny tekst źródła