Gotowa bibliografia na temat „Gas adsorption and selectivity”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Gas adsorption and selectivity”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Gas adsorption and selectivity"
Jiang, Weile, Yong Xia, Aifei Pan, Yunyun Luo, Yaqiong Su, Sikai Zhao, Tao Wang i Libo Zhao. "Facet-Dependent Gas Adsorption Selectivity on ZnO: A DFT Study". Chemosensors 10, nr 10 (21.10.2022): 436. http://dx.doi.org/10.3390/chemosensors10100436.
Pełny tekst źródłaChan Wai, Hoong, Mohd Noor Mazlee, Zainal Arifin Ahmad, Shamsul Baharin Jamaludin, Mohd Azlan Mohd Ishak i Muhammad Shahar Jusoh. "Sustainable Porous Materials for Gas Adsorption Applications; A Concise Review". Advanced Materials Research 795 (wrzesień 2013): 96–101. http://dx.doi.org/10.4028/www.scientific.net/amr.795.96.
Pełny tekst źródłaHe, Jiating, i Xu Li. "Metal–Organic Framework for Selective Gas Scavenging". Journal of Molecular and Engineering Materials 04, nr 04 (grudzień 2016): 1640014. http://dx.doi.org/10.1142/s2251237316400141.
Pełny tekst źródłaParinyakit, Supatsorn, i Patcharin Worathanakul. "Static and Dynamic Simulation of Single and Binary Component Adsorption of CO2 and CH4 on Fixed Bed Using Molecular Sieve of Zeolite 4A". Processes 9, nr 7 (20.07.2021): 1250. http://dx.doi.org/10.3390/pr9071250.
Pełny tekst źródłaWu, Chin-Wen, i Shivaji Sircar. "Comments on binary and ternary gas adsorption selectivity". Separation and Purification Technology 170 (październik 2016): 453–61. http://dx.doi.org/10.1016/j.seppur.2016.06.053.
Pełny tekst źródłaDutta, Sujeet, Ronan Lefort, Denis Morineau, Ramona Mhanna, Odile Merdrignac-Conanec, Arnaud Saint-Jalmes i Théo Leclercq. "Thermodynamics of binary gas adsorption in nanopores". Physical Chemistry Chemical Physics 18, nr 35 (2016): 24361–69. http://dx.doi.org/10.1039/c6cp01587e.
Pełny tekst źródłaDubskikh, Vadim A., Konstantin A. Kovalenko, Anton S. Nizovtsev, Anna A. Lysova, Denis G. Samsonenko, Danil N. Dybtsev i Vladimir P. Fedin. "Enhanced Adsorption Selectivity of Carbon Dioxide and Ethane on Porous Metal–Organic Framework Functionalized by a Sulfur-Rich Heterocycle". Nanomaterials 12, nr 23 (1.12.2022): 4281. http://dx.doi.org/10.3390/nano12234281.
Pełny tekst źródłaIsmail, Marhaina, Mohamad Azmi Bustam, Nor Ernie Fatriyah Kari i Yin Fong Yeong. "Ideal Adsorbed Solution Theory (IAST) of Carbon Dioxide and Methane Adsorption Using Magnesium Gallate Metal-Organic Framework (Mg-gallate)". Molecules 28, nr 7 (28.03.2023): 3016. http://dx.doi.org/10.3390/molecules28073016.
Pełny tekst źródłaZhang, Xiaoxing, Rongxing Fang, Dachang Chen i Guozhi Zhang. "Using Pd-Doped γ-Graphyne to Detect Dissolved Gases in Transformer Oil: A Density Functional Theory Investigation". Nanomaterials 9, nr 10 (19.10.2019): 1490. http://dx.doi.org/10.3390/nano9101490.
Pełny tekst źródłaPan, Sudip, Ranajit Saha, Subhajit Mandal, Sukanta Mondal, Ashutosh Gupta, María A. Fernández-Herrera, Gabriel Merino i Pratim K. Chattaraj. "Selectivity in Gas Adsorption by Molecular Cucurbit[6]uril". Journal of Physical Chemistry C 120, nr 26 (28.06.2016): 13911–21. http://dx.doi.org/10.1021/acs.jpcc.6b02545.
Pełny tekst źródłaRozprawy doktorskie na temat "Gas adsorption and selectivity"
Garcia, Edder. "CO2 adsorption from synthesis gas mixtures : understanding selectivity and capacity of new adsorbents". Thesis, Lyon 1, 2012. http://www.theses.fr/2012LYO10195.
Pełny tekst źródłaThe design of new environmentally friendly and efficient adsorbents for CO2 separation requires a quantitative link between the adsorbent properties and adsorption capabilities. In this work we develop a methodology, which explicitly takes into account the adsorbent properties, such as the pore diameter, density, pore shape and chemical composition. The objective is to establish quantitative correlations between the above-mentioned parameters and the forces that govern physisorption in porous media, i.e. van der Waals forces and electrostatic interactions. Thus, the optimal properties of the adsorbent for CO2 separation are identified. In parallel to these theoretical studies, a series of potentially interesting adsorbents for CO2 separation by PSA were tested experimentally. A systematic study of the influence of the metal center on the separations of CO2/CH4 and CO2/CH4/CO mixtures was carried out on MOFs presenting coordinatively unsaturated sites. In the case of zeolites, the effect of the framework composition (Si/Al ratio) on the separation properties was studied. The cyclic capacities and selectivities were determined by breakthrough experiments. Materials presenting a good compromise between selectivity and working capacity under typical PSA conditions were identified. Finally, a comparison between the prediction of the adsorption model and the breakthrough experiments is carried out
Gonciaruk, Aleksandra. "Graphene and triptycene based porous materials for adsorption applications". Thesis, University of Manchester, 2016. https://www.research.manchester.ac.uk/portal/en/theses/graphene-and-triptycene-based-porous-materials-for-adsorption-applications(932755b9-1600-4f64-8683-00844645a58b).html.
Pełny tekst źródłaKhaddour, Fadi. "Amélioration de la production de gaz des « Tight Gas Reservoirs »". Thesis, Pau, 2014. http://www.theses.fr/2014PAUU3005/document.
Pełny tekst źródłaThe valorization of compact gas reservoirs, called tight gas reservoirs (TGR), whose discoveries are important, would significantly increase the global hydrocarbon resources. With the aim of improving the production of these types of gas, we have conducted a study to achieve a better understanding of the relationship between damage and the transport properties of geomaterials. The microstructure evolution of specimens, which were submitted beforehand to dynamic loading, has been investigated. An estimation of their permeability upon damage is first presented with the help of a bundle model of parallel capillaries coupling Poiseuille flow with Knudsen diffusion. Then, we have carried out an experimental work to estimate the permeability evolution upon damage in relation to the evolution of the pore size distribution in uniaxial compression. The measurements of permeability have been performed on mortar cylinders, designed to mimic typical tight rocks that can be found in tight gas reservoirs. Microstructural characterization of damaged mortars has been performed with the help of mercury intrusion porosimetry (MIP). To estimate the permeability evolution, a new random hierarchical model has been devised. The comparisons with the experimental data show the ability of this model to estimate not only the apparent and intrinsic permeabilities but also their evolutions under loading due to a change in the pore size distribution. This model and the experimental set up have been extended to estimate the relative permeabilities of gas mixtures in the future. The final chapter presents a study of the adsorption of methane on different porous media fractured by electrical shocks. The results, concerning the estimation of the in-place resources, have shown that fracturing can enhance the extraction of the initial amount of adsorbed gas
TAZKRITT, SAID. "Etude du role des supports et promoteurs en reaction co/h : :(2) sur des catalyseurs a base de rhodium". Université Louis Pasteur (Strasbourg) (1971-2008), 1989. http://www.theses.fr/1989STR13102.
Pełny tekst źródłaBattrum, M. J. "Gas separation by adsorption". Thesis, University of Bath, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.376289.
Pełny tekst źródłaRöck, Frank. "System based selectivity improvements of gas sensor arrays". Aachen Shaker, 2009. http://d-nb.info/995246033/04.
Pełny tekst źródłaBecer, Metin Özkan Fehime S. "Gas adsorption in volumetric system/". [s.l.]: [s.n.], 2003. http://library.iyte.edu.tr/tezler/master/kimyamuh/T000256.rar.
Pełny tekst źródłaZou, Jie. "Assessment of Gas Adsorption Capacity in Shale Gas Reservoirs". Thesis, Curtin University, 2019. http://hdl.handle.net/20.500.11937/75387.
Pełny tekst źródłaApolonatos, Georgia. "Gas adsorption with molecular sieve zeolites". Thesis, University of Ottawa (Canada), 1990. http://hdl.handle.net/10393/5907.
Pełny tekst źródłaHeslop, Mark J. "Binary gas adsorption in molecular sieves". Thesis, Loughborough University, 1993. https://dspace.lboro.ac.uk/2134/6861.
Pełny tekst źródłaKsiążki na temat "Gas adsorption and selectivity"
Berezkin, V. G. Capillary gas adsorption chromatography. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2008.
Znajdź pełny tekst źródłaBerezkin, V. G. Capillary gas adsorption chromatography. Heidelberg: Hüthig Verlag, 1996.
Znajdź pełny tekst źródłaYang, R. T. Gas separation by adsorption processes. Boston: Butterworths, 1987.
Znajdź pełny tekst źródłaYang, R. T. Gas separation by adsorption processes. Singapore: World Scientific, 1997.
Znajdź pełny tekst źródłaGas separation by adsorption processes. London: Imperial College Press, 1997.
Znajdź pełny tekst źródłaGrant Glover, T., i Bin Mu, red. Gas Adsorption in Metal-Organic Frameworks. Boca Raton, FL : CRC Press/Taylor & Francis Group, [2018]: CRC Press, 2018. http://dx.doi.org/10.1201/9780429469770.
Pełny tekst źródłaGas chromatography in adsorption and catalysis. Chichester, West Sussex: Ellis Horwood, 1986.
Znajdź pełny tekst źródłaBertoncini, Fabrice. Gas chromatography and 2D-gas chromatography for petroleum industry: The race for selectivity. Paris, France: Editions TECHNIP, 2013.
Znajdź pełny tekst źródłaMomose, Yoshihiro. Exoemission from Processed Solid Surfaces and Gas Adsorption. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-6948-5.
Pełny tekst źródłaPedersen, A. Schroder. Adsorption of methane and natural gas on six carbons. Roskilde: Riso Library, 1989.
Znajdź pełny tekst źródłaCzęści książek na temat "Gas adsorption and selectivity"
Allen, Terence. "Gas adsorption". W Particle Size Measurement, 540–96. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-0417-0_16.
Pełny tekst źródłaLowell, S., i Joan E. Shields. "Gas adsorption". W Powder Surface Area and Porosity, 7–10. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-015-7955-1_2.
Pełny tekst źródłaLowell, S., Joan E. Shields, Martin A. Thomas i Matthias Thommes. "Gas Adsorption". W Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density, 5–10. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/978-1-4020-2303-3_2.
Pełny tekst źródłaJansen, Johannes Carolus. "Ideal Gas Selectivity". W Encyclopedia of Membranes, 1019. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-44324-8_301.
Pełny tekst źródłaJansen, Johannes Carolus. "Ideal Gas Selectivity". W Encyclopedia of Membranes, 1. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-40872-4_301-1.
Pełny tekst źródłaArmstrong, Mitchell, Bohan Shan i Bin Mu. "Thermodynamics of Adsorption". W Gas Adsorption in Metal-Organic Frameworks, 83–108. Boca Raton, FL : CRC Press/Taylor & Francis Group, [2018]: CRC Press, 2018. http://dx.doi.org/10.1201/9780429469770-3.
Pełny tekst źródłaStehmann, Friederike, i Stephan Scholl. "Off Gas Cleaning by Adsorption". W Sustainable Production, Life Cycle Engineering and Management, 187–206. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-70572-9_11.
Pełny tekst źródłaWang, Lawrence K., Jerry R. Taricska, Yung-Tse Hung i Kathleen Hung Li. "Gas-Phase Activated Carbon Adsorption". W Air Pollution Control Engineering, 395–420. Totowa, NJ: Humana Press, 2004. http://dx.doi.org/10.1007/978-1-59259-778-9_10.
Pełny tekst źródłaLowell, S., Joan E. Shields, Martin A. Thomas i Matthias Thommes. "Chemisorption: Site Specific Gas Adsorption". W Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density, 213–33. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/978-1-4020-2303-3_12.
Pełny tekst źródłaStace, A. J., i D. M. Bernard. "Reactions of Molecular Ions in Association with Inert Gas Clusters". W Selectivity in Chemical Reactions, 365–72. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-3047-6_20.
Pełny tekst źródłaStreszczenia konferencji na temat "Gas adsorption and selectivity"
Qiao, Xiangyu, Qinqiang Zhang i Ken Suzuki. "Development of a Strain-Controlled Graphene-Based Highly Sensitive Gas Sensor". W ASME 2020 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/imece2020-23581.
Pełny tekst źródłaWolf, Jeremy, Sepideh Maaref, Sajjad Esmaeili, Benjamin Tutolo i Apostolos Kantzas. "An Experimental Study on the Effects of Competitive Adsorption During Huff-N-Puff Enhanced Gas Recovery". W SPE Canadian Energy Technology Conference and Exhibition. SPE, 2023. http://dx.doi.org/10.2118/212716-ms.
Pełny tekst źródłaYin, Meng, Xiangyu Qiao, Qinqiang Zhang, Ken Suzuki i Lei Wang. "Strain-Induced Change of Adsorption Behaviour of Gas Molecules on Graphene Analyzed by Density Functional Method". W ASME 2022 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/imece2022-94892.
Pełny tekst źródłaHirose, Yuto, Xiangyu Qiao, Wangyang Fu, Ken Suzuki i Hideo Miura. "Improvement of the Sensitivity and Selectivity of Gas Molecules of Graphene-Base Gas Sensor With Carbon Nanotubes Under the Application of Strain". W ASME 2022 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/imece2022-95307.
Pełny tekst źródłaRondon, Marianna, Yoldes Khabzina, Alejandro Orsikowsky, Jean-Benoit Laudet, He Zhao, Olivier Perraud, Emil Gyllenhammar i Jostein Kolbu. "Proof-Of-Concept: Subsea Dehydration Using TSA Adsorption". W Offshore Technology Conference. OTC, 2022. http://dx.doi.org/10.4043/32063-ms.
Pełny tekst źródłaRondon, Marianna, Yoldes Khabzina, Alejandro Orsikowsky, Jean-Benoit Laudet, He Zhao, Olivier Perraud, Emil Gyllenhammar i Jostein Kolbu. "Proof-Of-Concept: Subsea Dehydration Using TSA Adsorption". W Offshore Technology Conference. OTC, 2022. http://dx.doi.org/10.4043/32063-ms.
Pełny tekst źródłaBerahim, Nor Hafizah, i Akbar Abu Seman. "CO2 Utilization: Converting Waste into Valuable Products". W SPE Asia Pacific Oil & Gas Conference and Exhibition. SPE, 2022. http://dx.doi.org/10.2118/210729-ms.
Pełny tekst źródłaRhodes, Amy, i Hannah R. Francis. "SODIUM ADSORPTION AND SELECTIVITY COEFFICIENTS FOR CA-NA EXCHANGE ON PEAT: IMPLICATIONS FOR ROAD SALT CONTAMINATION OF PEATLAND SOILS". W GSA Connects 2021 in Portland, Oregon. Geological Society of America, 2021. http://dx.doi.org/10.1130/abs/2021am-370885.
Pełny tekst źródłaJaber, Nizar R., Saad Ilyas, Osama Shekhah, Mohamed Eddaoudi i Mohammad I. Younis. "Smart Resonant Gas Sensor and Switch Operating in Air With Metal-Organic Frameworks Coating". W ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/detc2017-67823.
Pełny tekst źródłaTamburello, David, Bruce Hardy i Martin Sulic. "Multi-Component Separation and Purification of Natural Gas". W ASME 2018 Power Conference collocated with the ASME 2018 12th International Conference on Energy Sustainability and the ASME 2018 Nuclear Forum. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/power2018-7537.
Pełny tekst źródłaRaporty organizacyjne na temat "Gas adsorption and selectivity"
Veronica J. Rutledge. Adsorption Model for Off-Gas Separation. Office of Scientific and Technical Information (OSTI), marzec 2011. http://dx.doi.org/10.2172/1017866.
Pełny tekst źródłaIvanov, Aleksandr, Sadananda Das, Vyacheslav Bryantsev, Costas Tsouris, Austin Ladshaw i Sotira Yiacoumi. Predicting Selectivity of Uranium vs. Vanadium from First Principles: Complete Molecular Design and Adsorption Modeling. Office of Scientific and Technical Information (OSTI), lipiec 2017. http://dx.doi.org/10.2172/1454410.
Pełny tekst źródłaLyon, Kevin L., Amy K. Welty, Jack Law, Austin Ladshaw, Sotira Yiacoumi i Costas Tsouris. Off-Gas Adsorption Model Capabilities and Recommendations. Office of Scientific and Technical Information (OSTI), marzec 2016. http://dx.doi.org/10.2172/1260462.
Pełny tekst źródłaGreaney, Allison, Stephanie Bruffey, Nick Soelberg i Amy Welty. Organic Iodide Adsorption from Dilute Gas Streams. Office of Scientific and Technical Information (OSTI), wrzesień 2021. http://dx.doi.org/10.2172/1831626.
Pełny tekst źródłaNetus, B. Adsorption of radionuclides on minerals studies illustrating the effect of solid phase selectivity and of mechanisms controlling sorption processes. Office of Scientific and Technical Information (OSTI), luty 1996. http://dx.doi.org/10.2172/184259.
Pełny tekst źródłaReucroft, P. J., K. B. Patel, W. C. Russell i R. Sekhar. Modeling of Equilibrium Gas Adsorption for Multicomponent Vapor Mixtures. Fort Belvoir, VA: Defense Technical Information Center, sierpień 1985. http://dx.doi.org/10.21236/ada159632.
Pełny tekst źródłaBruffey, Stephanie H., Robert Thomas Jubin i J. A. Jordan. Organic Iodine Adsorption by AgZ under Prototypical Vessel Off-Gas Conditions. Office of Scientific and Technical Information (OSTI), wrzesień 2016. http://dx.doi.org/10.2172/1328332.
Pełny tekst źródłaBruffey, Stephanie H., i Robert Thomas Jubin. Iodine Adsorption by Ag-Aerogel under Prototypical Vessel Off-Gas Conditions. Office of Scientific and Technical Information (OSTI), sierpień 2016. http://dx.doi.org/10.2172/1329760.
Pełny tekst źródłaAllendorf, Mark D., Joseph C. Sanders i Jeffery A. Greathouse. Computational investigation of noble gas adsorption and separation by nanoporous materials. Office of Scientific and Technical Information (OSTI), październik 2008. http://dx.doi.org/10.2172/943323.
Pełny tekst źródłaReucroft, P. J., H. K. Patel, W. C. Russell i W. M. Kim. Modeling of Equilibrium Gas Adsorption for Multicomponent Vapor Mixtures. Part 2. Fort Belvoir, VA: Defense Technical Information Center, październik 1986. http://dx.doi.org/10.21236/ada174058.
Pełny tekst źródła