Gotowa bibliografia na temat „GaAs solar cells”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „GaAs solar cells”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "GaAs solar cells"
Jones, K. M., R. J. Matson, M. M. Al-Jassim i S. M. Vernon. "Defect generation and propagation in GaAs solar cells". Proceedings, annual meeting, Electron Microscopy Society of America 46 (1988): 926–27. http://dx.doi.org/10.1017/s0424820100106697.
Pełny tekst źródłaSteiner, Myles A., Collin D. Barraugh, Chase W. Aldridge, Isabel Barraza Alvarez, Daniel J. Friedman, Nicholas J. Ekins-Daukes, Todd G. Deutsch i James L. Young. "Photoelectrochemical water splitting using strain-balanced multiple quantum well photovoltaic cells". Sustainable Energy & Fuels 3, nr 10 (2019): 2837–44. http://dx.doi.org/10.1039/c9se00276f.
Pełny tekst źródłaTomasulo, Stephanie, Kevin Nay Yaung i Minjoo Larry Lee. "Metamorphic GaAsP and InGaP Solar Cells on GaAs". IEEE Journal of Photovoltaics 2, nr 1 (styczeń 2012): 56–61. http://dx.doi.org/10.1109/jphotov.2011.2177640.
Pełny tekst źródłaWu, Shao-Hua, i Michelle L. Povinelli. "Solar heating of GaAs nanowire solar cells". Optics Express 23, nr 24 (25.09.2015): A1363. http://dx.doi.org/10.1364/oe.23.0a1363.
Pełny tekst źródłaOlson, J. M., A. Kibbler i T. Gessert. "GaInP/GaAs multijunction solar cells". Solar Cells 21, nr 1-4 (czerwiec 1987): 450–51. http://dx.doi.org/10.1016/0379-6787(87)90147-5.
Pełny tekst źródłaCourel, Maykel, Julio C. Rimada i Luis Hernández. "AlGaAs/GaAs superlattice solar cells". Progress in Photovoltaics: Research and Applications 21, nr 3 (9.10.2011): 276–82. http://dx.doi.org/10.1002/pip.1178.
Pełny tekst źródłaWoo, Seungwan, Geunhwan Ryu, Taesoo Kim, Namgi Hong, Jae-Hoon Han, Rafael Jumar Chu, Jinho Bae i in. "Growth and Fabrication of GaAs Thin-Film Solar Cells on a Si Substrate via Hetero Epitaxial Lift-Off". Applied Sciences 12, nr 2 (14.01.2022): 820. http://dx.doi.org/10.3390/app12020820.
Pełny tekst źródłaHorng, Ray-Hua, Ming-Chun Tseng i Shui-Yang Lien. "Reliability Analysis of III-V Solar Cells Grown on Recycled GaAs Substrates and an Electroplated Nickel Substrate". International Journal of Photoenergy 2013 (2013): 1–9. http://dx.doi.org/10.1155/2013/108696.
Pełny tekst źródłaSimon, John, Christiane Frank-Rotsch, Karoline Stolze, Matthew Young, Myles A. Steiner i Aaron J. Ptak. "GaAs solar cells grown on intentionally contaminated GaAs substrates". Journal of Crystal Growth 541 (lipiec 2020): 125668. http://dx.doi.org/10.1016/j.jcrysgro.2020.125668.
Pełny tekst źródłaHorng, Ray-Hua, Yu-Cheng Kao, Apoorva Sood, Po-Liang Liu, Wei-Cheng Wang i Yen-Jui Teseng. "GaInP/GaAs/poly-Si Multi-Junction Solar Cells by in Metal Balls Bonding". Crystals 11, nr 7 (24.06.2021): 726. http://dx.doi.org/10.3390/cryst11070726.
Pełny tekst źródłaRozprawy doktorskie na temat "GaAs solar cells"
Vandamme, Nicolas. "Nanostructured ultrathin GaAs solar cells". Thesis, Paris 11, 2015. http://www.theses.fr/2015PA112111/document.
Pełny tekst źródłaThe thickness reduction of solar cells is motivated by the reduction of production costs and the enhancement of conversion efficiencies. However, for thicknesses below a few hundreds of nanometers, new light trapping strategies are required. We propose to introduce nanophotonics and plasmonics concepts to absorb light on a wide spectral range in ultrathin GaAs layers. We conceive and fabricate multi-resonant structures made of arrays of metal nanostructures. First, we design a super-absorber made of a 25 nm-thick GaAs slab transferred on a back metallic mirror with a top metal nanogrid that can serve as an alternative front electrode. We analyze numerically the resonance mechanisms that result in an average light absorption of 80% over the 450nm-850nm spectral range. The results are validated by the fabrication and characterization of these multi-resonant super-absorbers made of ultrathin GaAs. Second, we use a similar strategy for GaAs solar cells with thicknesses 10 times thinner than record single-junction photovoltaic devices. A silver nanostructured back mirror is used to enhance the absorption efficiency by the excitation of various resonant modes (Fabry-Perot, guided modes,…). It is combined with localized ohmic contacts in order to enhance the absorption efficiency and to optimize the collection of photogenerated carriers. According to numerical calculations, the short-circuit current densities (Jsc) can reach 22.4 mA/cm2 and 26.0 mA/cm2 for absorber thicknesses of t=120 nm and t=220 nm, respectively. We have developed a fabrication process based on nano-imprint lithography and on the transfer of the active layers. Measurements exhibit record short-circuit currents up to 17.5 mA/cm2 (t=120 nm) and 22.8 mA/cm2 (t=220 nm). These results pave the way toward conversion efficiencies above 20% with single junction solar cells made of absorbers thinner than 200 nm
Tutu, F. K. K. "InAs/GaAs quantum dot solar cells". Thesis, University College London (University of London), 2014. http://discovery.ucl.ac.uk/1430283/.
Pełny tekst źródłaChen, Hung-Ling. "Ultrathin and nanowire-based GaAs solar cells". Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS355/document.
Pełny tekst źródłaConfining sunlight in a reduced volume of photovoltaic absorber offers new directions for high-efficiency solar cells. This can be achieved using nanophotonic structures for light trapping, or semiconductor nanowires. First, we have designed and fabricated ultrathin (205 nm) GaAs solar cells. Multi-resonant light trapping is achieved with a nanostructured TiO2/Ag back mirror fabricated using nanoimprint lithography, resulting in a high short-circuit current of 24.6 mA/cm². We obtain the record 1 sun efficiency of 19.9%. A detailed loss analysis is carried out and we provide a realistic pathway toward 25% efficiency using only 200 nm-thick GaAs absorber. Second, we investigate the properties of GaAs nanowires grown on Si substrates and we explore their potential as active absorber. High doping is desired in core-shell nanowire solar cells, but the characterization of single nanowires remains challenging. We show that cathodoluminescence (CL) mapping can be used to determine both n-type and p-type doping levels of GaAs with nanometer scale resolution. n-type III-V semiconductor shows characteristic blueshift emission due to the conduction band filling, while p-type semiconductor exhibits redshift emission due to the dominant bandgap narrowing. The generalized Planck’s law is used to fit the whole spectra and allows for quantitative doping assessment. We also use CL polarimetry to determine selectively the properties of wurtzite and zincblende phases of single nanowires. Finally, we demonstrate successful GaAs nanowire solar cells. These works open new perspectives for next-generation photovoltaics
Feteha, Mohamed Yousef Mohamed. "Heterojunction AlGaAs-GaAs solar cells for space applications". Thesis, University of Central Lancashire, 1995. http://clok.uclan.ac.uk/18836/.
Pełny tekst źródłaRobertson, Kyle. "Optoelectronic Device Modeling of GaAs Nanowire Solar Cells". Thesis, Université d'Ottawa / University of Ottawa, 2019. http://hdl.handle.net/10393/39710.
Pełny tekst źródłaSCACCABAROZZI, ANDREA. "GaAs/AlGaAs quantum dot intermediate band solar cells". Doctoral thesis, Università degli Studi di Milano-Bicocca, 2013. http://hdl.handle.net/10281/40117.
Pełny tekst źródłaKHALILI, ARASTOO. "Numerical study of InAs/GaAs quantum dot solar cells". Doctoral thesis, Politecnico di Torino, 2018. http://hdl.handle.net/11583/2712032.
Pełny tekst źródłaHardingham, Christopher Mark. "GaAs and GaAs/Ge solar cells : a device and materials study using SEM-EBIC". Thesis, Imperial College London, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.267028.
Pełny tekst źródłaJames, Asirvatham Juanita Saroj. "Characterization of type-II GaSb quantum rings in GaAs solar cells". Thesis, Lancaster University, 2015. http://eprints.lancs.ac.uk/80244/.
Pełny tekst źródłaPelati, Daniel. "Elaboration of GaAs solar cells based on textured substrates on glass". Electronic Thesis or Diss., Sorbonne université, 2019. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2019SORUS456.pdf.
Pełny tekst źródłaThe increasing demand for clean energy has driven research toward higher efficiency and lower cost solar cells. Gallium arsenide solar cells detain the record efficiency for single junction devices but the high cost of the substrate limits their applications. In this work, we investigate an alternative GaAs substrate based on a low cost silica support coated by a thin (20 nm) Germanium layer. This layer is nearly lattice-matched to GaAs and can be crystallized with a high (111) texture using Metal Induced Crystallization (MIC). However, this requires a careful optimization of the deposition and annealing parameters. Here, we use a specially designed in situ optical microscope to optimize the annealing sequence. In particular, we identified two crystallization pathways, of which one should be minimized to obtain a good (111) crystalline texture. We then perform the heteroepitaxy of GaAs on this Ge seed layer using Molecular Beam Epitaxy, keeping the initial (111) crystal texture. We identify specific growth conditions for the twin- and defect-free growth of GaAs on Ge(111) surfaces. We also observe the growth of GaAs adopting the (111)A polarity on Ge (111) rather than the expected (111)B orientation. Finally, we fabricate (111)-oriented GaAs solar cells with 15,9% efficiency on a monocrystalline GaAs(111)B substrate. The transfer to standard Ge(111) monocrystalline wafers and to our Ge-coated silica pseudo-substrates reveals doping issues related to the (111)A orientation of the GaAs, as well as surface roughening due to grain boundaries in the initial Ge seed layer
Książki na temat "GaAs solar cells"
P, Leon Rosa, Arrison Anne i United States. National Aeronautics and Space Administration., red. A V-grooved AlGaAs/GaAs passivated PN junction. [Washington, DC]: National Aeronautics and Space Administration, 1987.
Znajdź pełny tekst źródłaP, Leon Rosa, Arrison Anne i United States. National Aeronautics and Space Administration., red. A V-grooved AlGaAs/GaAs passivated PN junction. [Washington, DC]: National Aeronautics and Space Administration, 1987.
Znajdź pełny tekst źródłaUnited States. National Aeronautics and Space Administration., red. GaAs solar cell radiation handbook. Pasadena, Calif: National Aeronautics and Space Administration, Jet Propulsion Laboratory, California Institute of Technology, 1996.
Znajdź pełny tekst źródłaUnited States. National Aeronautics and Space Administration., red. GaAs solar cell radiation handbook. Pasadena, Calif: National Aeronautics and Space Administration, Jet Propulsion Laboratory, California Institute of Technology, 1996.
Znajdź pełny tekst źródłaJet Propulsion Laboratory (U.S.), red. GaAs solar cell radiation handbook. Pasadena, Calif: National Aeronautics and Space Administration, Jet Propulsion Laboratory, California Institute of Technology, 1996.
Znajdź pełny tekst źródłaJet Propulsion Laboratory (U.S.), red. GaAs solar cell radiation handbook. Pasadena, Calif: National Aeronautics and Space Administration, Jet Propulsion Laboratory, California Institute of Technology, 1996.
Znajdź pełny tekst źródłaWeinberg, Irving. Heteroepitaxial InP solar cells on Si and GaAs substrates. [Washington, DC]: National Aeronautics and Space Administration, 1991.
Znajdź pełny tekst źródłaA, Scheiman David, Brinker David J i Lewis Research Center, red. GaAs/Ge solar powered aircraft. [Cleveland, Ohio]: National Aeronautics and Space Administration, Lewis Research Center, 1998.
Znajdź pełny tekst źródłaA, Scheiman David, Brinker David J i Lewis Research Center, red. GaAs/Ge solar powered aircraft. [Cleveland, Ohio]: National Aeronautics and Space Administration, Lewis Research Center, 1998.
Znajdź pełny tekst źródłaG, Bailey Sheila, i United States. National Aeronautics and Space Administration., red. The GaAs solar cells with V-grooved emitters. [Washington, DC]: National Aeronautics and Space Administration, 1989.
Znajdź pełny tekst źródłaCzęści książek na temat "GaAs solar cells"
Das, Narottam K., i Syed M. Islam. "Conversion Efficiency Improvement in GaAs Solar Cells". W Large Scale Renewable Power Generation, 53–75. Singapore: Springer Singapore, 2014. http://dx.doi.org/10.1007/978-981-4585-30-9_3.
Pełny tekst źródłaAndreev, V. M., V. S. Kalinovskii i O. V. Sulima. "AlGaAs-GaAs Solar Cells with Increased Radiation Stability". W Tenth E.C. Photovoltaic Solar Energy Conference, 52–54. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3622-8_13.
Pełny tekst źródłaAlsema, E. A., R. F. A. Cuelenaere i W. C. Turkenburg. "Cost Perspectives of GaAs Thin-Film Solar Cells". W Tenth E.C. Photovoltaic Solar Energy Conference, 563–66. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3622-8_143.
Pełny tekst źródłaNowlan, M. J., i G. Darkazalli. "Electrostatic Cover Glass Bonding to GaAs Solar Cells". W Tenth E.C. Photovoltaic Solar Energy Conference, 963–66. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3622-8_246.
Pełny tekst źródłaWelter, H., A. Bett, A. Ehrhardt i W. Wettling. "Investigations of Emitter Characteristics of LPE GaAs Solar Cells". W Tenth E.C. Photovoltaic Solar Energy Conference, 537–40. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3622-8_136.
Pełny tekst źródłaVilela, M. F., A. Leycuras, A. Freundlich, J. C. Grenet, G. Strobl, M. Leroux, G. Neu, P. Gibart, C. Vèrié i G. Brémond. "GaAs on Si Solar Cells: Photovoltaic Characterization of GaAs Grown Directly on Si and with Intermediate Buffer". W Tenth E.C. Photovoltaic Solar Energy Conference, 798–801. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3622-8_204.
Pełny tekst źródłaTobías, I., A. Luque, J. C. Miñano i J. Alonso. "Sizing of Light Confining Cavities for GaAs and Si Solar Cells". W Tenth E.C. Photovoltaic Solar Energy Conference, 48–51. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3622-8_12.
Pełny tekst źródłaNell, M. E., Z. El-Ankah, H. Eschrich, D. D. Lin, G. Nischwitz, B. Reinicke i H. G. Wagemann. "Design and Measurement of Antireflection Coatings for AlGaAs/GaAs Solar Cells". W Tenth E.C. Photovoltaic Solar Energy Conference, 545–48. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3622-8_138.
Pełny tekst źródłaAlcubilla, R., L. Prat i F. Therez. "GaAlAs/gaAs Solar Cells. Bulk Graded Band Gap Structures, an Optimization". W Seventh E.C. Photovoltaic Solar Energy Conference, 895–99. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3817-5_159.
Pełny tekst źródłaPrashant, D. V., i Dip Prakash Samajdar. "GaAs Nanostructure-Based Solar Cells with Enhanced Light-Harvesting Efficiency". W Internet of Things, 227–46. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003181613-16.
Pełny tekst źródłaStreszczenia konferencji na temat "GaAs solar cells"
Patel, R. M., S. W. Gersten, D. R. Perrachione, Y. C. M. Yeh, D. K. Wagner i R. K. Morris. "Lightweight GaAs/Ge solar cells". W Conference Record of the Twentieth IEEE Photovoltaic Specialists Conference. IEEE, 1988. http://dx.doi.org/10.1109/pvsc.1988.105774.
Pełny tekst źródłaLa Roche, G. J. "Processing of GaAs solar cells". W Conference Record of the Twentieth IEEE Photovoltaic Specialists Conference. IEEE, 1988. http://dx.doi.org/10.1109/pvsc.1988.105850.
Pełny tekst źródłaNakayama, Keisuke, Katsuaki Tanabe i Harry A. Atwater. "Surface plasmon enhanced photocurrent in thin GaAs solar cells". W Solar Energy + Applications, redaktor Loucas Tsakalakos. SPIE, 2008. http://dx.doi.org/10.1117/12.795469.
Pełny tekst źródłaGrenko, A. J., I. Kimukin, J. Walker i E. Towe. "InAs/GaAs Quantum-Dot Intermediate-Band Solar Cells". W Solar Energy: New Materials and Nanostructured Devices for High Efficiency. Washington, D.C.: OSA, 2008. http://dx.doi.org/10.1364/solar.2008.swa4.
Pełny tekst źródłaTracy, J., i J. Wise. "Space solar cell performance for advanced GaAs and Si solar cells". W Conference Record of the Twentieth IEEE Photovoltaic Specialists Conference. IEEE, 1988. http://dx.doi.org/10.1109/pvsc.1988.105823.
Pełny tekst źródłaMacMillan, H. F., H. C. Hamaker, N. R. Kaminar, M. S. Kuryla, M. L. Ristow, D. D. Liu, G. F. Virshup i J. M. Gee. "28% efficient GaAs concentrator solar cells". W Conference Record of the Twentieth IEEE Photovoltaic Specialists Conference. IEEE, 1988. http://dx.doi.org/10.1109/pvsc.1988.105745.
Pełny tekst źródłaAraujo, G. L., i A. Marti. "Limiting efficiency of GaAs solar cells". W Conference Record of the Twentieth IEEE Photovoltaic Specialists Conference. IEEE, 1988. http://dx.doi.org/10.1109/pvsc.1988.105788.
Pełny tekst źródłaOlsen, L. C., Xiaojun Deng, Wenhua Lei, F. W. Addis i Jun Li. "GaAs solar cells grown on GaP". W Conference Record of the Twenty Fifth IEEE Photovoltaic Specialists Conference - 1996. IEEE, 1996. http://dx.doi.org/10.1109/pvsc.1996.563946.
Pełny tekst źródłaIles, P. A., F. H. Ho i Y. C. M. Yeh. "Manufacturing Experience With GaAs Solar Cells". W Cambridge Symposium-Fiber/LASE '86, redaktor David Adler. SPIE, 1986. http://dx.doi.org/10.1117/12.937226.
Pełny tekst źródłaLaghumavarapu, R. B., G. Mariani, B. Tremolet de Villers, J. Shapiro, P. Senanayake, A. Lin, B. J. Schwartz i D. L. Huffaker. "Hybrid solar cells using GaAs nanopillars". W 2010 35th IEEE Photovoltaic Specialists Conference (PVSC). IEEE, 2010. http://dx.doi.org/10.1109/pvsc.2010.5614637.
Pełny tekst źródłaRaporty organizacyjne na temat "GaAs solar cells"
Vernon, S. M. Low-cost, high-efficiency solar cells utilizing GaAs-on-Si technology. Annual subcontract report, 1 August 1991--31 July 1992. Office of Scientific and Technical Information (OSTI), kwiecień 1993. http://dx.doi.org/10.2172/10141157.
Pełny tekst źródłaVernon, S. M. Low-Cost, High-Efficiency Solar Cells Utilizing GaAs-on-Si Technology, Annual Subcontract Report, 1 August 1991 - 31 July 1992. Office of Scientific and Technical Information (OSTI), kwiecień 1993. http://dx.doi.org/10.2172/6836731.
Pełny tekst źródłaMcNeely, James B., Gerald H. Negley i Allen M. Barnett. GaAsP Top Solar Cells for Increased Solar Conversion Efficiency. Fort Belvoir, VA: Defense Technical Information Center, styczeń 1989. http://dx.doi.org/10.21236/ada206808.
Pełny tekst źródłaWagner, Ken. Rugged, Thin GaAs Solar Cell Development. Fort Belvoir, VA: Defense Technical Information Center, maj 1988. http://dx.doi.org/10.21236/ada198533.
Pełny tekst źródłaYeh, Y. C., Kou-I. chang i Peter A. Iles. Rugged, Thin GaAs Solar Cell Development. Phase I. Fort Belvoir, VA: Defense Technical Information Center, czerwiec 1986. http://dx.doi.org/10.21236/ada171188.
Pełny tekst źródłaShealy, J., P. McDonald, J. Benjamin i D. Wagner. GaAs solar cell with low surface recombination. Final subcontract report. Office of Scientific and Technical Information (OSTI), listopad 1985. http://dx.doi.org/10.2172/6406702.
Pełny tekst źródłaGrassman, Tyler, Steven Ringel, Emily Warren, Stephen Bremner i Alex Stavrides. GaAsP/Si Tandem Solar Cells: Pathway to Low-Cost, High-Efficiency Photovoltaics. Office of Scientific and Technical Information (OSTI), maj 2021. http://dx.doi.org/10.2172/1784256.
Pełny tekst źródłaDas, Naresh C. Performance Comparison of Top and Bottom Contact Gallium Arsenide (GaAs) Solar Cell. Fort Belvoir, VA: Defense Technical Information Center, wrzesień 2014. http://dx.doi.org/10.21236/ada608815.
Pełny tekst źródłaVenkatasubramanian, R. Inverted AlGaAs/GaAs Patterned-Ge Tunnel Junction Cascade Concentrator Solar Cell: Final Subcontract Report, 1 January 1991 - 31 August 1992. Office of Scientific and Technical Information (OSTI), styczeń 1993. http://dx.doi.org/10.2172/6744462.
Pełny tekst źródłaLamorte, M. A high-efficiency, single-junction, back-surface GaAs concentrator solar cell: Annual subcontract report, 1 February 1985-30 April 1986. Office of Scientific and Technical Information (OSTI), maj 1987. http://dx.doi.org/10.2172/6177328.
Pełny tekst źródła