Gotowa bibliografia na temat „Ga2O3 epitaxial growth and optoelectronic devices”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Ga2O3 epitaxial growth and optoelectronic devices”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Ga2O3 epitaxial growth and optoelectronic devices"
Nelson, Erik C., Neville L. Dias, Kevin P. Bassett, Simon N. Dunham, Varun Verma, Masao Miyake, Pierre Wiltzius i in. "Epitaxial growth of three-dimensionally architectured optoelectronic devices". Nature Materials 10, nr 9 (24.07.2011): 676–81. http://dx.doi.org/10.1038/nmat3071.
Pełny tekst źródłaAn, Yuxin, Liyan Dai, Ying Wu, Biao Wu, Yanfei Zhao, Tong Liu, Hui Hao i in. "Epitaxial growth of β-Ga2O3 thin films on Ga2O3 and Al2O3 substrates by using pulsed laser deposition". Journal of Advanced Dielectrics 09, nr 04 (sierpień 2019): 1950032. http://dx.doi.org/10.1142/s2010135x19500322.
Pełny tekst źródłaLu, Chao, Lei Gao, Fanqi Meng, Qinghua Zhang, Lihong Yang, Zeng Liu, Mingtong Zhu i in. "Epitaxial growth of a β-Ga2O3 (−201)-oriented thin film on a threefold symmetrical SrTiO3 (111) substrate for heterogeneous integration". Journal of Applied Physics 133, nr 4 (28.01.2023): 045306. http://dx.doi.org/10.1063/5.0112175.
Pełny tekst źródłaGogova, Daniela, Misagh Ghezellou, Dat Q. Tran, Steffen Richter, Alexis Papamichail, Jawad ul Hassan, Axel R. Persson i in. "Epitaxial growth of β-Ga2O3 by hot-wall MOCVD". AIP Advances 12, nr 5 (1.05.2022): 055022. http://dx.doi.org/10.1063/5.0087571.
Pełny tekst źródłaGuzilova, L. I., A. S. Grashchenko i V. I. Nikolaev. "THE STUDY OF MECHANICAL DEFORMATION RESISTANCE OF α-Ga2O3 EPITAXIAL LAYERS USING THE NANOINDENTATION TECHNIQUE". Frontier materials & technologies, nr 4 (2021): 7–16. http://dx.doi.org/10.18323/2782-4039-2021-4-7-16.
Pełny tekst źródłaVescan, L., T. Stoica, M. Goryll i K. Grimm. "Selective epitaxial growth of strained SiGe/Si for optoelectronic devices". Materials Science and Engineering: B 51, nr 1-3 (luty 1998): 166–69. http://dx.doi.org/10.1016/s0921-5107(97)00253-5.
Pełny tekst źródłaZhao, Mei, Manman Liu, Youqing Dong, Chao Zou, Keqin Yang, Yun Yang, Lijie Zhang i Shaoming Huang. "Epitaxial growth of two-dimensional SnSe2/MoS2 misfit heterostructures". Journal of Materials Chemistry C 4, nr 43 (2016): 10215–22. http://dx.doi.org/10.1039/c6tc03406c.
Pełny tekst źródłaTak, Bhera Ram, Ming-Min Yang, Marin Alexe i Rajendra Singh. "Deep-Level Traps Responsible for Persistent Photocurrent in Pulsed-Laser-Deposited β-Ga2O3 Thin Films". Crystals 11, nr 9 (30.08.2021): 1046. http://dx.doi.org/10.3390/cryst11091046.
Pełny tekst źródłaHasan, Md Nazmul, Edward Swinnich i Jung-Hun Seo. "Recent Progress in Gallium Oxide and Diamond Based High Power and High-Frequency Electronics". International Journal of High Speed Electronics and Systems 28, nr 01n02 (marzec 2019): 1940004. http://dx.doi.org/10.1142/s0129156419400044.
Pełny tekst źródłaSkipper, Alec M., Priyanka Petluru, Daniel J. Ironside, Ashlee M. García, Aaron J. Muhowski, Daniel Wasserman i Seth R. Bank. "All-epitaxial, laterally structured plasmonic materials". Applied Physics Letters 120, nr 16 (18.04.2022): 161103. http://dx.doi.org/10.1063/5.0094677.
Pełny tekst źródłaRozprawy doktorskie na temat "Ga2O3 epitaxial growth and optoelectronic devices"
Fisher, Martin John. "Epitaxial growth and characterisation of heterojunction and homojunction LEDs with InAs active regions". Thesis, Lancaster University, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.268062.
Pełny tekst źródłaWagner, Brent K. "Molecular beam epitaxial growth of CdTe and HgCdTe for new infrared and optoelectronic devices". Diss., Georgia Institute of Technology, 1991. http://hdl.handle.net/1853/13701.
Pełny tekst źródłaAbid, Mohamed. "Design and epitaxial growth of vertical cavity surface-emitting lasers (VCSEL) emitting at ultraviolet wavelength". Diss., Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/47682.
Pełny tekst źródłaChoi, Suk. "Growth and characterization of III-nitride materials for high efficiency optoelectronic devices by metalorganic chemical vapor deposition". Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/45823.
Pełny tekst źródłaMuazzam, Usman Ul. "Investigation of Growth, Structural and Optical properties of different phases of Ga2O3". Thesis, 2023. https://etd.iisc.ac.in/handle/2005/6127.
Pełny tekst źródłaKo, Tsung-Shine, i 柯宗憲. "Epitaxial growth of nonpolar GaN based optoelectronic devices". Thesis, 2009. http://ndltd.ncl.edu.tw/handle/43011320137457312133.
Pełny tekst źródła國立交通大學
光電工程系所
97
In this dissertation, the epitaxial growth of nonpolar a-plane GaN based optoelectronic materials grown using metal organic chemical vapor deposition (MOCVD) have been investigated. Main works include optimum growth, InGaN multiple quantum wells (MQWs) design, reduction of defects and the fabrication of a-plane GaN based optoelectronic devices and analysis of device characteristics. For optimum growth of a-plane GaN, we confirmed variation of thickness of AlN nucleation layer and V/III ratio of a-plane GaN growth influence crystal quality of a-plane GaN thin film. We also tried to figure out the mechanism of a-plane GaN by using Wulff plot and selective area growth to analyze the growth behavior of a-plane GaN grown on r-plane sapphire, which could be useful to explain the reasons account for stripes and pits exist on a-plane GaN surface and give us a guidance to predict growth of a-plane GaN. In this dissertation, we used trench epitaxial lateral over growth (TELOG) and InGaN/GaN supperlattices (SLs) to improve crystal quality of a-plane GaN. The threading dislocation (TD) density can be reduced largely from 1×1010 cm−2 to 3×107 cm−2 for the N-face GaN wing. As for SLs part, The TD density in the sample with SLs was reduced from 3×1010 cm-2 down to ~9×109 cm-2. For active layer structural design, a-plane InGaN/GaN MQWs of different width ranging from 3 nm to 12 nm have been grown. The peak emission intensity of the photoluminescence (PL) reveals a decreasing trend as the well width increases from 3 nm to 12 nm. Low temperature (9 K) time-resolved PL (TRPL) study shows that the sample with 3 nm-thick wells has the best optical property with a fastest exciton decay time of 0.57 ns. More effective capturing of excitons due to larger localization energy Eloc and shorter radiative lifetime of localized excitons are observed in thinner well width samples were observed in the temperature dependent PL and TRPL. In development of nonpolar light-emitting diodes (LEDs), we successfully fabricated a-plane LEDs structure by using TELOG GaN substrate. Due to there are two areas with different defect density in this kind sample, the emission wavelength will be changed when we increased injection current. The power was 0.2 mW at 140 mA injection current. On the other hand, we also fabricated nonpolar LEDs by using InGaN/GaN SLs layer. Electroluminescence intensity of the sample with InGaN/GaN SLs was enhanced by a factor of 3.42 times to that of the conventional sample without InGaN/GaN SLs. In this dissertation, we have achieved the studies on the growth of a-plane GaN and the fabrication of devices. Whole achievements include optimum growth, MQWs structural design, crystal improvement of material and fabrication of a-plane LEDs. We hope this series of experiments to provide a useful information and support for development of nonpolar optoelectronic devices in future.
Kang, Jung-Hyun. "Epitaxial growth and characterisation of GaAs nanowires on Si for optoelectronic device applications". Phd thesis, 2012. http://hdl.handle.net/1885/149685.
Pełny tekst źródłaHsiao-ChiuHsu i 徐曉秋. "Investigation of Nonpolar GaN-based Epitaxial Growth and Optoelectronic Devices by Metalorganic Vapor Phase Epitaxy Technique". Thesis, 2011. http://ndltd.ncl.edu.tw/handle/81241071464383077155.
Pełny tekst źródłaLever, Penelope. "Interdiffusion and metalorganic vapour phase epitaxial growth of self-assembled InGaAs quantum dot structures and devices". Phd thesis, 2004. http://hdl.handle.net/1885/148510.
Pełny tekst źródłaCzęści książek na temat "Ga2O3 epitaxial growth and optoelectronic devices"
Figge, S., C. Kruse, T. Paskova i D. Hommel. "Epitaxial technologies for short wavelength optoelectronic devices". W Crystal Growth - From Fundamentals to Technology, 295–317. Elsevier, 2004. http://dx.doi.org/10.1016/b978-044451386-1/50014-3.
Pełny tekst źródłaStreszczenia konferencji na temat "Ga2O3 epitaxial growth and optoelectronic devices"
Alfaraj, Nasir A., Kuang-Hui Li, Chun Hong Kang, Laurentiu V. Braic, Tien Khee Ng i Boon S. Ooi. "Epitaxial growth of [beta]-Ga2O3/[epsilon]-Ga2O3 polymorphic heterostructures on c-plane sapphire for deep-ultraviolet optoelectronics". W Oxide-based Materials and Devices XI, redaktorzy Ferechteh H. Teherani, David C. Look i David J. Rogers. SPIE, 2020. http://dx.doi.org/10.1117/12.2544427.
Pełny tekst źródłaYamauchi, Satoshi. "Plasma-assisted epitaxial growth of nitrogen-doped and high-quality ZnO thin films". W Integrated Optoelectronic Devices 2008, redaktorzy Ferechteh H. Teherani i Cole W. Litton. SPIE, 2008. http://dx.doi.org/10.1117/12.774945.
Pełny tekst źródłade Lyon, Terence J., B. Baumgratz, G. R. Chapman, E. Gordon, Andrew T. Hunter, Michael D. Jack, John E. Jensen i in. "Epitaxial growth of HgCdTe 1.55-μm avalanche photodiodes by molecular beam epitaxy". W Optoelectronics '99 - Integrated Optoelectronic Devices, redaktorzy Gail J. Brown i Manijeh Razeghi. SPIE, 1999. http://dx.doi.org/10.1117/12.344562.
Pełny tekst źródłaDzegilenko, Fedor N. "Energetics and dynamics of GaAs epitaxial growth via quantum wave packet studies". W Optoelectronics '99 - Integrated Optoelectronic Devices, redaktorzy Peter Blood, Akira Ishibashi i Marek Osinski. SPIE, 1999. http://dx.doi.org/10.1117/12.356904.
Pełny tekst źródłaNg, Hou T., Pho Nguyen, Yi P. Chen, Aaron Mao, Jie Han i Meyya Meyyappan. "Epitaxial single-crystalline inorganic nanowires and nanowalls: growth morphogenesis and applications in nano-optoelectronics". W Integrated Optoelectronic Devices 2004, redaktorzy Marek Osinski, Hiroshi Amano i Fritz Henneberger. SPIE, 2004. http://dx.doi.org/10.1117/12.530012.
Pełny tekst źródłaSood, Ashok K., Yash R. Puri, Frederick W. Clarke, Jie Deng, James C. M. Hwang, Steven K. Brierley, M. Asif Khan i in. "Epitaxial growth and characterization of AlGaN/GaN HEMT devices on SiC substrates for RF applications". W Integrated Optoelectronic Devices 2007, redaktorzy Hadis Morkoc i Cole W. Litton. SPIE, 2007. http://dx.doi.org/10.1117/12.704201.
Pełny tekst źródłaZou, J., M. Paladugu, Y. N. Guo, X. Zhang, G. J. Auchterlonie, H. J. Joyce, Q. Gao, H. H. Tan, C. Jagadish i Y. Kim. "Growth behavior of epitaxial semiconductor axial nanowire heterostructures". W 2008 Conference on Optoelectronic and Microelectronic Materials and Devices (COMMAD). IEEE, 2008. http://dx.doi.org/10.1109/commad.2008.4802094.
Pełny tekst źródłaSood, Ashok K., Rajwinder Singh, Yash R. Puri, Frederick W. Clarke, Oleg Laboutin, Paul M. Deluca, Roger E. Wesler, Jie Deng i James C. M. Hwang. "Growth and characterization of AlGaN/GaN epitaxial layers by MOCVD on SiC substrates for RF device applications". W Integrated Optoelectronic Devices 2006, redaktorzy Cole W. Litton, James G. Grote, Hadis Morkoc i Anupam Madhukar. SPIE, 2006. http://dx.doi.org/10.1117/12.651122.
Pełny tekst źródłaGao, Q., L. Fu, F. Wang, Y. Guo, Z. Y. Li, K. Peng, Li Li i in. "Selective area epitaxial growth of InP nanowire array for solar cell applications". W 2014 Conference on Optoelectronic and Microelectronic Materials & Devices (COMMAD). IEEE, 2014. http://dx.doi.org/10.1109/commad.2014.7038704.
Pełny tekst źródłaZhiyuan Gao, Yue Hao, Jinfeng Zhang, Peixian Li i Jincheng Zhang. "Influence of lateral growth on the optical properties of GaN epitaxial layers". W 2008 International Conference on Numerical Simulation of Optoelectronic Devices. IEEE, 2008. http://dx.doi.org/10.1109/nusod.2008.4668232.
Pełny tekst źródła