Gotowa bibliografia na temat „Fundamental constants”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Fundamental constants”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Fundamental constants"

1

McNaught, Ian J., i Gavin D. Peckham. "Two fundamental constants". Journal of Chemical Education 64, nr 12 (grudzień 1987): 999. http://dx.doi.org/10.1021/ed064p999.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Fritzsch, Harald. "Fundamental physical constants". Uspekhi Fizicheskih Nauk 179, nr 4 (2009): 383. http://dx.doi.org/10.3367/ufnr.0179.200904d.0383.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Jacobsen, T. "On fundamental constants". European Journal of Physics 17, nr 2 (1.03.1996): 92. http://dx.doi.org/10.1088/0143-0807/17/2/011.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

PERES, ASHER. "VARIABILITY OF FUNDAMENTAL CONSTANTS". International Journal of Modern Physics D 12, nr 09 (październik 2003): 1751–54. http://dx.doi.org/10.1142/s0218271803004043.

Pełny tekst źródła
Streszczenie:
Are universal fundamental constants really constant over cosmological times? Recent observations of the fine structure of spectral lines in the early universe have been interpreted as due to a variation of the fine structure constant e2/4πε0ℏc. From the assumed validity of Maxwell equations in general relativity and well known experimental facts, it is proved that e and ℏ are absolute constants. On the other hand, the speed of light need not be constant.
Style APA, Harvard, Vancouver, ISO itp.
5

Mohr, Peter J., Barry N. Taylor i David B. Newell. "The fundamental physical constants". Physics Today 60, nr 7 (lipiec 2007): 52–55. http://dx.doi.org/10.1063/1.2761803.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Troitskiĭ, V. S. "Evolution of fundamental constants". Soviet Journal of Quantum Electronics 17, nr 9 (30.09.1987): 1212–13. http://dx.doi.org/10.1070/qe1987v017n09abeh009915.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Jacobsen, T. "Bremsstrahlung and fundamental constants". European Journal of Physics 17, nr 6 (1.11.1996): 365. http://dx.doi.org/10.1088/0143-0807/17/6/012.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Casey, Terence W. "Cosmology and the Fundamental Constants." Physics Essays 2, nr 1 (1.03.1989): 44–46. http://dx.doi.org/10.4006/1.3036470.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Okun, Lev B. "The fundamental constants of physics". Uspekhi Fizicheskih Nauk 161, nr 9 (1991): 177–94. http://dx.doi.org/10.3367/ufnr.0161.199109e.0177.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Fritzsch, Harald. "The fundamental constants in physics". Physics-Uspekhi 52, nr 4 (30.04.2009): 359–67. http://dx.doi.org/10.3367/ufne.0179.200904d.0383.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Rozprawy doktorskie na temat "Fundamental constants"

1

Sandvik, Havard Bunes. "Varying fundamental constants in cosmology". Thesis, Imperial College London, 2002. http://hdl.handle.net/10044/1/11460.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

DiFilippo, Frank. "Precise atomic masses for determining fundamental constants". Thesis, Massachusetts Institute of Technology, 1994. http://hdl.handle.net/1721.1/26860.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Thompson, Rodger. "The Relation between Fundamental Constants and Particle Physics Parameters". MDPI AG, 2017. http://hdl.handle.net/10150/624359.

Pełny tekst źródła
Streszczenie:
The observed constraints on the variability of the proton to electron mass ratio and the fine structure constant are used to establish constraints on the variability of the Quantum Chromodynamic Scale and a combination of the Higgs Vacuum Expectation Value and the Yukawa couplings. Further model dependent assumptions provide constraints on the Higgs VEV and the Yukawa couplings separately. A primary conclusion is that limits on the variability of dimensionless fundamental constants such as and provide important constraints on the parameter space of new physics and cosmologies.
Style APA, Harvard, Vancouver, ISO itp.
4

Murphy, Michael T. Physics Faculty of Science UNSW. "Probing variations in the fundamental constants with quasar absorption lines". Awarded by:University of New South Wales. School of Physics, 2002. http://handle.unsw.edu.au/1959.4/19062.

Pełny tekst źródła
Streszczenie:
Precision cosmology challenges many aspects of fundamental physics. In particular, quasar absorption lines test the assumed constancy of fundamental constants over cosmological time-scales and distances. Until recently, the most reliable technique was the alkali doublet (AD) method where the measured doublet separation probes variations in the fine-structure constant, ???? e2/??c. However, the recently introduced many-multiplet (MM) method provides several advantages, including a demonstrated ???10-fold precision gain. This thesis presents detailed MM analyses of 3 independent Keck/HIRES samples containing 128 absorption systems with 0.2 > zabs > 3.7. We find 5.6 ?? statistical evidence for a smaller ?? in the absorption clouds: ????/?? = (-0.574 ?? 0.102) x 10-5. All three samples separately yield consistent, significant ????/??. The data marginally prefer constant d??/dt rather than constant ????/??. The two-point correlation function for ?? and the angular distribution of ????/?? give no evidence for spatial variations. We also analyse 21 Keck/HIRES Si iv doublets, obtaining a 3-fold relative precision gain over previous AD studies: ????/?? = (-0.5 ?? 1.3) x 10-5 for 2.0 > zabs > 3.1. Our statistical evidence for varying ?? requires careful consideration of systematic errors. Modelling demonstrates that atmospheric dispersion is potentially important. However, the quasar spectra suggest a negligible effect on ????/??. Cosmological variation in Mg isotopic abundances may affect ????/?? at zabs > 1.8. Galactic observations and theory suggest diminished 25;26Mg abundances in the low metallicity quasar absorbers. Removing 25;26Mg isotopes yields more negative ????/?? values. Overall, known systematic errors can not explain our results. We also constrain variations in y ?? ?? 2gp, comparing H i 21-cm and millimetrewave molecular absorption in 2 systems. Fitting both the H i and molecular lines yields the tightest, most reliable current constraints: ??y/y = (-0.20??0.44)x10-5 and (-0.16??0.54)x10-5 at zabs = 0.2467 and 0.6847 respectively. Possible line-ofsight velocity differences between the H i and molecular absorbing regions dominate these 1 ?? errors. A larger sample of mm/H i comparisons is required to reliably quantify this uncertainty and provide a potentially crucial check on the MM result.
Style APA, Harvard, Vancouver, ISO itp.
5

Alanko, S. (Seppo). "High resolution infrared spectroscopy on the fundamental bands of 13CH3I". Doctoral thesis, University of Oulu, 1999. http://urn.fi/urn:isbn:9514251857.

Pełny tekst źródła
Streszczenie:
Abstract This thesis deals with the rotation-vibration theory and high resolution infrared spectroscopy of semirigid C3 molecules. Semirigid molecules form a class of molecules which are strongly bound with one well defined structure, and without low frequency internal motions. The theory, as well as the experimental studies of semirigid molecules are of special importance in the field of rotation-vibration spectroscopy. They provide a good starting point for interpreting and analyzing the spectra of practically all types of molecules. In this work, the theory is reviewed fromthe standpoint of one particular molecule, 13CH3I, which is a prolate symmetric top with C3 symmetry. The origin and the properties of the rotation-vibration Hamiltonian are discussed in detail. Molecular symmetry plays an important role in these studies. The expansion of the Hamiltonian for nuclear motion in powers of the vibrational operators converges rapidly as numerical examples thoughout the treatment indicate. The molecule is thus a good subject for the perturbation calculations, also reviewed here in detail. 13CH3I can be considered as a model example of semirigid molecules. From the spectroscopic point of view, this thesis is a study of the six fundamental bands of 13CH3I. The rotational analysis of the vibrational ground state is first given. Special attention is paid to obtaining the axial rotational constants which are problematic for symmetric top molecules. The relatively high energy level density of 13CH3I leads to several resonances. The fundamental bands, especially the higher ones, must therefore be treated as parts of band systems. Care is paid to properly take into account the effects of the near-lying vibrational levels on the constants of the fundamentals. Certain ambiguities in the rotation-vibration Hamiltonian of 13CH3I are also discussed.
Style APA, Harvard, Vancouver, ISO itp.
6

Davis, Tamara Maree Physics Faculty of Science UNSW. "Fundamental aspects of the expansion of the universe and cosmic horizons". Awarded by:University of New South Wales. Physics, 2004. http://handle.unsw.edu.au/1959.4/20640.

Pełny tekst źródła
Streszczenie:
We use standard general relativity to clarify common misconceptions about fundamental aspects of the expansion of the Universe. In the context of the new standard Lambda-CDM cosmology we resolve conflicts in the literature regarding cosmic horizons and the Hubble sphere (distance at which recession velocity equals c) and we link these concepts to observational tests. We derive the dynamics of a non-comoving galaxy and generalize previous analyses to arbitrary FRW universes. We also derive the counter-intuitive result that objects at constant proper distance have a non-zero redshift. Receding galaxies can be blueshifted and approaching galaxies can be redshifted, even in an empty universe for which one might expect special relativity to apply. Using the empty universe model we demonstrate the relationship between special relativity and Friedmann-Robertson-Walker cosmology. We test the generalized second law of thermodynamics (GSL) and its extension to incorporate cosmological event horizons. In spite of the fact that cosmological horizons do not generally have well-defined thermal properties, we find that the GSL is satisfied for a wide range of models. We explore in particular the relative entropic "eworth"e of black hole versus cosmological horizon area. An intriguing set of models show an apparent entropy decrease but we anticipate this apparent violation of the GSL will disappear when solutions are available for black holes embedded in arbitrary backgrounds. Recent evidence suggests a slow increase in the fine structure constant over cosmological time scales. This raises the question of which fundamental quantities are truly constant and which might vary. We show that black hole thermodynamics may provide a means to discriminate between alternative theories invoking varying constants, because some variations in the fundamental "econstants"e could lead to a violation of the generalized second law of thermodynamics.
Style APA, Harvard, Vancouver, ISO itp.
7

Svanedal, Ida. "Fundamental Characterization and Technical Aspects of a Chelating Surfactant". Doctoral thesis, Mittuniversitetet, Avdelningen för kemiteknik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-21405.

Pełny tekst źródła
Streszczenie:
The purpose of this study was to investigate the fundamental characteristics of a chelating surfactant in terms of solution behaviour, chelation of divalent metal ions, and interaction in mixtures with different foaming agents and divalent metal ion, as well as examining its prospects in some practical applications. Chelating surfactants are functional molecules, with both surface active and chelating properties, which are water soluble and therefore suitable for chelation in many aqueous environments. The dual functionality offers the possibility to recover the chelating surfactant as well as the metals. The DTPA (diethylenetriaminepentaacetic acid)-based chelating surfactant 4-C12-DTPA (2-dodecyldiethylenetriaminepentaacetic acid) was synthesized at Mid Sweden University. In the absence of metal ions, all eight donor atoms in the headgroup of 4-C12-DTPA are titrating and the headgroup charge can be tuned from +3 to -5 by altering the pH. The solution properties, studied by surface tension measurements and NMR diffusometry, were consequently found strongly pH dependent. pH measurements of chelating surfactant solutions as a function of concentration was used to extract information regarding the interaction between surfactants in the aggregation process. Small differences in the conditional stability constants (log K) between coordination complexes of DTPA and 4-C12-DTPA, determined by competition measurements utilizing electrospray ionization mass spectrometry (ESI-MS), indicated that the hydrocarbon tail only affected the chelating ability of the headgroup to a limited extent. This was further confirmed in hydrogen peroxide bleaching of thermomechanical pulp (TMP) treated with 4-C12-DTPA. Interaction parameters for mixed systems of 4-C12-DTPA and different foaming agents were calculated following the approach of Rubingh’s regular solution theory. The mixtures were also examined with addition of divalent metal ions in equimolar ratio to the chelating surfactant. Strong correlation was found between the interaction parameter and the phase transfer efficiency of Ni2+ ions during flotations. Furthermore, a significant difference in log K between different metal complexes with 4-C12-DTPA enabled selective recovery of the metal ion with the highest log K. The findings in this study contribute to the understanding of the fundamental characteristics of chelating surfactants, which can be further utilized in practical applications.
Style APA, Harvard, Vancouver, ISO itp.
8

Prause, Nils [Verfasser], i Dieter [Akademischer Betreuer] Reimers. "The influence of asymmetric line profiles on the reliability of the search for varying fundamental constants / Nils Prause. Betreuer: Dieter Reimers". Hamburg : Staats- und Universitätsbibliothek Hamburg, 2014. http://d-nb.info/1059237946/34.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Windberger, Robert-Alexander [Verfasser], i López-Urrutia José Ramón [Akademischer Betreuer] Crespo. "Identification of optical transitions in complex highly charged ions for applications in metrology and tests of fundamental constants / Robert-Alexander Windberger ; Betreuer: José Ramón Crespo López-Urrutia". Heidelberg : Universitätsbibliothek Heidelberg, 2015. http://d-nb.info/1180396839/34.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Windberger, Alexander [Verfasser], i López-Urrutia José Ramón [Akademischer Betreuer] Crespo. "Identification of optical transitions in complex highly charged ions for applications in metrology and tests of fundamental constants / Robert-Alexander Windberger ; Betreuer: José Ramón Crespo López-Urrutia". Heidelberg : Universitätsbibliothek Heidelberg, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:16-heidok-188685.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Książki na temat "Fundamental constants"

1

1960-, Karshenboim S. G., i Peik E, red. Astrophysics, clocks and fundamental constants. Berlin: Springer, 2004.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Karshenboim, Savely G., i Ekkehard Peik, red. Astrophysics, Clocks and Fundamental Constants. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/b13178.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

The fundamental constants: A mystery of physics. New Jewrsey: World Scientific, 2009.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

NATO Advanced Study Institute on Gravitational Measurements, Fundamental Metrology, and Constants (1987 Erice, Italy). Gravitational measurements, fundamental metrology, and constants. Dordrecht: Kluwer Academic Publishers, 1988.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Sabbata, Venzo, i V. N. Melnikov, red. Gravitational Measurements, Fundamental Metrology and Constants. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-2955-5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Sabbata, Venzo. Gravitational Measurements, Fundamental Metrology and Constants. Dordrecht: Springer Netherlands, 1988.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Paolo, Molaro, i SpringerLink (Online service), red. From Varying Couplings to Fundamental Physics: Proceedings of Symposium 1 of JENAM 2010. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2011.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

The fundamental physical constants and the frontier of measurement. Bristol: A. Hilger, 1985.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Cohen, E. Richard. The 1986 adjustment of the fundamental physical constants. Oxford: Pergamon Press, 1986.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Cohen, E. Richard. Symbols, units, nomenclature and fundamental constants in physics. [Go teborg]: International Union of Pure and Applied Physics, 1987.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Części książek na temat "Fundamental constants"

1

Cardarelli, François. "Fundamental Constants". W Encyclopaedia of Scientific Units, Weights and Measures, 771–79. London: Springer London, 2003. http://dx.doi.org/10.1007/978-1-4471-0003-4_5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Cardarelli, François. "Fundamental Constants". W Scientific Unit Conversion, 443–48. London: Springer London, 1999. http://dx.doi.org/10.1007/978-1-4471-0805-4_5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Cardarelli, François. "Fundamental Constants". W Scientific Unit Conversion, 419–24. London: Springer London, 1997. http://dx.doi.org/10.1007/978-1-4471-3394-0_5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Martienssen, Werner. "The Fundamental Constants". W Springer Handbook of Materials Data, 3–9. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-69743-7_1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Cohen, E. Richard. "Fundamental Physical Constants". W Gravitational Measurements, Fundamental Metrology and Constants, 59–89. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-2955-5_5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Grabe, Michael. "Fundamental Constants of Physics". W Measurement Uncertainties in Science and Technology, 337–47. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04888-8_22.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Kapuścik, Edward. "Physics Without Physical Constants". W Frontiers of Fundamental Physics, 387–91. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2560-8_46.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Kiefer, Claus. "Quantum Gravity and Fundamental Constants". W Astrophysics, Clocks and Fundamental Constants, 115–27. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-40991-5_8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Faustov, R. N. "Quantum Electrodynamics and Fundamental Constants". W Gravitational Measurements, Fundamental Metrology and Constants, 131–42. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-2955-5_9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Flowers, Jeff, i Brian Petley. "Constants, Units and Standards". W Astrophysics, Clocks and Fundamental Constants, 75–93. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-40991-5_5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Streszczenia konferencji na temat "Fundamental constants"

1

Di Mario, D., B. G. Sidharth, F. Honsell, O. Mansutti, K. Sreenivasan i A. De Angelis. "Connecting Fundamental Constants". W FRONTIERS OF FUNDAMENTAL AND COMPUTATIONAL PHYSICS: 9th International Symposium. AIP, 2008. http://dx.doi.org/10.1063/1.2947669.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Flambaum, V. V. "Variation of Fundamental Constants". W ATOMIC PHYSICS 20: XX International Conference on Atomic Physics - ICAP 2006. AIP, 2006. http://dx.doi.org/10.1063/1.2400630.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Wood, B. M. "Fundamental constants - the ultimate metric". W 2012 Conference on Precision Electromagnetic Measurements (CPEM 2012). IEEE, 2012. http://dx.doi.org/10.1109/cpem.2012.6250629.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Grabe, Michael. "Fundamental Constants - True Values and Expectations". W 2004 Conference on Precision Electromagnetic Measurements. IEEE, 2004. http://dx.doi.org/10.1109/cpem.2004.305465.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Feldmeier, Hans, Elena Litvinova, Victor Flambaum i Jacek Dobaczewski. "Variation of fundamental constants and 229Th". W Proceedings of the MG14 Meeting on General Relativity. WORLD SCIENTIFIC, 2017. http://dx.doi.org/10.1142/9789813226609_0478.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Varshalovich, D. A., A. Y. Potekhin i A. V. Ivanchik. "Testing cosmological variability of fundamental constants". W X-RAY AND INNER-SHELL PROCESSES: 18th International Conference. AIP, 2000. http://dx.doi.org/10.1063/1.1302777.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Krauth, Julian J., Laura S. Dreissen, Charlaine Roth, Elmer L. Gründeman, Mathieu Collombon, Maxime Favier i Kjeld S. E. Eikema. "Paving the way for fundamental physics tests with singly-ionized helium". W International Conference on Precision Physics and Fundamental Physical Constants. Trieste, Italy: Sissa Medialab, 2019. http://dx.doi.org/10.22323/1.353.0049.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Adkins, Gregory, Benjamin Akers, Md Faisal Alam, Lam M. Tran i Xuan Zhang. "Calculation of higher order corrections to positronium energy levels". W International Conference on Precision Physics and Fundamental Physical Constants. Trieste, Italy: Sissa Medialab, 2019. http://dx.doi.org/10.22323/1.353.0004.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Pásztor, Gabriella. "Precision tests of the Standard Model at the LHC with the ATLAS and CMS detectors". W International Conference on Precision Physics and Fundamental Physical Constants. Trieste, Italy: Sissa Medialab, 2019. http://dx.doi.org/10.22323/1.353.0005.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Sopczak, Andre. "Precision measurements in Higgs sector at ATLAS and CMS". W International Conference on Precision Physics and Fundamental Physical Constants. Trieste, Italy: Sissa Medialab, 2020. http://dx.doi.org/10.22323/1.353.0006.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Raporty organizacyjne na temat "Fundamental constants"

1

Cohen, E. Richard, i Barry N. Taylor. Fundamental physical constants. Gaithersburg, MD: National Bureau of Standards, 1987. http://dx.doi.org/10.6028/nbs.sp.731.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Mohr, P. J., P. J. Mohr i B. N. Taylor. CODATA recommended values of the fundamental physical constants :. Gaithersburg, MD: National Institute of Standards and Technology, 2005. http://dx.doi.org/10.6028/nist.sp.961e2005.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Mohr, P. J., D. B. Newell i B. N. Taylor. CODATA recommended values of the fundamental physical constants: 2014. Gaithersburg, MD: National Institute of Standards and Technology, 2015. http://dx.doi.org/10.6028/nist.sp.961r2015.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Mohr, P. J., P. J. Mohr i B. N. Taylor. CODATA recommended values of the fundamental constants of physics and chemistry. Gaithersburg, MD: National Institute of Standards and Technology, 2005. http://dx.doi.org/10.6028/nist.sp.959e2005.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Mohr, P. J., P. J. Mohr, B. N. Taylor i D. B. Newell. CODATA recommended values of the fundamental constants of physics and chemistry. Gaithersburg, MD: National Institute of Standards and Technology, 2008. http://dx.doi.org/10.6028/nist.sp.959e2008.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Mohr, Peter J. 2014 CODATA RECOMMENDED VALUES OF THE FUNDAMENTAL CONSTANTS OF PHYSICS AND CHEMISTRY. Gaithersburg, MD: National Institute of Standards and Technology, kwiecień 2017. http://dx.doi.org/10.6028/nist.sp.959e2017.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Mohr, P. J., P. J. Mohr i B. N. Taylor. 1998 CODATA recommended values of the fundamental constants of physics and chemistry. Gaithersburg, MD: National Institute of Standards and Technology, 2001. http://dx.doi.org/10.6028/nist.sp.961e2001.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Biedenharn, L. C., i J. C. Solem. The fundamental and universal nature of Boltzmann`s constant. Office of Scientific and Technical Information (OSTI), lipiec 1996. http://dx.doi.org/10.2172/266721.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Maydykovskiy, Igor, i Petras Užpelkis. The Physical Essence of Time. Intellectual Archive, grudzień 2020. http://dx.doi.org/10.32370/iaj.2450.

Pełny tekst źródła
Streszczenie:
The article considers the model of the space-frequency-time continuum, according to which the physical essence of Time is manifested as a fraction of electromagnetic energy spent on updating a material object in a cyclic process of copying-incarnation. For all structural levels of physical reality, the value of this fraction is a fundamental constant, which can be represented as the tangent of the loss angle, or expressed in radians, as the angle of inclination of the evolutionary spiral, which characterizes the rate of change of states or the duration of events and processes. The value of this constant can be calculated, and its value turns out to be identically equals to the square of the fine structure Constant (α2). The description of the method for identifying a new constant allows us to present the formula of Scientific Discovery as the Physical Essence of Time.
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii