Artykuły w czasopismach na temat „Functional Porous Nanocomposite”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Functional Porous Nanocomposite”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Al-Arjan, Wafa Shamsan, Muhammad Umar Aslam Khan, Samina Nazir, Saiful Izwan Abd Razak i Mohammed Rafiq Abdul Kadir. "Development of Arabinoxylan-Reinforced Apple Pectin/Graphene Oxide/Nano-Hydroxyapatite Based Nanocomposite Scaffolds with Controlled Release of Drug for Bone Tissue Engineering: In-Vitro Evaluation of Biocompatibility and Cytotoxicity against MC3T3-E1". Coatings 10, nr 11 (20.11.2020): 1120. http://dx.doi.org/10.3390/coatings10111120.
Pełny tekst źródłaGerawork, Mekdes. "Remediation of textile industry organic dye waste by photocatalysis using eggshell impregnated ZnO/CuO nanocomposite". Water Science and Technology 83, nr 11 (29.04.2021): 2753–61. http://dx.doi.org/10.2166/wst.2021.165.
Pełny tekst źródłaKundana, N., M. Venkatapathy, V. Neeraja, Chandra Sekhar Espenti, Venkata Ramana Jeedi i V. Madhusudhana Reddy. "Effect of Zr-Nanofiller on Structural and Thermal Properties of PVDF-co-HFP Porous Polymer Electrolyte Membranes Doped with Mg2+ Ions". Asian Journal of Chemistry 35, nr 1 (27.12.2022): 99–108. http://dx.doi.org/10.14233/ajchem.2023.26893.
Pełny tekst źródłaMadhu, Rajesh, Vediyappan Veeramani, Shen-Ming Chen, Pitchaimani Veerakumar, Shang-Bin Liu i Nobuyoshi Miyamoto. "Functional porous carbon–ZnO nanocomposites for high-performance biosensors and energy storage applications". Physical Chemistry Chemical Physics 18, nr 24 (2016): 16466–75. http://dx.doi.org/10.1039/c6cp01285j.
Pełny tekst źródłaMotin, Georgy Yu, i Aleksandr N. Kokatev. "Nanoporous alumina membranes as the basis for functional nanocomposite materials". Transactions of the Kоla Science Centre of RAS. Series: Engineering Sciences 13, nr 1/2022 (27.12.2022): 173–79. http://dx.doi.org/10.37614/2949-1215.2022.13.1.030.
Pełny tekst źródłaLin, Tao, Wenlong Liu, Bin Yan, Jing Li, Yi Lin, Yinghui Zhao, Zheng Shi i Sheng Chen. "Self-Assembled Polyaniline/Ti3C2Tx Nanocomposites for High-Performance Electrochromic Films". Nanomaterials 11, nr 11 (4.11.2021): 2956. http://dx.doi.org/10.3390/nano11112956.
Pełny tekst źródłaLeontiev, Alexey P., Olga Yu Volkova, Irina A. Kolmychek, Anastasia V. Venets, Alexander R. Pomozov, Vasily S. Stolyarov, Tatiana V. Murzina i Kirill S. Napolskii. "Tuning the Optical Properties of Hyperbolic Metamaterials by Controlling the Volume Fraction of Metallic Nanorods". Nanomaterials 9, nr 5 (14.05.2019): 739. http://dx.doi.org/10.3390/nano9050739.
Pełny tekst źródłaTsou, Chi-Hui, Rui Zeng, Chih-Yuan Tsou, Jui-Chin Chen, Ya-Li Sun, Zheng-Lu Ma, Manuel Reyes De Guzman, Lian-Jie Tu, Xin-Yuan Tian i Chin-San Wu. "Mechanical, Hydrophobic, and Barrier Properties of Nanocomposites of Modified Polypropylene Reinforced with Low-Content Attapulgite". Polymers 14, nr 17 (5.09.2022): 3696. http://dx.doi.org/10.3390/polym14173696.
Pełny tekst źródłaDzyazko, Yuliya, Ludmila Ponomarova, Yurii Volfkovich, Valentina Tsirina, Valentin Sosenkin, Nadiya Nikolska i Volodimir Belyakov. "Influence of Zirconium Hydrophosphate Nanoparticles on Porous Structure and Sorption Capacity of the Composites Based on Ion Exchange Resin". Chemistry & Chemical Technology 10, nr 3 (15.09.2016): 329–35. http://dx.doi.org/10.23939/chcht10.03.329.
Pełny tekst źródłaSun, Dongshu, Minjia Meng, Yao Lu, Bo Hu, Yongsheng Yan i Chunxiang Li. "Porous nanocomposite membranes based on functional GO with selective function for lithium adsorption". New Journal of Chemistry 42, nr 6 (2018): 4432–42. http://dx.doi.org/10.1039/c7nj04733a.
Pełny tekst źródłaLi, Xiuli, Jigang Wang, Xin Li, Xiaoqian Hou, Hao Wang, Hui Li i Chunhua Zhang. "A novel design of wound bandage using heparin-polyvinylpyrrolidone/TiO2 nanocomposite to improved antibacterial treatment and burn wound healing effect: In vitro and in vivo evaluation". Materials Express 11, nr 11 (1.11.2021): 1808–18. http://dx.doi.org/10.1166/mex.2021.1877.
Pełny tekst źródłaHamlehkhan, Azhang, Masoud Mozafari, Nader Nezafati, Mahmoud Azami i Ali Samadikuchaksaraei. "Novel Bioactive Poly(ε-caprolactone)-Gelatin-Hydroxyapatite Nanocomposite Scaffolds for Bone Regeneration". Key Engineering Materials 493-494 (październik 2011): 909–15. http://dx.doi.org/10.4028/www.scientific.net/kem.493-494.909.
Pełny tekst źródłaFedosyuk, V. M. "Matrices, based on nanostructured porous anodic alumina, for functional applications". Proceedings of the National Academy of Sciences of Belarus, Physical-Technical Series 66, nr 1 (2.04.2021): 37–46. http://dx.doi.org/10.29235/1561-8358-2021-66-1-37-46.
Pełny tekst źródłaRoddecha, Supacharee, Kantawich Jittmonkong i Malinee Sriariyana. "One-Pot Synthesis of LiFePO4 Nano-Particles Dispersed in N-Containing Melamine-Formaldehyde Carbon Matrix as the Cathode Materials for Large Scale Lithium Ion Batteries". Key Engineering Materials 775 (sierpień 2018): 342–49. http://dx.doi.org/10.4028/www.scientific.net/kem.775.342.
Pełny tekst źródłaAslam Khan, Muhammad Umar, Wafa Shamsan Al-Arjan, Mona Saad Binkadem, Hassan Mehboob, Adnan Haider, Mohsin Ali Raza, Saiful Izwan Abd Razak, Anwarul Hasan i Rashid Amin. "Development of Biopolymeric Hybrid Scaffold-Based on AAc/GO/nHAp/TiO2 Nanocomposite for Bone Tissue Engineering: In-Vitro Analysis". Nanomaterials 11, nr 5 (17.05.2021): 1319. http://dx.doi.org/10.3390/nano11051319.
Pełny tekst źródłaMubarak, Mahmoud F., Mohamed A. Zayed, Ayman Nafady i Abeer E. L. Shahawy. "Fabrication of Hybrid Materials Based on Waste Polyethylene/Porous Activated Metakaolinite Nanocomposite as an Efficient Membrane for Heavy Metal Desalination Processes". Adsorption Science & Technology 2021 (19.03.2021): 1–15. http://dx.doi.org/10.1155/2021/6695398.
Pełny tekst źródłaNazir, Arif, Fraz Khalid, Shafiq ur Rehman, Masood Sarwar, Munawar Iqbal, Muhammad Yaseen, Muhammad Iftikhar Khan i Mazhar Abbas. "Structural, electric and dielectric properties of perovskite based nanoparticles for energy applications". Zeitschrift für Physikalische Chemie 235, nr 6 (5.06.2020): 769–84. http://dx.doi.org/10.1515/zpch-2019-1558.
Pełny tekst źródłaAlmohazey, Dana, Vijaya Ravinayagam, Widyan Alamoudi, Sultan Akhtar, H. Dafalla, Hind Nasser AlSuwaidan, Shoruq T. Almutairi i in. "Insights of Platinum Drug Interaction with Spinel Magnetic Nanocomposites for Targeted Anti-Cancer Effect". Cancers 15, nr 3 (23.01.2023): 695. http://dx.doi.org/10.3390/cancers15030695.
Pełny tekst źródłaKaipannan, Subramani, P. Anandha Ganesh, Karnan Manickavasakam, Santhoshkumar Sundaramoorthy, Kaviarasan Govindarajan, Sundar Mayavan i Sathish Marappan. "Waste engine oil derived porous carbon/ZnS Nanocomposite as Bi-functional electrocatalyst for supercapacitor and oxygen reduction". Journal of Energy Storage 32 (grudzień 2020): 101774. http://dx.doi.org/10.1016/j.est.2020.101774.
Pełny tekst źródłaAl-Senani, Ghadah M., Samerah I. Al-Saeedi, Nada S. Al-Kadhi, Omar H. Abd-Elkader i Nasrallah M. Deraz. "Green Synthesis and Pinning Behavior of Fe-Doped CuO/Cu2O/Cu4O3 Nanocomposites". Processes 10, nr 4 (9.04.2022): 729. http://dx.doi.org/10.3390/pr10040729.
Pełny tekst źródłaHermosa, Glemarie C., Chien-Shiun Liao, Sea-Fue Wang i Aidan An-Cheng Sun. "Methyl Orange Adsorption onto Magnetic Fe3O4/Carbon (AC, GO, PGO) Nanocomposites". Journal of Nanoscience and Nanotechnology 21, nr 11 (1.11.2021): 5756–64. http://dx.doi.org/10.1166/jnn.2021.19494.
Pełny tekst źródłaDong, Zheng, Chen Chen, Kaihua Wen, Xiaoyi Zhao, Xihong Guo, Zhongzheng Zhou, Guangcai Chang, Yi Zhang i Yuhui Dong. "A Freestanding Chitin-Derived Hierarchical Nanocomposite for Developing Electrodes in Future Supercapacitor Industry". Polymers 14, nr 1 (4.01.2022): 195. http://dx.doi.org/10.3390/polym14010195.
Pełny tekst źródłaXing, Wendong, Yilin Wu, Jian Lu, Xinyu Lin, Chao Yu, Zeqing Dong, Yongsheng Yan i Chunxiang Li. "Biomass-Based Synthesis of Green and Biodegradable Molecularly Imprinted Membranes for Selective Recognition and Separation of Tetracycline". Nano 15, nr 01 (styczeń 2020): 2050004. http://dx.doi.org/10.1142/s1793292020500046.
Pełny tekst źródłaS, Anil Subash, Manjunatha C, Ajit Khosla, R. Hari Krishna i Ashoka S. "Current Progress in Materials, Device Fabrication, and Biomedical Applications of Potentiometric Sensor Devices: A Short Review". ECS Transactions 107, nr 1 (24.04.2022): 6343–54. http://dx.doi.org/10.1149/10701.6343ecst.
Pełny tekst źródłaKuznetsova, T. S., I. V. Burakova, T. V. Pasko, A. E. Burakov, A. V. Melezhik, E. S. Mkrtchyan, A. V. Babkin, E. A. Neskoromnaya i A. G. Tkachev. "Technology of obtaining nanocomposites for sorption purification of aqueous media". Perspektivnye Materialy 9 (2021): 68–78. http://dx.doi.org/10.30791/1028-978x-2021-9-68-78.
Pełny tekst źródłaRabiee, Navid, Mohammad Rabiee, Soheil Sojdeh, Yousef Fatahi, Rassoul Dinarvand, Moein Safarkhani, Sepideh Ahmadi i in. "Porphyrin Molecules Decorated on Metal-Organic Frameworks for Multi-Functional Biomedical Applications". Biomolecules 11, nr 11 (17.11.2021): 1714. http://dx.doi.org/10.3390/biom11111714.
Pełny tekst źródłaZhong, Tao, Meisheng Xia, Zhitong Yao i Chenhua Han. "Chitosan/Silica Nanocomposite Preparation from Shrimp Shell and Its Adsorption Performance for Methylene Blue". Sustainability 15, nr 1 (20.12.2022): 47. http://dx.doi.org/10.3390/su15010047.
Pełny tekst źródłaMenge, Habtamu Gebeyehu, Jin Ok Kim i Yong Tae Park. "Enhanced Triboelectric Performance of Modified PDMS Nanocomposite Multilayered Nanogenerators". Materials 13, nr 18 (18.09.2020): 4156. http://dx.doi.org/10.3390/ma13184156.
Pełny tekst źródłaAslam Khan, Muhammad Umar, Hassan Mehboob, Saiful Izwan Abd Razak, Mohd Yazid Yahya, Abdul Halim Mohd Yusof, Muhammad Hanif Ramlee, T. Joseph Sahaya Anand, Rozita Hassan, Athar Aziz i Rashid Amin. "Development of Polymeric Nanocomposite (Xyloglucan-co-Methacrylic Acid/Hydroxyapatite/SiO2) Scaffold for Bone Tissue Engineering Applications—In-Vitro Antibacterial, Cytotoxicity and Cell Culture Evaluation". Polymers 12, nr 6 (29.05.2020): 1238. http://dx.doi.org/10.3390/polym12061238.
Pełny tekst źródłaNolasco, Jirah Emmanuel T., Elaine Nicole O. Cañeba, Karl Michael V. Edquila, Joel Ian C. Espita i Jem Valerie D. Perez. "Kinetics and Isotherm Studies of Methyl Orange Adsorption Using Polyethyleneimine-Graphene Oxide Polymer Nanocomposite Beads". Key Engineering Materials 801 (maj 2019): 304–10. http://dx.doi.org/10.4028/www.scientific.net/kem.801.304.
Pełny tekst źródłaMajidi, Rezvan, Mohammad Ramezanzadeh i Bahram Ramezanzadeh. "Developing a dual-functional self-healing nanocomposite utilizing oxidized-multiwall carbon nanotube/highly-porous metal-organic framework (OCNT/ZIF-8) nano-hybrid". Applied Materials Today 32 (czerwiec 2023): 101830. http://dx.doi.org/10.1016/j.apmt.2023.101830.
Pełny tekst źródłaMoradian, Jamile Mohammadi, Songmei Wang, Amjad Ali, Junying Liu, Jianli Mi i Hongcheng Wang. "Biomass-Derived Carbon Anode for High-Performance Microbial Fuel Cells". Catalysts 12, nr 8 (13.08.2022): 894. http://dx.doi.org/10.3390/catal12080894.
Pełny tekst źródłaNofitri Da Conceicao Isya, Hindun, Imelda Valadares Marcal i Ruth R. Aquino. "Fabrication and Characterization of PVDF with an Additive of Nanozeolite via Electrospinning and Non-solvent Induced Phase Separation (NIPS) Process". MATEC Web of Conferences 319 (2020): 10002. http://dx.doi.org/10.1051/matecconf/202031910002.
Pełny tekst źródłaJunaidi, Junaidi, Wiwin Sulistiani, Yessi Efridahniar, Indah Pratiwi, Iqbal Firdaus, Posman Manurung i Pulung Karo Karo. "Synthesis and Characterization of Ag/SiO<sub>2</sub> Nanocomposite Based on Rice Husk Silica Using Sol-Gel Method". Journal of Nano Research 78 (17.04.2023): 31–42. http://dx.doi.org/10.4028/p-54swgk.
Pełny tekst źródłaJavad Nazarahari, Mohammad, Abbas Khaksar Manshad, Siyamak Moradi, Ali Shafiei, Jagar Abdulazez Ali, S. Sajadi i Alireza Keshavarz. "Synthesis, Characterization, and Assessment of a CeO2@Nanoclay Nanocomposite for Enhanced Oil Recovery". Nanomaterials 10, nr 11 (17.11.2020): 2280. http://dx.doi.org/10.3390/nano10112280.
Pełny tekst źródłaMontoro-Leal, Pablo, Isaac A. M. Frías, Elisa Vereda Alonso, Abdelhamid Errachid i Nicole Jaffrezic-Renault. "A Molecularly Imprinted Polypyrrole/GO@Fe3O4 Nanocomposite Modified Impedimetric Sensor for the Routine Monitoring of Lysozyme". Biosensors 12, nr 9 (5.09.2022): 727. http://dx.doi.org/10.3390/bios12090727.
Pełny tekst źródłaSari, W., M. Sari i Y. Yusuf. "The cell viability assay analysis and physicochemical characterization of porous hydroxyapatite scaffold using honeycomb and paraffin wax as polymeric porogen for bone tissue engineering". Advances in Natural Sciences: Nanoscience and Nanotechnology 13, nr 1 (1.03.2022): 015013. http://dx.doi.org/10.1088/2043-6262/ac5d43.
Pełny tekst źródłaThangarasu, Sadhasivam, i Tae-Hwan Oh. "Recent Developments on Bioinspired Cellulose Containing Polymer Nanocomposite Cation and Anion Exchange Membranes for Fuel Cells (PEMFC and AFC)". Polymers 14, nr 23 (1.12.2022): 5248. http://dx.doi.org/10.3390/polym14235248.
Pełny tekst źródłaSorkhabi, Tannaz Soltanolzakerin, Mehrab Fallahi Samberan, Krzysztof Adam Ostrowski, Tomasz M. Majka, Marcin Piechaczek i Paulina Zajdel. "Preparation and Characterization of Novel Microgels Containing Nano-SiO2 and Copolymeric Hydrogel Based on Poly (Acrylamide) and Poly (Acrylic Acid): Morphological, Structural and Swelling Studies". Materials 15, nr 14 (8.07.2022): 4782. http://dx.doi.org/10.3390/ma15144782.
Pełny tekst źródłaBorpatra Gohain, Moucham, Sachin Karki, Diksha Yadav, Archana Yadav, Neha R. Thakare, Swapnali Hazarika, Hyung Keun Lee i Pravin G. Ingole. "Development of Antifouling Thin-Film Composite/Nanocomposite Membranes for Removal of Phosphate and Malachite Green Dye". Membranes 12, nr 8 (7.08.2022): 768. http://dx.doi.org/10.3390/membranes12080768.
Pełny tekst źródłaKim, Hyong June, Taeyoung Kim, Byung Chan Yang, Sung Eun Jo, Ji-Won Son i Jihwan An. "Reactive Sputtered NiO-YSZ Anode Functional Layer for Thin Film Low-Temperature Solid Oxide Fuel Cell". ECS Meeting Abstracts MA2022-02, nr 47 (9.10.2022): 1766. http://dx.doi.org/10.1149/ma2022-02471766mtgabs.
Pełny tekst źródłaDearnley, P. A., E. Kern i K. L. Dahm. "Wear response of crystalline nanocomposite and glassy Al2O3-SiC coatings subjected to simulated piston ring/cylinder wall tests". Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications 219, nr 2 (1.04.2005): 121–37. http://dx.doi.org/10.1243/146442005x10300.
Pełny tekst źródłaChung, Sheng-Heng, i Cun-Sheng Cheng. "(Digital Presentation) A Design of Nickel/Sulfur Energy-Storage Materials for Electrochemical Lithium-Sulfur Cells". ECS Meeting Abstracts MA2022-02, nr 4 (9.10.2022): 542. http://dx.doi.org/10.1149/ma2022-024542mtgabs.
Pełny tekst źródłaRosli, A. R., S. H. Loh i F. Yusoff. "Synthesis and Characterization of Magnetic Fe3O4/Reduced Graphene Oxide and its Application in Determination of Dopamine". Asian Journal of Chemistry 31, nr 12 (16.11.2019): 2785–92. http://dx.doi.org/10.14233/ajchem.2019.22213.
Pełny tekst źródłaHassan, Md Mehadi, i Qingye Lu. "Nanoarchitecture of Novel 3D Ion Transferring Channel Containing Composite Solid Polymer Electrolyte Membrane Based on Holey Graphene Oxide and Chitosan Biopolymer". ECS Meeting Abstracts MA2022-01, nr 2 (7.07.2022): 163. http://dx.doi.org/10.1149/ma2022-012163mtgabs.
Pełny tekst źródłaHe, Wenqing, Peng Liu, Jieke Jiang, Meijin Liu, Hualin Li, Jianqiang Zhang, Yan Luo, Hon-Yeung Cheung i Xi Yao. "Development of multifunctional liquid-infused materials by printing assisted functionalization on porous nanocomposites". Journal of Materials Chemistry A 6, nr 9 (2018): 4199–208. http://dx.doi.org/10.1039/c7ta10780c.
Pełny tekst źródłaBrinker, C. Jeffrey. "Evaporation-Induced Self-Assembly: Functional Nanostructures Made Easy". MRS Bulletin 29, nr 9 (wrzesień 2004): 631–40. http://dx.doi.org/10.1557/mrs2004.183.
Pełny tekst źródłaMunonde, Tshimangadzo S., i Philiswa N. Nomngongo. "Nanocomposites for Electrochemical Sensors and Their Applications on the Detection of Trace Metals in Environmental Water Samples". Sensors 21, nr 1 (28.12.2020): 131. http://dx.doi.org/10.3390/s21010131.
Pełny tekst źródłaRysiakiewicz-Pasek, Ewa, Agnieszka Ciżman, Tatiana Antropova, Yuri Gorokhovatsky, Olga Pshenko, Elena Fomicheva i Irina Drozdova. "An insight into inorganic glasses and functional porous glass-based nanocomposites". Materials Chemistry and Physics 243 (marzec 2020): 122585. http://dx.doi.org/10.1016/j.matchemphys.2019.122585.
Pełny tekst źródłaUskov, Andrei V., Elena V. Charnaya, Aleksandr I. Kuklin, Min Kai Lee, Lieh-Jeng Chang, Yurii A. Kumzerov i Aleksandr V. Fokin. "Ga-In Alloy Segregation within a Porous Glass as Studied by SANS". Nanomaterials 13, nr 8 (13.04.2023): 1357. http://dx.doi.org/10.3390/nano13081357.
Pełny tekst źródła