Gotowa bibliografia na temat „Functional Modeling - Heme Enzymes”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Functional Modeling - Heme Enzymes”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Functional Modeling - Heme Enzymes"
Timmins, Amy, i Sam P. de Visser. "A Comparative Review on the Catalytic Mechanism of Nonheme Iron Hydroxylases and Halogenases". Catalysts 8, nr 8 (31.07.2018): 314. http://dx.doi.org/10.3390/catal8080314.
Pełny tekst źródłaRobins, Tiina, Jonas Carlsson, Maria Sunnerhagen, Anna Wedell i Bengt Persson. "Molecular Model of Human CYP21 Based on Mammalian CYP2C5: Structural Features Correlate with Clinical Severity of Mutations Causing Congenital Adrenal Hyperplasia". Molecular Endocrinology 20, nr 11 (1.11.2006): 2946–64. http://dx.doi.org/10.1210/me.2006-0172.
Pełny tekst źródłaKrone, Nils, Yulia Grischuk, Marina Müller, Ruth Elisabeth Volk, Joachim Grötzinger, Paul-Martin Holterhus, Wolfgang G. Sippell i Felix G. Riepe. "Analyzing the Functional and Structural Consequences of Two Point Mutations (P94L and A368D) in the CYP11B1 Gene Causing Congenital Adrenal Hyperplasia Resulting from 11-Hydroxylase Deficiency". Journal of Clinical Endocrinology & Metabolism 91, nr 7 (1.07.2006): 2682–88. http://dx.doi.org/10.1210/jc.2006-0209.
Pełny tekst źródłaFontecave, M., S. Ménage i C. Duboc-Toia. "Functional models of non-heme diiron enzymes". Coordination Chemistry Reviews 178-180 (grudzień 1998): 1555–72. http://dx.doi.org/10.1016/s0010-8545(98)00119-2.
Pełny tekst źródłaShteinman, A. A. "Structural-functional modeling of non-heme oxygenases". Russian Chemical Bulletin 60, nr 7 (lipiec 2011): 1290–300. http://dx.doi.org/10.1007/s11172-011-0197-5.
Pełny tekst źródłaYadav, Rahul, i Emily E. Scott. "Endogenous insertion of non-native metalloporphyrins into human membrane cytochrome P450 enzymes". Journal of Biological Chemistry 293, nr 43 (14.09.2018): 16623–34. http://dx.doi.org/10.1074/jbc.ra118.005417.
Pełny tekst źródłaNemukhin, A. V., B. L. Grigorenko, I. A. Topol i S. K. Burt. "Modeling dioxygen binding to the non-heme iron-containing enzymes". International Journal of Quantum Chemistry 106, nr 10 (2006): 2184–90. http://dx.doi.org/10.1002/qua.20910.
Pełny tekst źródłaBoynton, Tye O., Svetlana Gerdes, Sarah H. Craven, Ellen L. Neidle, John D. Phillips i Harry A. Dailey. "Discovery of a Gene Involved in a Third Bacterial Protoporphyrinogen Oxidase Activity through Comparative Genomic Analysis and Functional Complementation". Applied and Environmental Microbiology 77, nr 14 (3.06.2011): 4795–801. http://dx.doi.org/10.1128/aem.00171-11.
Pełny tekst źródłaKojima, T., T. Amano, Y. Ishii i Y. Matsuda. "Ruthenium-pyridylamine complexes as functional models of non-heme iron enzymes". Journal of Inorganic Biochemistry 67, nr 1-4 (lipiec 1997): 238. http://dx.doi.org/10.1016/s0162-0134(97)80111-0.
Pełny tekst źródłaMatsunaga, Isamu, i Yoshitsugu Shiro. "Peroxide-utilizing biocatalysts: structural and functional diversity of heme-containing enzymes". Current Opinion in Chemical Biology 8, nr 2 (kwiecień 2004): 127–32. http://dx.doi.org/10.1016/j.cbpa.2004.01.001.
Pełny tekst źródłaRozprawy doktorskie na temat "Functional Modeling - Heme Enzymes"
Acebes, Serrano Sandra. "Rational enzyme engineering of heme peroxidases through biophysical and biochemical modeling". Doctoral thesis, Universitat de Barcelona, 2016. http://hdl.handle.net/10803/399735.
Pełny tekst źródłaLas enzimas son proteínas que catalizan reacciones bioquímicas y cuyo uso aporta múltiples ventajas, ya que son en general muy selectivas, poco contaminantes (biodegradables), baratas y permiten trabajar en condiciones suaves, en comparación con los procesos tradicionales no enzimáticos. A pesar de sus enormes beneficios, sus aplicaciones a nivel industrial son todavía limitadas, debido principalmente a la baja productividad, baja tolerancia al sustrato (demasiado específicos) y una escasa resistencia a las condiciones industriales en general, y por esta razón el desarrollo de enzimas mejoradas es un campo de investigación muy importante hoy en día. En particular, la aplicación de la química computacional en el campo de la ingeniería de enzimas está en aumento debido a las mejoras en hardware y software. Motivado por este progreso, el objetivo principal de esta tesis es el desarrollo de estrategias de cálculo que, mediante la combinación de diferentes metodologías in silico permitan diseñar y evaluar modificaciones en las enzimas, centrándonos en la obtención de resultados de forma rápida y económica. La primera parte de la tesis está centrada en la descripción del mecanismo enzimático entendido como un proceso de dos pasos que incluyen la difusión ligando y la reacción química, mediante una combinación de diferentes técnicas computacionales. El primer paso, que implica el reconocimiento de la proteína / ligando, se caracterizó con diferentes técnicas basadas en la mecánica molecular (dinámica molecular, docking y Monte Carlo- PELE). Por otro lado, la reacción química (incluyendo la formación de enlaces y la transferencia de electrones) se simuló usando métodos basados en mecánica cuántica por medio de cálculos de energía, la caracterización del spin o cálculos de acoplamiento electrónico. Por ejemplo, siguiendo este procedimiento, se caracterizó la oxidación de alcohol veratrílico por medio de la enzima lignin peroxidasa. Además, con el objetivo de poder calcular los acoplamientos electrónicos de una manera más rápida y fácil, se desarrolló un servidor web: ecoupling server. En la segunda parte de la tesis, los resultados demostraron que el protocolo anterior podría describir funciones enzimáticas no sólo en las especies nativas sino también en las variantes mutadas. Por ejemplo, se identificaron las implicaciones estructurales de la reactividad en una manganeso peroxidasa de la subfamilia larga y su variante modificada obtenida mediante la reducción de los últimos residuos terminales gracias al estudio de simulaciones de Monte Carlo (PELE) y cálculos de acoplamiento electrónico. Además, la resistencia a pH ácido en el mutante 2-1B (que se había obtenido previamente por evolución dirigida al azar) se comparó con la especie nativa y también se racionalizó por dinámica molecular, donde se observó que los residuos del entorno del hemo presentaban diferente conformación debido a las mutaciones introducidas, resultando en una diferente resistencia a pH ácido. La última parte de la tesis se centra en la ingeniería racional de hemo peroxidasas. A partir de predicciones in silico se diseñaron variantes de peroxidasa versátil para tratar de entender los procesos de transferencia electrónica de largo alcance que participan en la oxidación del sustrato de alcohol veratrílico, mediante la identificación de los residuos intermedios involucrados en el proceso. Además, a partir de un estudio computacional completo, se diseñó un mutante mejorado de manganeso peroxidasa, cuyos valores cinéticos estimados computacionalmente se encontraban de acuerdo con los resultados experimentales. En conclusión, en esta tesis se ilustra cómo los métodos biofísicos y bioquímicos computacionales son herramientas prometedoras y valiosas para la ingeniería de enzimas, en particular en el campo del diseño racional.
Lee, Dongwhan 1970. "Use of sterically hindered carboxylate ligands to model structural and functional features of dioxygen-activating centers in non-heme diiron enzymes". Thesis, Massachusetts Institute of Technology, 2002. http://hdl.handle.net/1721.1/8367.
Pełny tekst źródłaIncludes bibliographical references.
Chapter I. Modeling Dioxygen-Activating Centers in Non-Heme Diiron Enzymes: Carboxylate Shifts in Diiron(II) Complexes Supported by Sterically Hindered Carboxylate Ligands General synthetic routes are described for a series of diiron(II) complexes supported by sterically demanding carboxylate ligands 2,6-di(p-tolyl)benzoate (ArTolCO2-) and 2,6-di(4-fluorophenyl)benzoate (Ar4-FPhCO2-). The interlocking nature of the m-terphenyl units in self-assembled [Fe2(p-O2CArTol)2(O2CArTol)2L2] (L = C5H5N (4); 1-MeIm (5)) promotes the formation of coordination geometries analogous to those of the non-heme diiron cores in the enzymes RNR-R2 and A9D. Magnetic susceptibility and MOssbauer studies of 4 and 5 revealed properties consistent with weak antiferromagnetic coupling between the high-spin iron(II) centers. Structural studies of several derivatives obtained by ligand substitution reactions demonstrated that the [Fe2([mu]O2CAr')2L2] (Ar'=ArTol; Ar 4-FPh) module is geometrically quite flexible. Details of the core rearrangement within the tetracarboxylate diiron framework, facilitated by carboxylate shifts, were probed by solution VT 19F-NMR spectroscopic studies of [Fe2(ap-O2CAr4-FPh)2(O2CAr4-FPh)2(THF)2] (8) and [Fe2(p-O2CAr4-FPh)4(4-tBuC5H4N)2] (12). The dynamic motion in the primary coordination sphere controls the positioning of open sites and regulates the access of exogenous ligands, processes that also occur at the catalytic sites of non-heme diiron enzymes. Chapter II. Structural Flexibility within a Sterically Hindered Ligand Platform: Mononuclear Iron(II) Carboxylate Complexes as Subsite Models for Diiron(II) Centers The synthesis and characterization of a series of mononuclear iron(II) carboxylate complexes are described.
(cont.) By using sterically hindered carboxylate ligands, 2,6-di(p-tolyl)benzoate (ArTolCO2-) and 2,6-di(4-tert-butylphenyl)benzoate (Ar4-tBPhCO2-), series of four-, five-, and six-coordinate iron(II) complexes were synthesized. The compounds are [Fe(O2CArTol)2(1-BnIm)2] (3), [Fe(O2CArTol)2(1-MeBzIm)2] (4), [Fe(02C-Ar4-tBuPh)2(2,2'-bipy)2] (5), [Fe(O2CArTol)2(TMEDA)] (6), and [Fe(O2CArTol)2(BPTA)] (7). Structural analyses of 3-7 revealed that the overall stereochemistry of the [Fe(O2CAr')2Ln] units is dictated by electronic and steric factors of the N-donor ligands (L), as well as by the flexible coordination of the carboxylate ligands. Distinctive MOss-Bauer parameters obtained for these and related compounds facilitated the spectral assignment of a diiron(II) complex having asymmetric metal sites, [Fe2(p-02CArTol)3(2CArTol)(2,6-lutidine)] (2). Well-defined mononuclear iron carboxylate complexes thus may serve as subsite models for higher nuclearity species in both synthetic and biological systems. Chapter III. Functional Mimic of Dioxygen-Activating Centers in Non-Heme Diiron Enzymes: Mechanistic Implications of Paramagnetic Intermediates in the Reactions between Diiron(II) Complexes and Dioxygen Tetracarboxylate diiron(II) complexes, [Fe2(-O02CArTOl)2(02CArToll)2(C5H5N)2] (la) and [Fe2(Pl-02CArTol)4(4-tBuC5H4N)2] (2a), where ArTloCO2- = 2,6-di(p-tolyl)benzoate, react with 02 in CH2C12 at -78 C to afford deep green intermediates ...
by Dongwhan Lee.
Ph.D.
Tarves, Paul C. "Coordination chemistry of mononuclear non-heme iron oxygenase enzymes: probing differential or carboxylate and phenolate ligation through functional synthetic model systems". Thesis, Boston University, 2013. https://hdl.handle.net/2144/12861.
Pełny tekst źródłaMononuclear non-heme iron oxygenase (MNO) enzymes utilize ferrous iron and dioxygen to perform a variety of thermodynamically challenging reactions at standard temperatures and pressures. The potent oxidizing power of these enzymatic systems has led to increased interest from the bioinorganic and synthetic organic communities. Presented herein is the preparation and characterization of an α-keto acid dependent synthetic system that closely models the active site electronic and dioxygen reactivity properties of the FeII/α-ketoglutarate dependent class of MNH iron oxygenase enzymes. The ferrous complex utilized possesses a facially coordinating N,N,O-donor ligand reminiscent of a common active site motif observed for MNO iron enzymes. The labile coordination sites opposite the ligand framework allow for the ligation of exogenous α-keto acid cofactor as well as the binding and activation of dioxygen. The coordination of exogenous α-keto acid cofactor has been shown to greatly enhance the rate of dioxygen reactivity of the ferrous complex and lead to the catalytic decarboxylation of the cofactor. The enhancement in rate is attributed to the coupling of the dioxygen reduction step to the oxidative decarboxylation of the bound cofactor, which is a thermodynamically favorable process. The oxidative decarboxylation pathway suggests the formation of a high valent iron-oxo intermediate, which has been further supported by the concentration dependence of solvent oxidation during catalysis. The mechanism of dioxygen reactivity was further probed by Hammett analysis using substituted aromatic α-keto acid cofactors. The data presented suggest that the model system prepared proceeds via a biomimetic mechanism capable of catalytic dioxygen activation and substrate oxidation under ambient conditions. Investigation of differential carboxylate and phenolate ligation as it pertains to MNO iron enzymes is also reported. The synthesis and characterization of both ferrous and ferric compounds containing ligands with similar ethylene diamine backbones and either one or two phenolate moities: 2-(((2-(dimethylarnino)ethyl)(methyl)amino)-methyl)phenol (N2O1-Ph) and 2,2'-((ethane-1,2-diylbis(methylazanediyl))bis-(methylene))diphenol (N2O2-Ph). The replacement of carboxylate moiety with a phenolate led to a significant decrease in reduction potential and subsequent enhancement in dioxygen sensitivity. This observation may provide insight into the reactivity of other iron containing enzymes with coordinated tyrosine residues, such as intradiol catechol dioxygenases.
Do, Loi Hung. "Advances in non-heme diiron modeling chemistry : developing functional protein mimics through ligand design and understanding dioxygen activation". Thesis, Massachusetts Institute of Technology, 2011. http://hdl.handle.net/1721.1/65165.
Pełny tekst źródłaThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Vita. Cataloged from student submitted PDF version of thesis.
Includes bibliographical references.
Chapter 1 A comprehensive review of diiron modeling in the Lippard group over the past thirty years is presented. This account describes the different strategies employed to prepare biomimetic complexes of non-heme diiron protein active sites, highlighting the accomplishments of the past as well as the challenges for the future. Studies of various model systems have led to a more profound understanding of the fundamental properties of carboxylate-bridged diiron units and their reactivity toward molecular oxygen and organic substrates. The key principles and lessons that have emerged from these studies have been an inspiration for the original work presented in this thesis. Chapter 2 A series of phenoxylpyridyl and phenoxylimine ligands, H2LR,R' (compounds derived from bis(phenoxylpyridyl)diethynylbenzene, where R = H, Me, or t-Bu, and R' = H, or Ph) and H2BIPSMe,Ph (bis((phenylphenoxyl)iminephenyl)sulfone) were synthesized as platforms for non-heme diiron(II) protein (III) core and molecular oxygen as the source of the bridging oxo group. The [LMe,Ph]2- ligand is robust toward oxidative decomposition and does not display any reversible redox activity. Chapter 3 A dinucleating macrocycle, H2PIM, containing phenoxylimine metal-binding units has been prepared. Reaction of H2PIM with [Fe2(Mes)4] (Mes = 2,4,6-trimethylphenyl) and sterically hindered carboxylic acids, Ph3CCO2H or ArTolCO2H (2,6-bis(p-tolyl)benzoic acid), afforded complexes [Fe2(PIM)(Ph3CCO2)2] (1) and [Fe2(PIM)(ArTolCO2)2] (2), respectively. X-ray diffraction studies revealed that these diiron(II) complexes closely mimic the active site structures of the hydroxylase components of bacterial multi-component monooxygenases (BMMs), particularly the syn disposition of the nitrogen donor atoms and the bridging [mu]--n1n2 and [mu]-n1n1 modes of the carboxylate ligands at the diiron(II) centers. Cyclic voltammograms of 1 and 2 displayed quasi-reversible redox couples at +16 and +108 mV vs. ferrocene/ferrocenium, respectively, assigned to metal-centered oxidations. Treatment of 2 with silver perchlorate afforded a silver(I)/diiron(III) heterotrimetallic complex, [Fe2([mu]-OH)2(CIO4)2(PIM)(ArTolCO2)Ag] (3), which was structurally and spectroscopically characterized. Complexes 1 and 2 both react rapidly with dioxygen. Oxygenation of 1 afforded a ([mu]-hydroxo)diiron(III) complex [Fe2([mu]- OH)(PIM)(Ph3CCO2)3] (4), a hexa([mu]-hydroxo)tetrairon(III) complex [Fe4([mu]- OH)6(PIM)2(Ph3CCO2)2] (5), and an unidentified iron(III) species. Oxygenation of 2 exclusively formed di(carboxylato)diiron(III) products. X-ray crystallographic and 57Fe Mössbauer spectroscopic investigations indicated that 2 reacts with dioxygen to give a mixture of ([mu]- oxo)diiron(III) [Fe2([mu]-O)(PIM)(ArTolCO2)2] (6) and di([mu]-hydroxo)diiron(III) [Fe2([mu]- OH)2(PIM)(ArTolCO2)2] (7) complexes in the same crystal lattice. Compounds 6 and 7 spontaneously convert to a tetrairon(III) complex, [Fe4([mu]-OH)6(PIM)2(ArTolCO2)2] (8), when treated with excess H2O. The possible biological implications of these findings are discussed. Chapter 4 To investigate how protons may be involved in the dioxygen activation pathway of non-heme diiron enzymes, the reaction of H+ with a synthetic ([mu]-1,2-peroxo)(carboxylato)diiron(III) complex was explored. Addition of an H+ donor to [Fe2(O2)(N-EtHPTB)(PhCO2)]2+ (1.O2, where N-EtHPTB = anion of N,N,N' ,N' -tetrakis(2-benzimidazolylmethyl)-2-hydroxy-1,3-diaminopropane) resulted in protonation of the carboxylate rather than the peroxo ligand. Mössbauer and resonance Raman spectroscopic measurements indicate that the Fe2(O2) core of the protonated complex [1.O2]H+ is identical to that of 1.O2. In contrast, the benzoate ligand of [1.O2]H+ displays significantly different IR and NMR spectral features relative to those of the starting complex. The [1.O2]H+ species can be converted back to 1.O2 upon treatment with base, indicating that protonation of the carboxylate is reversible. These findings suggest that in the reaction cycle of soluble methane monooxygenases and related diiron proteins, protons may 6 induce a carboxylate shift to enable substrate access to the diiron core and/or increase the electrophilicity of the oxygenated complex. Chapter 5 To explore additional methods to interrogate the properties of diiron protein intermediates, studies of the vibrational profiles of ([mu]-1,2-peroxo)diiron(III) species were pursued using nuclear resonance vibrational spectroscopy (NRVS). Comparison of the NRVS of [Fe2(O2)(NEtHPTB)(PhCO2)]2+ (1.O2) to that of the diiron(II) starting material [Fe2(N-EtHPTB)(PhCO2)]2+ (1) revealed that the oxygenated complex displays new frequencies above 350 cm-1, which are attributed to the Fe-O-O-Fe core vibrations based on 18O2/16O2 isotopic labeling studies. The peak at 338 cm-1 has not been previously observed by resonance Raman spectroscopy. Empirical normal mode analysis provides a qualitative description of these isotopic sensitive modes. The NRVS of [Fe2([mu]-O2)(HB(iPrpz)3)2(PhCH2CO2)2] (4.O2, where HB(iPrpz)3 = tris(3,5-diisopropylpyrazoyl) hydroborate) was also measured and shows several Fe2(O2) modes between 350-500 cm-1. Appendix A Attempts to prepare a diiron(IV) complex described in the literature led to several unexpected discoveries. Reaction of tris((3,5-dimethyl-4-methoxy)pyridyl-2-methyl)amine (R3TPA) with iron(III) perchlorate decahydrate and sodium hydroxide afforded a ([mu]-oxo)([mu]-hydroxo)diiron(III) [Fe2([mu]-O)([mu]-OH)(R3TPA)2](ClO4)3 complex (1), rather than [Fe2([mu]-O)(OH)(H2O)-(R3TPA)2](ClO4)3 (B) as previously reported. The putative diiron(III) starting material B is formed only at low temperature when excess water is present. Compound 1 hydrolyzes acetonitrile to acetate under ambient conditions. The acetate-bridged diiron compound, [Fe2([mu]- O)([mu]-CH3CO2)(R3TPA)2](ClO4)3 (4A), was characterized by X-ray crystallography as well as various spectroscopic methods and elemental analysis. The identity of the acetate bridged complex was confirmed by comparing the structural and spectroscopic characteristics of 4A to those of an independently prepared sample of [Fe2([mu]-O)([mu]-CH3CO2)(R3TPA)2](ClO4)3.
by Loi Hung Do.
Ph.D.
Aubailly, Simon. "From coarse-grained to atomistic molecular modeling : how structure and dynamics shape intra-molecular communication and functional sites in proteins". Thesis, Orléans, 2017. http://www.theses.fr/2017ORLE2002/document.
Pełny tekst źródłaIn this thesis we have focused on the elusive relation that exists in proteins between theircomplex structures and the even more complex and sophisticated functions that they perform.Based on two different descriptions of proteins, at residue and atomistic scale, one of ouraims was to connect structural indicators computed from the topology of protein scaffoldsto hot spots in proteins such as catalytic sites in enzymes. Another goal of this thesis wasto employ our structure-based tools and set up original simulation scheme to investigate thebasic structural and dynamical determinants of intramolecular communication in proteins.As a first important finding, we have shown how normal mode analysis and specific graph-theoretical approaches lead to the prediction of catalytic sites in enzymes. Moreover, wehave concentrated our attention on an overlooked class of normal modes, that are stronglylocalized at two widely separated locations in protein scaffolds. These bilocalized modesturned out to efficiently mediate energy transfer even across considerable distances (morethan 70 Å). Finally, cooling experiments performed on a protein-water system described atatomic level have unveiled complex cooling-induced spontaneous energy localization patterns,pointing to specific deformation modes of benzene rings as potential energy-storage centers
Scaramuzza, Matteo. "Electrical modeling and experimental studies of sensing systems for biological and biomedical applications". Doctoral thesis, Università degli studi di Padova, 2013. http://hdl.handle.net/11577/3423443.
Pełny tekst źródłaL’argomento principale dell’attività di ricerca che ho svolto durante il mio periodo di Dottorando in Scienza e Tecnologia dell’Informazione è stato la rilevazione di fenomeni di interazione biologica tramite trasduttori elettrici, ovverosia lo studio di dispositivi elettronici per applicazioni biosensoristiche. Ho studiato diversi aspetti del processo di trasduzione elettrica allo scopo di ottimizzare la rilevazione delle interazioni biologiche e migliorare le caratteristiche dei biosensori, quali ad esempio la selettività e la risposta in frequenza. Ho iniziato il mio lavoro di Tesi studiando le classiche teorie delle interfacce elettrochimiche fra elettrodi metallici e campioni liquidi, ad esempio la teoria del doppio strato di Helmholtz e la dispersione in frequenza di Warburg, per approfondire i meccanismi di trasferimento di carica elettrica in ambienti eterogenei. La modellizzazione elettrica a parametri equivalenti dei dati elettrochimici sperimentali è fondamentale per giungere a una loro interpretazione attendibile: il flusso di cariche elettriche attraverso un’interfaccia elettrochimica è il risultato di numerosi contributi, ciascuno dei quali può essere modellizzato utilizzando circuiti elettrici equivalenti con specifiche impedenze. Collegando questi circuiti equivalenti secondo appropriate topologie è possibile simulare la risposta in frequenza di complesse celle elettrochimiche. Durante il mio periodo di Tesi ho continuato a sviluppare il sistema di simulazione che avevo iniziato a implementare durante il mio periodo di Tesi di Laurea Specialistica: con questo sistema è possibile simulare la risposta elettrica di un sistema elettrodo/elettrolita utilizzando un metodo a elementi pseudo-distribuiti, cioè un’interconnessione finita di circuiti elettrici equivalenti locali la cui topologia viene determinata a partire dalla mesh della geometria della cella elettrochimica. Ciascun circuito elettrico locale può essere formato da diversi elementi elettrici, sia attivi che passivi, con una propria topologia. Il valore di ciascun elemento elettrico locale è determinato con funzioni matematiche ricavate da misure elettrochimiche sperimentali. Questo approccio di simulazione basato sulla mesh consente di preservare le informazioni geometriche legate alla forma degli elettrodi e della cella elettrochimica, che risultano particolarmente importanti quando è necessario simulare elettrodi in flusso oppure biosensori con componenti microfluidiche. Le simulazioni e le tecniche di modellizzazione elettrica risultano importanti anche qualora sia necessario progettare il layout di un biosensore. Durante la mia attività di Dottorato ho utilizzato sia biosensori disponibili commercialmente che dispositivi custom: in entrambi i casi, l’interpretazione dei dati sperimentali ottenuti da biosensori con layout differenti è stata eseguite con tecniche di modellizzazione elettrica equivalente, al fine di valutare la distribuzione del campo elettromagnetico fra gli elettrodi e l’influenza degli elementi parassiti del sistema di misura e del dispositivo, quali ad esempio le capacità di cross-talk e le impedenze elettriche dei contatti elettrici. Durante il mio periodo di Dottorato ho contribuito a sviluppare, in collaborazione con lo spin off dell’Università di Padova Next Step Engineering, un innovativo processo di produzione industriale che consente di creare dispositivi ibridi microelettronici/microfluidici idonei ad applicazioni biologiche all’interno di una singola linea produttiva automatizzata. Con questo processo ho prodotto i dispositivi custom che ho utilizzato per la mia attività sperimentale. Il processo di produzione è oggetto di un brevetto italiano attualmente in fase di deposito, di cui sono uno degli inventori, che ho scritto e sottomesso durante i sei mesi di proroga della discussione finale della Tesi che ho richiesto. La possibilità di utilizzare i biosensori elettrochimici custom per applicazioni biomediche e biologiche è stata verificata utilizzando misurazioni di spettroscopia di impedenza elettrochimica, tecniche voltammetriche e amperometriche: le curve di calibrazione dei vari dispositivi sono state ottenute utilizzando elettroliti standard per le varie applicazioni, cioè soluzioni con conducibilità elettrica e potenziali ossido-riduttivi noti, e l’influenza di interferenti in soluzione è stata valutata misurando matrici più complesse composte da vari elettroliti con sostanze disciolte. Le applicazioni biologiche dei biosensori custom sono state sviluppate in collaborazione con altri Dipartimenti dell’Università degli Studi di Padova e con centri di ricerca: • un biosensore per il monitoraggio dell’ibridazione di sequenze di DNA è stato sviluppato in collaborazione con l’Ospedale San Bortolo (Vicenza, Italia); • un biosensore enzimatico per la rilevazione di acido lattico è stato studiato in collaborazione con il Dipartimento di Scienze Biomediche (Università di Padova, Italia) e con il Dipartimento di Scienze Anatomiche e Istologiche (Università Sapienza, Roma, Italia); • un biosensore per monitorare la crescita cellulare e studiare il fenomeno di elettropermeabilizzazione della membrana cellulare è stato sviluppato in collaborazione con il Dipartimento di Scienze Biomediche (Università di Padova, Italia). Nell’ultimo periodo della mia attività di Dottorato ho studiato un’altra applicazione della trasduzione elettrica di segnali biometrici. In collaborazione con lo spin off dell’Università di Padova Wetware Concepts e con il Dr. Marco Quarta dell’Università di Stanford, ho contribuito a sviluppare un prototipo di guanto sensorizzato per la trasduzione elettrica della forza esercitata da mani umane. Questo prototipo permette di monitorare il processo di riabilitazione funzionale di pazienti con deficit sia lievi che severi, permettendo la valutazione quantitativa dell’efficacia dei protocolli di riabilitazione. Inoltre, ho contribuito a sviluppare ulteriormente il prototipo, in collaborazione con l’I.R.C.C.S. Ospedale San Camillo (Venezia, Italia) e con l’Ospedale San Bortolo (Vicenza, Italia), in un sistema basato su biofeedback in grado di misurare la forza esercitata da un paziente e di correlarla con dati provenienti da altri strumenti medici, quali elettroencefalografi ed elettromiografi.
Mileni, Mauro [Verfasser]. "Biochemical, structural and functional characterization of diheme-containing quinol:fumarate reductases : the role of heme propionates and the enzymes from pathogenic ε-proteobacteria / von Mauro Mileni". 2005. http://d-nb.info/977153150/34.
Pełny tekst źródłaRadoń, Mariusz. "Modeling of transition metal sites in enzymes and catalytically relevant complexes by correlated methods of quantum chemistry". Praca doktorska, 2011. https://ruj.uj.edu.pl/xmlui/handle/item/53525.
Pełny tekst źródłaCzęści książek na temat "Functional Modeling - Heme Enzymes"
Sancho, Ferran, Gerard Santiago, Pep Amengual-Rigo i Victor Guallar. "CHAPTER 10. Modeling O2-dependent Heme Enzymes: A Quick Guide for Non-experts". W Dioxygen-dependent Heme Enzymes, 222–48. Cambridge: Royal Society of Chemistry, 2018. http://dx.doi.org/10.1039/9781788012911-00222.
Pełny tekst źródłaHayashi, Takashi, i Koji Oohora. "CHAPTER 3. Myoglobin Derivatives Reconstituted with Modified Metal Porphyrinoids as Structural and Functional Models of the Cytochrome P450 Enzymes". W Dioxygen-dependent Heme Enzymes, 63–78. Cambridge: Royal Society of Chemistry, 2018. http://dx.doi.org/10.1039/9781788012911-00063.
Pełny tekst źródłaMal, Chittabrata, Ayushman Kumar Banerjee i Joyabrata Mal. "Genome Scale Pathway-Pathway Co-functional Synergistic Network (PcFSN) in Oryza Sativa". W Proceedings of the Conference BioSangam 2022: Emerging Trends in Biotechnology (BIOSANGAM 2022), 47–57. Dordrecht: Atlantis Press International BV, 2022. http://dx.doi.org/10.2991/978-94-6463-020-6_6.
Pełny tekst źródłaZarić, Snežana, i Michael B. Hall. "Ab Initio and Density Functional Theory Applied to Models for the Oxo-Transfer Reaction of Dioxomolybdenum Enzymes". W Molecular Modeling and Dynamics of Bioinorganic Systems, 255–77. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-011-5171-9_12.
Pełny tekst źródłaDaskalaki, Andriani. "Modeling of Porphyrin Metabolism with PyBioS". W Handbook of Research on Systems Biology Applications in Medicine, 643–54. IGI Global, 2009. http://dx.doi.org/10.4018/978-1-60566-076-9.ch036.
Pełny tekst źródła"Oxygenases, Thwarted Oxygenases, and Oxygen-dependent Halogenases". W Natural Product Biosynthesis, 501–605. The Royal Society of Chemistry, 2022. http://dx.doi.org/10.1039/bk9781839165641-00501.
Pełny tekst źródłaWesolowski, Tomasz Adam, i Jacques Weber. "Applications of Density Functional Theory to Biological Systems". W Molecular Orbital Calculations for Biological Systems. Oxford University Press, 1998. http://dx.doi.org/10.1093/oso/9780195098730.003.0009.
Pełny tekst źródłaStreszczenia konferencji na temat "Functional Modeling - Heme Enzymes"
Tourlomousis, Filippos, i Robert C. Chang. "Computational Modeling of 3D Printed Tissue-on-a-Chip Microfluidic Devices as Drug Screening Platforms". W ASME 2014 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/imece2014-38454.
Pełny tekst źródła