Artykuły w czasopismach na temat „Fully- and weakly-Supervised learning”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Fully- and weakly-Supervised learning”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Cuypers, Suzanna, Maarten Bassier i Maarten Vergauwen. "Deep Learning on Construction Sites: A Case Study of Sparse Data Learning Techniques for Rebar Segmentation". Sensors 21, nr 16 (11.08.2021): 5428. http://dx.doi.org/10.3390/s21165428.
Pełny tekst źródłaWang, Ning, Jiajun Deng i Mingbo Jia. "Cycle-Consistency Learning for Captioning and Grounding". Proceedings of the AAAI Conference on Artificial Intelligence 38, nr 6 (24.03.2024): 5535–43. http://dx.doi.org/10.1609/aaai.v38i6.28363.
Pełny tekst źródłaWang, Guangyao. "A Study of Object Detection Based on Weakly Supervised Learning". International Journal of Computer Science and Information Technology 2, nr 1 (25.03.2024): 476–78. http://dx.doi.org/10.62051/ijcsit.v2n1.50.
Pełny tekst źródłaAdke, Shrinidhi, Changying Li, Khaled M. Rasheed i Frederick W. Maier. "Supervised and Weakly Supervised Deep Learning for Segmentation and Counting of Cotton Bolls Using Proximal Imagery". Sensors 22, nr 10 (12.05.2022): 3688. http://dx.doi.org/10.3390/s22103688.
Pełny tekst źródłaNi, Ansong, Pengcheng Yin i Graham Neubig. "Merging Weak and Active Supervision for Semantic Parsing". Proceedings of the AAAI Conference on Artificial Intelligence 34, nr 05 (3.04.2020): 8536–43. http://dx.doi.org/10.1609/aaai.v34i05.6375.
Pełny tekst źródłaColin, Aurélien, Ronan Fablet, Pierre Tandeo, Romain Husson, Charles Peureux, Nicolas Longépé i Alexis Mouche. "Semantic Segmentation of Metoceanic Processes Using SAR Observations and Deep Learning". Remote Sensing 14, nr 4 (11.02.2022): 851. http://dx.doi.org/10.3390/rs14040851.
Pełny tekst źródłaCai, Tingting, Hongping Yan, Kun Ding, Yan Zhang i Yueyue Zhou. "WSPolyp-SAM: Weakly Supervised and Self-Guided Fine-Tuning of SAM for Colonoscopy Polyp Segmentation". Applied Sciences 14, nr 12 (8.06.2024): 5007. http://dx.doi.org/10.3390/app14125007.
Pełny tekst źródłaHong, Yining, Qing Li, Daniel Ciao, Siyuan Huang i Song-Chun Zhu. "Learning by Fixing: Solving Math Word Problems with Weak Supervision". Proceedings of the AAAI Conference on Artificial Intelligence 35, nr 6 (18.05.2021): 4959–67. http://dx.doi.org/10.1609/aaai.v35i6.16629.
Pełny tekst źródłaChen, Shaolong, i Zhiyong Zhang. "A Semi-Automatic Magnetic Resonance Imaging Annotation Algorithm Based on Semi-Weakly Supervised Learning". Sensors 24, nr 12 (16.06.2024): 3893. http://dx.doi.org/10.3390/s24123893.
Pełny tekst źródłaZhang, Yachao, Zonghao Li, Yuan Xie, Yanyun Qu, Cuihua Li i Tao Mei. "Weakly Supervised Semantic Segmentation for Large-Scale Point Cloud". Proceedings of the AAAI Conference on Artificial Intelligence 35, nr 4 (18.05.2021): 3421–29. http://dx.doi.org/10.1609/aaai.v35i4.16455.
Pełny tekst źródłaQian, Xiaoliang, Chenyang Lin, Zhiwu Chen i Wei Wang. "SAM-Induced Pseudo Fully Supervised Learning for Weakly Supervised Object Detection in Remote Sensing Images". Remote Sensing 16, nr 9 (26.04.2024): 1532. http://dx.doi.org/10.3390/rs16091532.
Pełny tekst źródłaCherikbayeva, L. Ch, N. K. Mukazhanov, Z. Alibiyeva, S. A. Adilzhanova, G. A. Tyulepberdinova i M. Zh Sakypbekova. "SOLUTION TO THE PROBLEM WEAKLY CONTROLLED REGRESSION USING COASSOCIATION MATRIX AND REGULARIZATION". Herald of the Kazakh-British technical university 21, nr 2 (1.07.2024): 83–94. http://dx.doi.org/10.55452/1998-6688-2024-21-2-83-94.
Pełny tekst źródłaFeng, Jiahao, Ce Li i Jin Wang. "CAM-TMIL: A Weakly-Supervised Segmentation Framework for Histopathology based on CAMs and MIL". Journal of Physics: Conference Series 2547, nr 1 (1.07.2023): 012014. http://dx.doi.org/10.1088/1742-6596/2547/1/012014.
Pełny tekst źródłaChen, Jie, Fen He, Yi Zhang, Geng Sun i Min Deng. "SPMF-Net: Weakly Supervised Building Segmentation by Combining Superpixel Pooling and Multi-Scale Feature Fusion". Remote Sensing 12, nr 6 (24.03.2020): 1049. http://dx.doi.org/10.3390/rs12061049.
Pełny tekst źródłaWu, Zhenyu, Lin Wang, Wei Wang, Qing Xia, Chenglizhao Chen, Aimin Hao i Shuo Li. "Pixel Is All You Need: Adversarial Trajectory-Ensemble Active Learning for Salient Object Detection". Proceedings of the AAAI Conference on Artificial Intelligence 37, nr 3 (26.06.2023): 2883–91. http://dx.doi.org/10.1609/aaai.v37i3.25390.
Pełny tekst źródłaLiu, Xiangquan, i Xiaoming Huang. "Weakly supervised salient object detection via bounding-box annotation and SAM model". Electronic Research Archive 32, nr 3 (2024): 1624–45. http://dx.doi.org/10.3934/era.2024074.
Pełny tekst źródłaBožič, Jakob, Domen Tabernik i Danijel Skočaj. "Mixed supervision for surface-defect detection: From weakly to fully supervised learning". Computers in Industry 129 (sierpień 2021): 103459. http://dx.doi.org/10.1016/j.compind.2021.103459.
Pełny tekst źródłaGe, Yongtao, Qiang Zhou, Xinlong Wang, Chunhua Shen, Zhibin Wang i Hao Li. "Point-Teaching: Weakly Semi-supervised Object Detection with Point Annotations". Proceedings of the AAAI Conference on Artificial Intelligence 37, nr 1 (26.06.2023): 667–75. http://dx.doi.org/10.1609/aaai.v37i1.25143.
Pełny tekst źródłaFu, Kun, Wanxuan Lu, Wenhui Diao, Menglong Yan, Hao Sun, Yi Zhang i Xian Sun. "WSF-NET: Weakly Supervised Feature-Fusion Network for Binary Segmentation in Remote Sensing Image". Remote Sensing 10, nr 12 (6.12.2018): 1970. http://dx.doi.org/10.3390/rs10121970.
Pełny tekst źródłaRoth, Holger R., Dong Yang, Ziyue Xu, Xiaosong Wang i Daguang Xu. "Going to Extremes: Weakly Supervised Medical Image Segmentation". Machine Learning and Knowledge Extraction 3, nr 2 (2.06.2021): 507–24. http://dx.doi.org/10.3390/make3020026.
Pełny tekst źródłaNartey, Obed Tettey, Guowu Yang, Sarpong Kwadwo Asare, Jinzhao Wu i Lady Nadia Frempong. "Robust Semi-Supervised Traffic Sign Recognition via Self-Training and Weakly-Supervised Learning". Sensors 20, nr 9 (8.05.2020): 2684. http://dx.doi.org/10.3390/s20092684.
Pełny tekst źródłaWatanabe, Takumi, Hiroki Takahashi, Yusuke Iwasawa, Yutaka Matsuo i Ikuko Eguchi Yairi. "Weakly Supervised Learning for Evaluating Road Surface Condition from Wheelchair Driving Data". Information 11, nr 1 (19.12.2019): 2. http://dx.doi.org/10.3390/info11010002.
Pełny tekst źródłaWang, Lukang, Min Zhang, Xu Gao i Wenzhong Shi. "Advances and Challenges in Deep Learning-Based Change Detection for Remote Sensing Images: A Review through Various Learning Paradigms". Remote Sensing 16, nr 5 (25.02.2024): 804. http://dx.doi.org/10.3390/rs16050804.
Pełny tekst źródłaBaek, Kyungjune, Minhyun Lee i Hyunjung Shim. "PsyNet: Self-Supervised Approach to Object Localization Using Point Symmetric Transformation". Proceedings of the AAAI Conference on Artificial Intelligence 34, nr 07 (3.04.2020): 10451–59. http://dx.doi.org/10.1609/aaai.v34i07.6615.
Pełny tekst źródłaHoang, Nhat M., Kehong Gong, Chuan Guo i Michael Bi Mi. "MotionMix: Weakly-Supervised Diffusion for Controllable Motion Generation". Proceedings of the AAAI Conference on Artificial Intelligence 38, nr 3 (24.03.2024): 2157–65. http://dx.doi.org/10.1609/aaai.v38i3.27988.
Pełny tekst źródłaQian, Rui, Yunchao Wei, Honghui Shi, Jiachen Li, Jiaying Liu i Thomas Huang. "Weakly Supervised Scene Parsing with Point-Based Distance Metric Learning". Proceedings of the AAAI Conference on Artificial Intelligence 33 (17.07.2019): 8843–50. http://dx.doi.org/10.1609/aaai.v33i01.33018843.
Pełny tekst źródłaSebai, Meriem, Xinggang Wang i Tianjiang Wang. "MaskMitosis: a deep learning framework for fully supervised, weakly supervised, and unsupervised mitosis detection in histopathology images". Medical & Biological Engineering & Computing 58, nr 7 (22.05.2020): 1603–23. http://dx.doi.org/10.1007/s11517-020-02175-z.
Pełny tekst źródłaLin, Jianghang, Yunhang Shen, Bingquan Wang, Shaohui Lin, Ke Li i Liujuan Cao. "Weakly Supervised Open-Vocabulary Object Detection". Proceedings of the AAAI Conference on Artificial Intelligence 38, nr 4 (24.03.2024): 3404–12. http://dx.doi.org/10.1609/aaai.v38i4.28127.
Pełny tekst źródłaKrishnamurthy, Jayant, i Thomas Kollar. "Jointly Learning to Parse and Perceive: Connecting Natural Language to the Physical World". Transactions of the Association for Computational Linguistics 1 (grudzień 2013): 193–206. http://dx.doi.org/10.1162/tacl_a_00220.
Pełny tekst źródłaZhang, Wei, Ping Tang, Thomas Corpetti i Lijun Zhao. "WTS: A Weakly towards Strongly Supervised Learning Framework for Remote Sensing Land Cover Classification Using Segmentation Models". Remote Sensing 13, nr 3 (23.01.2021): 394. http://dx.doi.org/10.3390/rs13030394.
Pełny tekst źródłaWang, Sherrie, William Chen, Sang Michael Xie, George Azzari i David B. Lobell. "Weakly Supervised Deep Learning for Segmentation of Remote Sensing Imagery". Remote Sensing 12, nr 2 (7.01.2020): 207. http://dx.doi.org/10.3390/rs12020207.
Pełny tekst źródłaXie, Fei, Panpan Zhang, Tao Jiang, Jiao She, Xuemin Shen, Pengfei Xu, Wei Zhao, Gang Gao i Ziyu Guan. "Lesion Segmentation Framework Based on Convolutional Neural Networks with Dual Attention Mechanism". Electronics 10, nr 24 (13.12.2021): 3103. http://dx.doi.org/10.3390/electronics10243103.
Pełny tekst źródłaWang, Yaodong, Lili Yue i Maoqing Li. "Cascaded Searching Reinforcement Learning Agent for Proposal-Free Weakly-Supervised Phrase Comprehension". Electronics 13, nr 5 (27.02.2024): 898. http://dx.doi.org/10.3390/electronics13050898.
Pełny tekst źródłaOuassit, Youssef, Reda Moulouki, Mohammed Yassine El Ghoumari, Mohamed Azzouazi i Soufiane Ardchir. "Liver Segmentation: A Weakly End-to-End Supervised Model". International Journal of Online and Biomedical Engineering (iJOE) 16, nr 09 (13.08.2020): 77. http://dx.doi.org/10.3991/ijoe.v16i09.15159.
Pełny tekst źródłaYan, Qing, Tao Sun, Jingjing Zhang i Lina Xun. "Visibility Estimation Based on Weakly Supervised Learning under Discrete Label Distribution". Sensors 23, nr 23 (24.11.2023): 9390. http://dx.doi.org/10.3390/s23239390.
Pełny tekst źródłaZhao, Lulu, Yanan Zhao, Ting Liu i Hanbing Deng. "A Weakly Supervised Semantic Segmentation Model of Maize Seedlings and Weed Images Based on Scrawl Labels". Sensors 23, nr 24 (15.12.2023): 9846. http://dx.doi.org/10.3390/s23249846.
Pełny tekst źródłaZhang, Shuyuan, Hongli Xu, Xiaoran Zhu i Lipeng Xie. "Automatic Crack Detection Using Weakly Supervised Semantic Segmentation Network and Mixed-Label Training Strategy". Foundations of Computing and Decision Sciences 49, nr 1 (1.02.2024): 95–118. http://dx.doi.org/10.2478/fcds-2024-0007.
Pełny tekst źródłaChen, Hao, Shuang Peng, Chun Du, Jun Li i Songbing Wu. "SW-GAN: Road Extraction from Remote Sensing Imagery Using Semi-Weakly Supervised Adversarial Learning". Remote Sensing 14, nr 17 (23.08.2022): 4145. http://dx.doi.org/10.3390/rs14174145.
Pełny tekst źródłaZheng, Shida, Chenshu Chen, Xi Yang i Wenming Tan. "MaskBooster: End-to-End Self-Training for Sparsely Supervised Instance Segmentation". Proceedings of the AAAI Conference on Artificial Intelligence 37, nr 3 (26.06.2023): 3696–704. http://dx.doi.org/10.1609/aaai.v37i3.25481.
Pełny tekst źródłaQiang, Zhuang, Jingmin Shi i Fanhuai Shi. "Phenotype Tracking of Leafy Greens Based on Weakly Supervised Instance Segmentation and Data Association". Agronomy 12, nr 7 (29.06.2022): 1567. http://dx.doi.org/10.3390/agronomy12071567.
Pełny tekst źródłaLiu, Yiqing, Qiming He, Hufei Duan, Huijuan Shi, Anjia Han i Yonghong He. "Using Sparse Patch Annotation for Tumor Segmentation in Histopathological Images". Sensors 22, nr 16 (13.08.2022): 6053. http://dx.doi.org/10.3390/s22166053.
Pełny tekst źródłaMo, Shaoyi, Yufeng Shi, Qi Yuan i Mingyue Li. "A Survey of Deep Learning Road Extraction Algorithms Using High-Resolution Remote Sensing Images". Sensors 24, nr 5 (6.03.2024): 1708. http://dx.doi.org/10.3390/s24051708.
Pełny tekst źródłaFan, Yifei. "Image semantic segmentation using deep learning technique". Applied and Computational Engineering 4, nr 1 (14.06.2023): 810–17. http://dx.doi.org/10.54254/2755-2721/4/2023439.
Pełny tekst źródłaKuutti, Sampo, Richard Bowden i Saber Fallah. "Weakly Supervised Reinforcement Learning for Autonomous Highway Driving via Virtual Safety Cages". Sensors 21, nr 6 (13.03.2021): 2032. http://dx.doi.org/10.3390/s21062032.
Pełny tekst źródłaWang, Zhuhui, Shijie Wang, Haojie Li, Zhi Dou i Jianjun Li. "Graph-Propagation Based Correlation Learning for Weakly Supervised Fine-Grained Image Classification". Proceedings of the AAAI Conference on Artificial Intelligence 34, nr 07 (3.04.2020): 12289–96. http://dx.doi.org/10.1609/aaai.v34i07.6912.
Pełny tekst źródłaCheng, Jianpeng, Siva Reddy, Vijay Saraswat i Mirella Lapata. "Learning an Executable Neural Semantic Parser". Computational Linguistics 45, nr 1 (marzec 2019): 59–94. http://dx.doi.org/10.1162/coli_a_00342.
Pełny tekst źródłaSali, Rasoul, Nazanin Moradinasab, Shan Guleria, Lubaina Ehsan, Philip Fernandes, Tilak U. Shah, Sana Syed i Donald E. Brown. "Deep Learning for Whole-Slide Tissue Histopathology Classification: A Comparative Study in the Identification of Dysplastic and Non-Dysplastic Barrett’s Esophagus". Journal of Personalized Medicine 10, nr 4 (23.09.2020): 141. http://dx.doi.org/10.3390/jpm10040141.
Pełny tekst źródłaWolf, Daniel, Sebastian Regnery, Rafal Tarnawski, Barbara Bobek-Billewicz, Joanna Polańska i Michael Götz. "Weakly Supervised Learning with Positive and Unlabeled Data for Automatic Brain Tumor Segmentation". Applied Sciences 12, nr 21 (24.10.2022): 10763. http://dx.doi.org/10.3390/app122110763.
Pełny tekst źródłaWolf, Daniel, Sebastian Regnery, Rafal Tarnawski, Barbara Bobek-Billewicz, Joanna Polańska i Michael Götz. "Weakly Supervised Learning with Positive and Unlabeled Data for Automatic Brain Tumor Segmentation". Applied Sciences 12, nr 21 (24.10.2022): 10763. http://dx.doi.org/10.3390/app122110763.
Pełny tekst źródłaWolf, Daniel, Sebastian Regnery, Rafal Tarnawski, Barbara Bobek-Billewicz, Joanna Polańska i Michael Götz. "Weakly Supervised Learning with Positive and Unlabeled Data for Automatic Brain Tumor Segmentation". Applied Sciences 12, nr 21 (24.10.2022): 10763. http://dx.doi.org/10.3390/app122110763.
Pełny tekst źródła