Gotowa bibliografia na temat „Full wavefrom inversion”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Full wavefrom inversion”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Full wavefrom inversion"
Liu, Yike, Bin He, Huiyi Lu, Zhendong Zhang, Xiao-Bi Xie i Yingcai Zheng. "Full-intensity waveform inversion". GEOPHYSICS 83, nr 6 (1.11.2018): R649—R658. http://dx.doi.org/10.1190/geo2017-0682.1.
Pełny tekst źródłaHa, Wansoo, i Changsoo Shin. "Laplace-domain full-waveform inversion of seismic data lacking low-frequency information". GEOPHYSICS 77, nr 5 (1.09.2012): R199—R206. http://dx.doi.org/10.1190/geo2011-0411.1.
Pełny tekst źródłaZhang, Tuo, i Christoph Sens-Schönfelder. "Adjoint envelope tomography for scattering and absorption using radiative transfer theory". Geophysical Journal International 229, nr 1 (11.11.2021): 566–88. http://dx.doi.org/10.1093/gji/ggab457.
Pełny tekst źródłaAlTheyab, Abdullah, i G. T. Schuster. "Wavefront picking for 3D tomography and full-waveform inversion". GEOPHYSICS 81, nr 6 (listopad 2016): B201—B210. http://dx.doi.org/10.1190/geo2015-0544.1.
Pełny tekst źródłaSmithyman, Brendan R., i Ronald M. Clowes. "Waveform tomography of field vibroseis data using an approximate 2D geometry leads to improved velocity models". GEOPHYSICS 77, nr 1 (styczeń 2012): R33—R43. http://dx.doi.org/10.1190/geo2011-0076.1.
Pełny tekst źródłaXing, Zhen, i Alfredo Mazzotti. "Two-grid full-waveform Rayleigh-wave inversion via a genetic algorithm — Part 2: Application to two actual data sets". GEOPHYSICS 84, nr 5 (1.09.2019): R815—R825. http://dx.doi.org/10.1190/geo2018-0800.1.
Pełny tekst źródłaZhang, Zhen-dong, i Tariq Alkhalifah. "Local-crosscorrelation elastic full-waveform inversion". GEOPHYSICS 84, nr 6 (1.11.2019): R897—R908. http://dx.doi.org/10.1190/geo2018-0660.1.
Pełny tekst źródłaMaurer, Hansruedi, Stewart A. Greenhalgh, Edgar Manukyan, Stefano Marelli i Alan G. Green. "Receiver-coupling effects in seismic waveform inversions". GEOPHYSICS 77, nr 1 (styczeń 2012): R57—R63. http://dx.doi.org/10.1190/geo2010-0402.1.
Pełny tekst źródłaBleibinhaus, Florian, i Stéphane Rondenay. "Effects of surface scattering in full-waveform inversion". GEOPHYSICS 74, nr 6 (listopad 2009): WCC69—WCC77. http://dx.doi.org/10.1190/1.3223315.
Pełny tekst źródłaCharara, Marwan, i Christophe Barnes. "Constrained Full Waveform Inversion for Borehole Multicomponent Seismic Data". Geosciences 9, nr 1 (16.01.2019): 45. http://dx.doi.org/10.3390/geosciences9010045.
Pełny tekst źródłaRozprawy doktorskie na temat "Full wavefrom inversion"
Guo, Gaoshan. "Inversion de la forme d'onde complète à source étendue dans le domaine temporel : théorie, algorithme et application". Electronic Thesis or Diss., Université Côte d'Azur, 2024. http://www.theses.fr/2024COAZ5014.
Pełny tekst źródłaFull waveform inversion (FWI) has emerged as the baseline seismic imaging method in exploration geophysics. Given the size of the data and model spaces, FWI relies on iterative local optimization methods and reduced search space where the wave equation is strictly satisfied at each iteration. This framework requires an accurate initial model allowing for the simulated data to match the recorded data with kinematic errors less than half the period to avoid cycle skipping. To mitigate cycle skipping, several variants of FWI have been developed over the last decade such as extended-space FWI where degrees of freedom are added to the forward problem. Among them, the wavefield reconstruction inversion (WRI) implements the wave equation as a soft constraint to match the data by combining a wave-equation relaxation with data assimilation. While WRI has been initially implemented in the frequency domain where the data-assimilated wavefields can be computed with linear algebra methods, the time-domain implementation with explicit time-marching schemes has proven challenging. It was recently recognized that the source extensions generated by the wave-equation relaxation are the least-squares solutions of the scattered-data fitting problem. As such, they are computed by backward modeling of deconvolved FWI data residuals by the data-domain Hessian. This reformulation of the wavefield reconstruction as a scattering source reconstruction has led to the extended-source FWI (ES-FWI).In this thesis, I develop a practical algorithm for ES-FWI. Firstly, I focus on the efficient computation of the source extensions where the deconvolution of the data residuals by the data-domain Hessian is the main computational bottleneck. Previous studies implement the Hessian with a scaled identity matrix, which is acceptable in certain favorable scenarios but prone to failure in complex media. I propose a more accurate approximation of the inverse Hessian with various matching filters such as 1D/2D Wiener and Gabor filters. Numerical tests conducted on the Marmousi II model show the relevance of these approximations. Moreover, the data-assimilated wavefields primarily consist of the ‘migration/demigration' of the recorded data. Accordingly, their accuracy diminishes away from the receivers, which can drive the inversion towards spurious minima in particular when surface multiples are involved in the inversion. To address this issue, I design a weighting operator based on time-offset windowing in the data misfit function to inject progressively more complex data in the inversion and reconstruct the medium from the shallow parts to the deep ones. The application of the BPsalt model illustrates the relevance of this layer-stripping scheme in a very challenging context.ES-FWI can be recast as a generalized FWI, where the data misfit function is weighted by the inverse data-domain Hessian of the source extension problem. This leads to a decomposition of the Gauss-Newton (GN) Hessian into a diagonal source-side Hessian and source-dependent receiver-side data-domain Hessians. I use this decomposition to propose a computationally efficient approximation of the GN Hessian. I approximate the inverse Hessian with 2D Gabor matching filters, which can be readily used as an approximation of the GN Hessian or as a preconditioner for the quasi-Newton method. Numerical tests demonstrate the improved convergence speed of FWI provided by this Hessian.Finally, I extend the application of the data-assimilated wavefield reconstruction towards seismic redatuming, where highly-accurate wavefield reconstruction is necessary. This prompts me to use the iterative solver to perform the deconvolution of the scattered data. Using reciprocity, I can chain source and receiver redatuming. Numerical tests and application to ocean-bottom seismic data validate the effectiveness of the proposed method
Thomassen, Espen. "Full-waveform inversion studies". Thesis, Norwegian University of Science and Technology, Department of Electronics and Telecommunications, 2008. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-9722.
Pełny tekst źródłaIn this master thesis, full-waveform inversion (FWI) was applied to a synthetic, and very complex, geological structure containing a salt body. The main objective was to evaluate the capabilities of FWI to estimate velocities in this context, and more specially below the salt. Seismic depth imaging is now the preferred seismic imaging tool for today's most challenging exploration projects. Seismic depth imaging problem usually requires the definition of a smooth background velocity model before determining the short wavelength component of the structure by pre-stack depth migration. It is well established that success of pre-stack depth migration in complex geological media strongly depends from the definition of the background velocity model. Standard tools for building velocity models generally fail to reconstruct the correct sub-salt velocities. Sub-salt imaging is a very challenging problem and a lot of resources are spent trying to solve this problem, since salt bodies in the sub-surface are known to be very good hydrocarbon traps. In this master thesis, the work have been performed on a modified version of the 2004 BP velocity benchmark model. This model represents a very interesting salt context, where conventional imaging methods can not provide any good results. After describing the seismic inversion problem, and the FWI theory and code used in this work, the application to the 2004 BP benchmark model is described. FWI was first applied to the synthetic data using a starting model derived by smoothing the true velocity model. This is an easy way to ensure an adequate starting model, as the method is very dependent on a good starting model. In the inversion process 17 frequency components were used, ranging between 1 and 15 Hz. This resulted in a velocity model that accurately recovered both the salt body and the sub-salt velocities. The average deviation between the true and estimated sub-salt velocities was found to be approximately 6 %. A more realistic starting model was then derived using first-arrival traveltime tomography, a well known method for obtaining velocity models. FWI was applied to this starting model, and the result was also positive when using this starting model. The salt body was well delineated, whereas the sub-salt velocities were generally more inaccurate than for the previous application. The sub-salt velocity difference was increased to roughly 10 %. However, if more effort had been spent on reconstructing a more accurate starting model, the results might have improved. When fewer frequency components are used in the inversion, the result declined. A test using only 6 frequency components showed that the final reconstructed model suffered from a lack of recovered wavenumbers, especially at the deeper and more complex parts of the model. In such a complex medium as the 2004 BP benchmark model, it is hence necessary to introduce wavenumbers by including a sufficient number of frequency components in the inversion process. Other tests that were conducted showed that, in this particular case, the non-linearity of the inversion problem increased with higher frequencies, and was reduced by larger offset ranges included in the seismic data. The inversion is hence sensitive to the starting frequency as well as the starting model. The results in this master thesis demonstrate that FWI has a great potential in reconstructing sub-salt velocities in salt media. For the future, both applying the method to real data from a salt basin area, and develop a migration tool and test the effect of FWI on a migrated image, are interesting challenges.
Irabor, Kenneth Otabor. "Reflection full waveform inversion". Thesis, Imperial College London, 2016. http://hdl.handle.net/10044/1/60594.
Pełny tekst źródłaGuasch, Lluis. "3D elastic full-waveform inversion". Thesis, Imperial College London, 2012. http://hdl.handle.net/10044/1/9974.
Pełny tekst źródłaDebens, Henry Alexander. "Three-dimensional anisotropic full-waveform inversion". Thesis, Imperial College London, 2015. http://hdl.handle.net/10044/1/32407.
Pełny tekst źródłaKamath, Nishant. "Full-waveform inversion in 2D VTI media". Thesis, Colorado School of Mines, 2016. http://pqdtopen.proquest.com/#viewpdf?dispub=10116167.
Pełny tekst źródłaFull-waveform inversion (FWI) is a technique designed to produce a high-resolution model of the subsurface by using information contained in entire seismic waveforms. This thesis presents a methodology for FWI in elastic VTI (transversely isotropic with a vertical axis of symmetry) media and discusses synthetic results for heterogeneous VTI models.
First, I develop FWI for multicomponent data from a horizontally layered VTI model. The reflectivity method, which permits computation of only PP reflections or a combination of PP and PSV events, is employed to model the data. The Gauss-Newton technique is used to invert for the interval Thomsen parameters, while keeping the densities fixed at the correct values. Eigenvalue/eigenvector decompostion of the Hessian matrix helps analyze the sensitivity of the objective function to the model parameters. Whereas PP data alone are generally sufficient to constrain all four Thomsen parameters even for conventional spreads, including PS reflections provides better constraints, especially for the deeper part of the model.
Next, I derive the gradients of the FWI objective function with respect to the stiffness coefficients of arbitrarily anisotropic media by employing the adjoint-state method. From these expressions, it is straightforward to compute the gradients for parameters of 2D heterogeneous VTI media. FWI is implemented in the time domain with the steepest-descent method used to iteratively update the model. The algorithm is tested on transmitted multicomponent data generated for Gaussian anomalies in Thomsen parameters embedded in homogeneous VTI media.
To test the sensitivity of the objective function to different model parameters, I derive an an- alytic expression for the Fréchet kernel of FWI for arbitrary anisotropic symmetry by using the Born approximation and asymptotic Green’s functions. The amplitude of the kernel, which represents the radiation pattern of a secondary source (that source describes a perturbation in a model parameter), yields the angle-dependent energy scattered by the perturbation. Then the radiation patterns are obtained for anomalies in VTI parameters embedded in isotropic homogeneous media and employed to analyze the inversion results for the transmission FWI experiments.
To understand some of the challenges posed by data recorded in surface surveys, I generate the multicomponent wavefield for a model based on a geologic section of the Valhall Field in the North Sea. A multiscale approach is adopted to perform FWI in the time domain. For the available offset range, diving-wave energy illuminates the top 1.5 km of the section, with the updates in the deeper regions due primarily to the reflections. FWI is tested for three model parameterizations and the results are explained in terms of the P- and SV-radiation patterns described above. These parameterizations lead to different trade-offs, and the choice of parameterization for a given data set depends on the recorded offset range, the quality of the initial model, and the parameter that needs to be recovered most accurately.
Li, Xiang. "Sparsity promoting seismic imaging and full-waveform inversion". Thesis, University of British Columbia, 2015. http://hdl.handle.net/2429/54255.
Pełny tekst źródłaScience, Faculty of
Earth, Ocean and Atmospheric Sciences, Department of
Graduate
Roberts, Mark Alvin. "Full waveform inversion of walk-away VSP data". Paris, Institut de physique du globe, 2007. http://www.theses.fr/2007GLOB0020.
Pełny tekst źródłaDepletion of the earth’s hydrocarbon reserves has led to exploration and production in increasingly complex environments. Imaging beneath allochthonous salt (e. G. Salt domes) remains a challenging task for seismic techniques due to the large velocity contrast of the salt with neighbouring sediments and the very complex structures generated by salt movement. Extensive allochthonous salt sheets cover many potentially productive regions in the deep-water Gulf of Mexico. Drilling through the base of salt is an extremely challenging task due to widely varying pore-pressure found in the sediments beneath. Seismic methods to estimate the seismic velocity can be used in conjunction with empirical formula to predict the pore pressure. However, accurate measurements are often not possible from surface reflection seismic data, so walk-away Vertical Seismic Profile (VSP) data has been used. This involves repeatedly firing a seismic source at various distances from the borehole (usually an airgun array) while recording the velocities measured by geophones in the borehole placed at appropriate depths near the base of the salt. Before this thesis, the data had been processed using the amplitude versus angle information in a simple one-dimension approximation or using travel time information (also using a 1D assumption). In this thesis, I have used 2D full waveform inversion to tackle the problem of velocity estimation. This has the advantage of simultaneously inverting the whole dataset (including transmitted waves, reflected waves, converted waves) and the method includes traveltime and amplitude information. The inversion was performed using local inversion methods due to the size of the inverse problem and the cost of the forward problem. Concerns over large sensitivity variations, that are inherent in the data acquisition, have lead to an examination of the Gauss-Newton method and possible preconditioning matrices for the conjugate gradient method. Due to the poorly constrained nature of the inverse problem, a smoothness constraint has been applied with an innovative preconditioning method. The methodology has been applied to real data and the pore pressure has been predicted using the well established Eaton equation. In addition, the sub-salt structure was recovered, further demonstrating the value of this technique
Al-Yaqoobi, Ahmed Musallam Ali. "Full-waveform inversion to 3D seismic land data". Thesis, Imperial College London, 2013. http://hdl.handle.net/10044/1/10927.
Pełny tekst źródłaEgorov, Anton. "Full waveform inversion of time-lapse VSP data". Thesis, Curtin University, 2018. http://hdl.handle.net/20.500.11937/79285.
Pełny tekst źródłaKsiążki na temat "Full wavefrom inversion"
Chen, Po, i En-Jui Lee. Full-3D Seismic Waveform Inversion. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-16604-9.
Pełny tekst źródłaFichtner, Andreas. Full Seismic Waveform Modelling and Inversion. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-15807-0.
Pełny tekst źródłaservice), SpringerLink (Online, red. Full Seismic Waveform Modelling and Inversion. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2011.
Znajdź pełny tekst źródłaFichtner, Andreas. Full Seismic Waveform Modelling and Inversion. Springer, 2013.
Znajdź pełny tekst źródłaFichtner, Andreas. Full Seismic Waveform Modelling and Inversion. Springer, 2011.
Znajdź pełny tekst źródłaChen, Po, i En-Jui Lee. Full-3D Seismic Waveform Inversion: Theory, Software and Practice. Springer, 2015.
Znajdź pełny tekst źródłaChen, Po, i En-Jui Lee. Full-3D Seismic Waveform Inversion: Theory, Software and Practice. Springer International Publishing AG, 2016.
Znajdź pełny tekst źródłaSingh, Satish Chandra. Wave propogation in anisotropic media and full waveform inversion. 1987.
Znajdź pełny tekst źródłaChen, Po, i En-Jui Lee. Full-3D Seismic Waveform Inversion: Theory, Software and Practice. Springer London, Limited, 2015.
Znajdź pełny tekst źródłaAl-Khalifah, Tariq. Full waveform inversion in an anisotropic world Where are the parameters hiding? (EET 10). EAGE Publications bv, 2014. http://dx.doi.org/10.3997/9789073834835.
Pełny tekst źródłaCzęści książek na temat "Full wavefrom inversion"
Hanasoge, Shravan. "Full Waveform Inversion". W SpringerBriefs in Mathematics, 75–103. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-27330-3_4.
Pełny tekst źródłaKöhn, Daniel, Manuel Zolchow, Rebekka Mecking, Dennis Wilken, Tina Wunderlich, Denise De Nil i Wolfgang Rabbel. "Seismic full waveform inversion in archaeological prospecting". W Advances in On- and Offshore Archaeological Prospection, 31–40. Kiel: Universitätsverlag Kiel | Kiel University Publishing, 2023. http://dx.doi.org/10.38072/978-3-928794-83-1/p4.
Pełny tekst źródłaChen, Po, i En-Jui Lee. "Introduction". W Full-3D Seismic Waveform Inversion, 1–14. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-16604-9_1.
Pełny tekst źródłaChen, Po, i En-Jui Lee. "Anelastic Wave Propagation (AWP)". W Full-3D Seismic Waveform Inversion, 15–90. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-16604-9_2.
Pełny tekst źródłaChen, Po, i En-Jui Lee. "Green’s Functions". W Full-3D Seismic Waveform Inversion, 91–190. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-16604-9_3.
Pełny tekst źródłaChen, Po, i En-Jui Lee. "Data Sensitivity Kernels". W Full-3D Seismic Waveform Inversion, 191–310. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-16604-9_4.
Pełny tekst źródłaChen, Po, i En-Jui Lee. "Optimization Algorithms". W Full-3D Seismic Waveform Inversion, 311–43. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-16604-9_5.
Pełny tekst źródłaChen, Po, i En-Jui Lee. "CVM-S4.26". W Full-3D Seismic Waveform Inversion, 345–509. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-16604-9_6.
Pełny tekst źródłaFichtner, Andreas. "Preliminaries". W Full Seismic Waveform Modelling and Inversion, 1–5. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-15807-0_1.
Pełny tekst źródłaFichtner, Andreas. "The Frequency-Domain Discrete Adjoint Method". W Full Seismic Waveform Modelling and Inversion, 189–92. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-15807-0_10.
Pełny tekst źródłaStreszczenia konferencji na temat "Full wavefrom inversion"
Liu, Hai, Zhijun Long, Chen Qiu, Feng Han i Qing Huo Liu. "Reverse-time migration and full wavefrom inversion for subsurface imaging". W 2016 Progress in Electromagnetic Research Symposium (PIERS). IEEE, 2016. http://dx.doi.org/10.1109/piers.2016.7734272.
Pełny tekst źródłaFuse, S., H. Mikada i J. Takekawa. "Full Waveform Inversion of Cross-Dipole Acoustic Waveforms". W International Petroleum Technology Conference. International Petroleum Technology Conference, 2016. http://dx.doi.org/10.2523/18726-ms.
Pełny tekst źródłaFuse, S., H. Mikada i J. Takekawa. "Full Waveform Inversion of Cross-Dipole Acoustic Waveforms". W International Petroleum Technology Conference. International Petroleum Technology Conference, 2016. http://dx.doi.org/10.2523/iptc-18726-ms.
Pełny tekst źródłaAllemand, T., i G. Lambaré. "Combining Full Waveform Inversion and Tomography: Full Waveform Inversion-guided Tomography". W 77th EAGE Conference and Exhibition 2015. Netherlands: EAGE Publications BV, 2015. http://dx.doi.org/10.3997/2214-4609.201412591.
Pełny tekst źródłaMardan, A., B. Giroux i G. Fabien-Ouellet. "Time-Lapse Seismic Full Waveform Inversion Using Improved Cascaded Method". W Second EAGE Conference on Seismic Inversion. European Association of Geoscientists & Engineers, 2022. http://dx.doi.org/10.3997/2214-4609.202229003.
Pełny tekst źródłaJiao*, Kun, Dong Sun, Xin Cheng i Denes Vigh. "Adjustive full waveform inversion". W SEG Technical Program Expanded Abstracts 2015. Society of Exploration Geophysicists, 2015. http://dx.doi.org/10.1190/segam2015-5901541.1.
Pełny tekst źródłaKadu, A., i R. Kumar. "Decentralized Full-Waveform Inversion". W 80th EAGE Conference and Exhibition 2018. Netherlands: EAGE Publications BV, 2018. http://dx.doi.org/10.3997/2214-4609.201801230.
Pełny tekst źródłaZhang, X., i A. Curtis. "Variational Full Waveform Inversion". W 2nd EAGE Workshop on Quantifying Uncertainty in Depth Imaging. European Association of Geoscientists & Engineers, 2023. http://dx.doi.org/10.3997/2214-4609.202379012.
Pełny tekst źródłaBai, J., i O. Yilmaz. "Full-Waveform Imaging Inversion". W 85th EAGE Annual Conference & Exhibition - Workshop Programme. European Association of Geoscientists & Engineers, 2024. http://dx.doi.org/10.3997/2214-4609.202410904.
Pełny tekst źródłaQu, Y. M., J. P. Huang, Z. C. Li, Y. T. Han i Q. Y. Li. "A Joint Waveform Inversion Strategy - Combing Full Waveform Inversion with Prismatic Waveform Inversion". W 77th EAGE Conference and Exhibition 2015. Netherlands: EAGE Publications BV, 2015. http://dx.doi.org/10.3997/2214-4609.201412766.
Pełny tekst źródłaRaporty organizacyjne na temat "Full wavefrom inversion"
Preston, Leiph. Computation of Kernels for Full Waveform Seismic Inversion Using Parelasti. Office of Scientific and Technical Information (OSTI), sierpień 2018. http://dx.doi.org/10.2172/1468379.
Pełny tekst źródłaSimmons, N., i C. Morency. Report on the LLNL Global Full-waveform Inversion Workflow and Progress. Office of Scientific and Technical Information (OSTI), sierpień 2021. http://dx.doi.org/10.2172/1813693.
Pełny tekst źródłaPan, Wenyong. Multiparameter full-waveform inversion in complex media applied to walk-away vertical seismic profile data. Office of Scientific and Technical Information (OSTI), grudzień 2018. http://dx.doi.org/10.2172/1489919.
Pełny tekst źródła