Artykuły w czasopismach na temat „Fuel systems”

Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Fuel systems.

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Fuel systems”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Staiger, Robert, i Adrian Tantau. "Fuel Cell Heating System a Meaningful Alternative to Today’s Heating Systems". Journal of Clean Energy Technologies 5, nr 1 (2017): 35–41. http://dx.doi.org/10.18178/jocet.2017.5.1.340.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Ford, Terry. "Airframe fuel systems". Aircraft Engineering and Aerospace Technology 67, nr 2 (luty 1995): 2–4. http://dx.doi.org/10.1108/eb037547.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Lovering, D. G. "Fuel Cell Systems". Journal of Power Sources 52, nr 1 (listopad 1994): 155–56. http://dx.doi.org/10.1016/0378-7753(94)87024-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

E, Abonyi Sylvester, Isidore Uju Uche i Okafor Anthony A. "Performance of Fuel Electronic Injection Engine Systems". International Journal of Trend in Scientific Research and Development Volume-2, Issue-1 (31.12.2017): 1165–75. http://dx.doi.org/10.31142/ijtsrd8211.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

MILEWSKI, Jaroslaw, i Krzysztof BADYDA. "E108 TRI-GENERATION SYSTEMS BASED ON HIGHTEMPERATURE FUEL CELLS(Distributed Energy System-2)". Proceedings of the International Conference on Power Engineering (ICOPE) 2009.1 (2009): _1–275_—_1–279_. http://dx.doi.org/10.1299/jsmeicope.2009.1._1-275_.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Ahmed, Shabbir, Romesh Kumar i Michael Krumpelt. "Fuel processing for fuel cell power systems". Fuel Cells Bulletin 2, nr 12 (wrzesień 1999): 4–7. http://dx.doi.org/10.1016/s1464-2859(00)80122-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Willms, R. Scott, i Satoshi Konishi. "Fuel cleanup systems for fusion fuel processing". Fusion Engineering and Design 18 (grudzień 1991): 53–60. http://dx.doi.org/10.1016/0920-3796(91)90107-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Rokni, M. "Addressing fuel recycling in solid oxide fuel cell systems fed by alternative fuels". Energy 137 (październik 2017): 1013–25. http://dx.doi.org/10.1016/j.energy.2017.03.082.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Baranova, M., I. Grishina, B. Damdinov i R. Gomboev. "Dispersed-colloidal fuel systems". IOP Conference Series: Materials Science and Engineering 704 (13.12.2019): 012015. http://dx.doi.org/10.1088/1757-899x/704/1/012015.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Mitlitsky, Fred, Blake Myers i Andrew H. Weisberg. "Regenerative Fuel Cell Systems". Energy & Fuels 12, nr 1 (styczeń 1998): 56–71. http://dx.doi.org/10.1021/ef970151w.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Taylor, Josh A., Sairaj V. Dhople i Duncan S. Callaway. "Power systems without fuel". Renewable and Sustainable Energy Reviews 57 (maj 2016): 1322–36. http://dx.doi.org/10.1016/j.rser.2015.12.083.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Docter, A., i A. Lamm. "Gasoline fuel cell systems". Journal of Power Sources 84, nr 2 (grudzień 1999): 194–200. http://dx.doi.org/10.1016/s0378-7753(99)00317-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Moseley, P. T. "Fuel Cell Systems Explained". Journal of Power Sources 93, nr 1-2 (luty 2001): 285. http://dx.doi.org/10.1016/s0378-7753(00)00571-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Ishizawa, Maki, Katsuhisa Kimata, Yutaka Kuwata, Masaaki Takeuchi i Tsutomu Ogata. "Portable fuel cell systems". Electronics and Communications in Japan (Part I: Communications) 82, nr 7 (lipiec 1999): 35–43. http://dx.doi.org/10.1002/(sici)1520-6424(199907)82:7<35::aid-ecja4>3.0.co;2-q.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Glarborg, P. "Fuel nitrogen conversion in solid fuel fired systems". Progress in Energy and Combustion Science 29, nr 2 (2003): 89–113. http://dx.doi.org/10.1016/s0360-1285(02)00031-x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Petti, D., D. Crawford i N. Chauvin. "Fuels for Advanced Nuclear Energy Systems". MRS Bulletin 34, nr 1 (styczeń 2009): 40–45. http://dx.doi.org/10.1557/mrs2009.11.

Pełny tekst źródła
Streszczenie:
AbstractFuels for advanced nuclear reactors differ from conventional light water reactor fuels and also vary widely because of the specific architectures and intended missions of the reactor systems proposed to deploy them. Functional requirements of all fuel designs for advanced nuclear energy systems include (1) retention of fission products and fuel nuclides, (2) dimensional stability, and (3) maintenance of a geometry that can be cooled. In all cases, anticipated fuel performance is the limiting factor in reactor system design, and cumulative effects of increased utilization and increased exposure to inservice environments degrade fuel performance. In this article, the current status of each fuel system is reviewed, and technical challenges confronting the implementation of each fuel in the context of the entire advanced reactor fuel cycle (fabrication, reactor performance, recycle) are discussed.
Style APA, Harvard, Vancouver, ISO itp.
17

Lavrichshev, O. A., i A. B. Ustimenko. "PLASMA-FUEL SYSTEMS AND PRINCIPLES OF THEIR FUNCTIONING". ГОРЕНИЕ И ПЛАЗМОХИМИЯ 20, nr 1 (21.02.2022): 51–62. http://dx.doi.org/10.18321/cpc481.

Pełny tekst źródła
Streszczenie:
This article presents the main types of plasma-fuel systems and the principles of their operation, which provide environmental and economic benefits compared to traditional fuel-use technologies. In plasma-fuel systems, coal of any quality is upgraded before it is burned. In general, a plasma-fuel system is a fuel device (a device into which fuel is supplied) with a plasma source. In plasma-fuel systems, the processes of plasma preparation and/or processing of solid fuels are carried out. The basic principle of the operation of plasma-fuel systems is the organization of electrothermochemical preparation and/or processing of coal dust in electric arc plasma. The use of plasma-fuel systems makes it possible to expand the range of coals burned in the same boiler and, ultimately, reduce the sensitivity of pulverized coal boilers to fuel quality. It is shown that an important advantage of the plasma technology is the quick payback and low cost of its implementation, while reducing emissions of nitrogen oxides, sulfur and vanadium pentoxide and fuel burnout during plasma stabilization of a pulverized coal flame. This makes them practically the only real means of improving the environmental and economic efficiency of using solid fuels and replacing scarce and expensive fuel oil in the fuel balance of TPPs in the required volumes.
Style APA, Harvard, Vancouver, ISO itp.
18

Udler, E. I., i D. V. Khalturin. "Preliminary purification of fuel heated in machines’ fuel systems". Traktory i sel hozmashiny 80, nr 7 (15.07.2013): 47–49. http://dx.doi.org/10.17816/0321-4443-65788.

Pełny tekst źródła
Streszczenie:
Construction of a filter for fuel purification and heating during machine exploitation under low temperatures is presented. A calculation method of fuel heating systems in fuel systems of diesel machines is suggested.
Style APA, Harvard, Vancouver, ISO itp.
19

GOEBEL, S., D. MILLER, W. PETTIT i M. CARTWRIGHT. "Fast starting fuel processor for automotive fuel cell systems". International Journal of Hydrogen Energy 30, nr 9 (sierpień 2005): 953–62. http://dx.doi.org/10.1016/j.ijhydene.2005.01.003.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Furutani, Hirohide, Norihiko Iki i Taku Tsujimura. "Engine Systems for Hydrogen Fuel". Journal of The Japan Institute of Marine Engineering 51, nr 1 (2016): 91–96. http://dx.doi.org/10.5988/jime.51.91.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

San Martín, J. I., I. Zamora, J. J. San Martín, V. Aperribay i P. Eguía. "Trigeneration systems with fuel cells". Renewable Energy and Power Quality Journal 1, nr 06 (marzec 2008): 135–40. http://dx.doi.org/10.24084/repqj06.245.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Murko, Vasily I., Vladimir A. Kulagin i Marina P. Baranova. "Obtaining Stable Binary Fuel Systems". Journal of Siberian Federal University. Engineering & Technologies 10, nr 8 (grudzień 2017): 985–92. http://dx.doi.org/10.17516/1999-494x-2017-10-8-985-992.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

McGowen, H., i L. Nilsen. "Improved Navy Ship Fuel Systems". Naval Engineers Journal 111, nr 3 (maj 1999): 71–84. http://dx.doi.org/10.1111/j.1559-3584.1999.tb01963.x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

McGowen, Hillery, i L. Nilsen. "Improved Navy Ship Fuel Systems". Naval Engineers Journal 111, nr 5 (wrzesień 1999): 92–93. http://dx.doi.org/10.1111/j.1559-3584.1999.tb02015.x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Demirbas, Ayhan. "Combustion Systems for Biomass Fuel". Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 29, nr 4 (kwiecień 2007): 303–12. http://dx.doi.org/10.1080/009083190948667.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Lee, J. H., i T. R. Lalk. "Modeling fuel cell stack systems". Journal of Power Sources 73, nr 2 (czerwiec 1998): 229–41. http://dx.doi.org/10.1016/s0378-7753(97)02812-7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Stefanopoulou, Anna G. "Mechatronics in Fuel Cell Systems". IFAC Proceedings Volumes 37, nr 14 (wrzesień 2004): 531–42. http://dx.doi.org/10.1016/s1474-6670(17)31159-x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Hadley, J. "Tribology of aviation fuel systems". Tribology International 23, nr 4 (sierpień 1990): 285–86. http://dx.doi.org/10.1016/0301-679x(90)90035-n.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Stefanopoulou, Anna G., i Kyung-Won Suh. "Mechatronics in fuel cell systems". Control Engineering Practice 15, nr 3 (marzec 2007): 277–89. http://dx.doi.org/10.1016/j.conengprac.2005.12.003.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Shlenskii, M. N., i B. V. Kuteev. "APPLICATIONS OF FUSION-FISSION HYBRID SYSTEMS FOR NUCLEAR FUEL CYCLE". Problems of Atomic Science and Technology, Ser. Thermonuclear Fusion 44, nr 2 (2021): 139–44. http://dx.doi.org/10.21517/0202-3822-2021-44-2-139-144.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Mal'chuk, V. I., A. Yu Dunin, I. V. Alekseev, Yu V. Trofimenko i S. M. Kalinina. "Fuel systems for feeding mixed fuels in high-speed diesel engines". Traktory i sel hozmashiny 84, nr 9 (15.09.2017): 3–10. http://dx.doi.org/10.17816/0321-4443-66310.

Pełny tekst źródła
Streszczenie:
The article presents the results of the assembly and testing of the fuel system variants developed at the Moscow State Automobile and Road Technical University for the supply of mixed fuel with the possibility of changing their composition during the injection process. The nozzle housing for mixed fuel differs from the housing of the serial product by the presence of two channels for supplying to the atomizer, respectively, the main fuel and additive. The nozzle is equipped with a sprayer, which also has channels for supplying diesel and alternative fuels. The supply of diesel fuel through the axial channel in the nozzle of the nebulizer is also of fundamental importance, since it inevitably falls into the gap between the needle and the body and thereby facilitates the lubrication of this precision pair. Mixing of the components of the mixture is carried out in the cavity located at the base of the locking cone of the needle. This is another principal feature of the nozzle atomizer design, intended for mixed fuel. Motor fuel mixture research was carried out on a single-cylinder engine mounted on the universal crate of IT-9 (1 Ch 10.5 / 12). It is shown that an increase in the proportion of water in a mixture with diesel fuel leads to an improvement in the composition of combustion products in diesel. Thus, with a 50 % water content, carbon emissions are reduced by almost 10 times, nitrogen oxides by a factor of 2,6, and carbon oxide by a factor of 2,5. The working capacity of the development during its operation as a part of the diesel engine (2 Ch × 10.5 / 12) is shown and the possibility of improving its ecological characteristics with a reduction in the consumption of diesel fuel by partial replacement with ethanol is demonstrated.
Style APA, Harvard, Vancouver, ISO itp.
32

Danial Doss, E., R. Kumar, R. K. Ahluwalia i M. Krumpelt. "Fuel processors for automotive fuel cell systems: a parametric analysis". Journal of Power Sources 102, nr 1-2 (grudzień 2001): 1–15. http://dx.doi.org/10.1016/s0378-7753(01)00784-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Shin, Donghwa, Kyungsoo Lee i Naehyuck Chang. "Fuel economy analysis of fuel cell and supercapacitor hybrid systems". International Journal of Hydrogen Energy 41, nr 3 (styczeń 2016): 1381–90. http://dx.doi.org/10.1016/j.ijhydene.2015.10.103.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Moore, Robert M., Guenter Randolf, Maheboob B. Virji i Karl-Heinz Hauer. "Fuel Cell Hardware-in-Loop for PEM Fuel Cell Systems". ECS Transactions 5, nr 1 (19.12.2019): 309–19. http://dx.doi.org/10.1149/1.2729013.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Pysar, Nadiia, Viktoriia Chornii, Andriy Bandura i Yevgen Khlobystov. "Methods for estimating “Fuel poverty” in public administration and management systems". Problems and Perspectives in Management 16, nr 2 (13.06.2018): 341–52. http://dx.doi.org/10.21511/ppm.16(2).2018.31.

Pełny tekst źródła
Streszczenie:
The Ukrainian energy market has been analyzed region-wise in terms of consumption of fuel and energy resources by household sector. Critical aspects of improving energy security have been reflected in the context of the use of energy resources. The principal directions of the socially responsible market economy system have been offered in the light of the country’s economic security in terms of overcoming “fuel poverty”. Cognitive features of the “fuel poverty” phenomenon have been defined. Mathematical modeling of the “fuel poverty” index has been carried out using the following approaches: “after fuel cost poverty”; energy expenditure above 10% of disposable income; the Low Income – High Costs, where households with relatively high energy costs and low income are emphasized. A model of the final calculation of household energy costs has been developed for the purpose of optimal management. The graphical abstract of the obtained “fuel poverty” index solutions has been presented, with the upper left corner – low income – high costs – serving as a critical zone. The block diagram of improving the socially responsible market economy system in the light of overcoming “fuel poverty” has been offered.
Style APA, Harvard, Vancouver, ISO itp.
36

Jain, S. R. "Spontaneously Igniting Hybrid Fuel-Oxidiser Systems." Defence Science Journal 45, nr 1 (1.01.1995): 5–16. http://dx.doi.org/10.14429/dsj.45.4096.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Friedrich, K. A., Josef Kallo, Johannes Schirmer i Gerrit Schmitthals. "Fuel Cell Systems for Aircraft Application". ECS Transactions 25, nr 1 (17.12.2019): 193–202. http://dx.doi.org/10.1149/1.3210571.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Martin, Jerry L., i Paul Osenar. "Portable Military Fuel Cell Power Systems". ECS Transactions 25, nr 1 (17.12.2019): 249–57. http://dx.doi.org/10.1149/1.3210576.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Fuente Cuesta, Aida, Cristian Savaniu, Kevin D. Pointon i John T. S. Irvine. "'Waste-to-Energy’ Fuel Cell Systems". ECS Transactions 91, nr 1 (10.07.2019): 1581–90. http://dx.doi.org/10.1149/09101.1581ecst.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Lai, Jih-Sheng, i Michael W. Ellis. "Fuel Cell Power Systems and Applications". Proceedings of the IEEE 105, nr 11 (listopad 2017): 2166–90. http://dx.doi.org/10.1109/jproc.2017.2723561.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Jansen, D., i M. Mozaffarian. "Advanced fuel cell energy conversion systems". Energy Conversion and Management 38, nr 10-13 (lipiec 1997): 957–67. http://dx.doi.org/10.1016/s0196-8904(96)00126-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

McConnell, Vicki P. "Graphitic materials in fuel cell systems". Reinforced Plastics 50, nr 3 (marzec 2006): 26–32. http://dx.doi.org/10.1016/s0034-3617(06)70939-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Devitt, Jason. "Propane Fuel Processing for SOFC Systems". ECS Proceedings Volumes 2003-07, nr 1 (styczeń 2003): 1276–85. http://dx.doi.org/10.1149/200307.1276pv.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Glöckner, Ronny, Øystein Ulleberg, Ragne Hildrum, Catherine E. Grégoire i Padró Ife. "Integrating Renewables for Remote Fuel Systems". Energy & Environment 13, nr 4-5 (wrzesień 2002): 735–47. http://dx.doi.org/10.1260/095830502320939660.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Hernández, S., L. Solarino, G. Orsello, N. Russo, D. Fino, G. Saracco i V. Specchia. "Desulfurization processes for fuel cells systems". International Journal of Hydrogen Energy 33, nr 12 (czerwiec 2008): 3209–14. http://dx.doi.org/10.1016/j.ijhydene.2008.01.047.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Djafour, A., M. S. Aida i B. Azoui. "Photovoltaic Assisted Fuel Cell Power Systems". Energy Procedia 50 (2014): 306–13. http://dx.doi.org/10.1016/j.egypro.2014.06.037.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Rother, Marc, Stephen Kempfer i Mark Polifke. "Intelligent fuel systems of the future". ATZ worldwide 105, nr 6 (czerwiec 2003): 16–19. http://dx.doi.org/10.1007/bf03224607.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Karakoc, Hikmet, Adnan Midilli i Onder Turan. "Green hydrogen and fuel cell systems". International Journal of Energy Research 37, nr 10 (10.07.2013): 1141. http://dx.doi.org/10.1002/er.3037.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Farr, Angela K., i David Atkins. "Fuel Supply Planning for Small-Scale Biomass Heating Systems". Western Journal of Applied Forestry 25, nr 1 (1.01.2010): 18–21. http://dx.doi.org/10.1093/wjaf/25.1.18.

Pełny tekst źródła
Streszczenie:
Abstract The Fuels for Schools and Beyond initiative partners have gained experience assisting with installation and fuel supply planning for woody biomass heating systems in six western states. In attempting to use forest management waste or slash that would otherwise be piled and burned, thepartners are promoting changes in currently available biomass systems technology and current forest practices. The many benefits of forest biomass heat can be realized today with careful communication about fuel supply specifications. Guidance based on the partners' experience in fuel supplyplanning and defining fuel specifications is presented.
Style APA, Harvard, Vancouver, ISO itp.
50

Flynn, P. L., B. D. Hsu i G. L. Leonard. "Coal-Fueled Diesel Engine Progress at GE Transportation Systems". Journal of Engineering for Gas Turbines and Power 112, nr 3 (1.07.1990): 369–75. http://dx.doi.org/10.1115/1.2906504.

Pełny tekst źródła
Streszczenie:
A coal-fueled diesel engine holds the promise of a rugged, modular heat engine that uses cheap, abundant fuel. Economic studies have indicated attractive returns at moderate diesel fuel prices. The compositions of coal-water fuels are being expanded to cover the major coal sources. Combustion has been developed at 1000 rpm with mechanical and electronic fuel injection. Dual fuel operation can run the engine over the load range. Erosion of fuel nozzles has been controlled with diamond compacts. Wear of piston rings and cylinder liners can be controlled with tungsten carbide coatings. Emission measurements show higher particulates and SO2 and lower NOx, CO, and HC. Particulate and SO2 control measures are being investigated.
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii