Gotowa bibliografia na temat „Fuel systems”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Fuel systems”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Fuel systems"

1

Staiger, Robert, i Adrian Tantau. "Fuel Cell Heating System a Meaningful Alternative to Today’s Heating Systems". Journal of Clean Energy Technologies 5, nr 1 (2017): 35–41. http://dx.doi.org/10.18178/jocet.2017.5.1.340.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Ford, Terry. "Airframe fuel systems". Aircraft Engineering and Aerospace Technology 67, nr 2 (luty 1995): 2–4. http://dx.doi.org/10.1108/eb037547.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Lovering, D. G. "Fuel Cell Systems". Journal of Power Sources 52, nr 1 (listopad 1994): 155–56. http://dx.doi.org/10.1016/0378-7753(94)87024-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

E, Abonyi Sylvester, Isidore Uju Uche i Okafor Anthony A. "Performance of Fuel Electronic Injection Engine Systems". International Journal of Trend in Scientific Research and Development Volume-2, Issue-1 (31.12.2017): 1165–75. http://dx.doi.org/10.31142/ijtsrd8211.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

MILEWSKI, Jaroslaw, i Krzysztof BADYDA. "E108 TRI-GENERATION SYSTEMS BASED ON HIGHTEMPERATURE FUEL CELLS(Distributed Energy System-2)". Proceedings of the International Conference on Power Engineering (ICOPE) 2009.1 (2009): _1–275_—_1–279_. http://dx.doi.org/10.1299/jsmeicope.2009.1._1-275_.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Ahmed, Shabbir, Romesh Kumar i Michael Krumpelt. "Fuel processing for fuel cell power systems". Fuel Cells Bulletin 2, nr 12 (wrzesień 1999): 4–7. http://dx.doi.org/10.1016/s1464-2859(00)80122-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Willms, R. Scott, i Satoshi Konishi. "Fuel cleanup systems for fusion fuel processing". Fusion Engineering and Design 18 (grudzień 1991): 53–60. http://dx.doi.org/10.1016/0920-3796(91)90107-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Rokni, M. "Addressing fuel recycling in solid oxide fuel cell systems fed by alternative fuels". Energy 137 (październik 2017): 1013–25. http://dx.doi.org/10.1016/j.energy.2017.03.082.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Baranova, M., I. Grishina, B. Damdinov i R. Gomboev. "Dispersed-colloidal fuel systems". IOP Conference Series: Materials Science and Engineering 704 (13.12.2019): 012015. http://dx.doi.org/10.1088/1757-899x/704/1/012015.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Mitlitsky, Fred, Blake Myers i Andrew H. Weisberg. "Regenerative Fuel Cell Systems". Energy & Fuels 12, nr 1 (styczeń 1998): 56–71. http://dx.doi.org/10.1021/ef970151w.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Rozprawy doktorskie na temat "Fuel systems"

1

Shaffer, Christian Edward. "Flow system modeling with applications to fuel cell systems". Morgantown, W. Va. : [West Virginia University Libraries], 2005. https://eidr.wvu.edu/etd/documentdata.eTD?documentid=4198.

Pełny tekst źródła
Streszczenie:
Thesis (M.S.)--West Virginia University, 2005.
Title from document title page. Document formatted into pages; contains xii, 111 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 100-102).
Style APA, Harvard, Vancouver, ISO itp.
2

Bradley, Thomas Heenan. "Modeling, design and energy management of fuel cell systems for aircraft". Diss., Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/26592.

Pełny tekst źródła
Streszczenie:
Thesis (Ph.D)--Mechanical Engineering, Georgia Institute of Technology, 2009.
Committee Chair: Parekh, David; Committee Member: Fuller, Thomas; Committee Member: Joshi, Yogendra; Committee Member: Mavris, Dimitri; Committee Member: Wepfer, William. Part of the SMARTech Electronic Thesis and Dissertation Collection.
Style APA, Harvard, Vancouver, ISO itp.
3

Thomas, Alex S. M. Massachusetts Institute of Technology. "An analysis of distributed solar fuel systems". Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/76511.

Pełny tekst źródła
Streszczenie:
Thesis (S.M. in Engineering and Management)--Massachusetts Institute of Technology, Engineering Systems Division, System Design and Management Program, 2012.
Cataloged from PDF version of thesis.
Includes bibliographical references (p. 85-89).
While solar fuel systems offer tremendous potential to address global clean energy needs, most existing analyses have focused on the feasibility of large centralized systems and applications. Not much research exists on the feasibility of distributed solar fuel systems. This thesis is an attempt to understand the larger context of solar fuel systems, to examine the case for going distributed and to critically analyze a distributed solar fuel system available today in the context of a specific application. In doing so, this thesis seeks to a) provide a baseline analysis for the economic feasibility of a distributed solar fuel system based on state-of-the-art technology b) draw some general conclusions about the nature of such systems in order to provide guidance to those engaged in the development of the next generation of solar fuel systems. This study also compares the chosen baseline solar fuel system with a traditional fossil fuel-based alternative and undertakes a cost-to-emissions trade-off analysis. A key finding of this thesis is that for solar fuel systems to be viable, cost and efficiency improvements in individual sub-systems won't be sufficient. Due attention needs to be given to bring down cost of the entire system. Another key finding is that if carbon emissions are considered as a decision-making criterion in addition to cost, even at current cost levels photovoltaic hydrogen systems compare favorably with existing fossil fuel-based alternatives such as diesel generators.
by Alex Thomas.
S.M.in Engineering and Management
Style APA, Harvard, Vancouver, ISO itp.
4

Stutz, Michael Jun. "Hydrocarbon fuel processing of micro solid oxide fuel cell systems". Zürich : ETH, 2007. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=17455.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Tesfahunegn, Samson Gebre. "Fuel Cell Assisted PhotoVoltaic Power Systems". Doctoral thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for elkraftteknikk, 2012. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-16942.

Pełny tekst źródła
Streszczenie:
Distributed generation (DG) systems as local power sources have great potential to contribute toward energy sustainability, energy efficiency and supply reliability. This thesis deals with DGs that use solar as primary energy input, hydrogen energy storage and conversion technologies (fuel cells and water electrolyzers) as long term backup and energy storage batteries and supercapacitors as short term backup. Standalone power systems isolated from the grid such as those used to power remote area off-grid loads and grid connected systems running in parallel with the main utility grid or a microgrid for local grid support are treated. As cost is the key challenge to the implementation of PV-hydrogen DGs, the main focus is developing sound control methods and operating strategies to help expedite their viability in the near future. The first part of the thesis deals with modeling of system components such as PV generator, fuel cell, lead acid/Li-ion storage batteries, electrolyzer, supercapacitor, power electronic converters and auxiliaries such as hydrogen storage tank and gas compressor. The subsystems are modeled as masked blocks with connectable terminals in Matlab®/Simulink® enabling easy interconnection with other subsystems. The models of main subsystems are fully/partially validated using measurement data or data obtained from data sheets and literature. The second part deals with control and operating strategies in PV hybrid standalone power systems. The models developed in the first part are used to simulate integrated systems. An attempt is made to provide some answers on how the different power sources and energy storages can be integrated and controlled using power electronics and feedback control to enhance improved performance, longer life time, increased supply reliability and minimize fuel use. To this end, new control methods and operating strategies are proposed to mediate near optimal intersubsystem power flows. The third part of the thesis concerns grid connected PV-Fuel cell power systems. Control schemes and operating strategies for integrating PV and fuel cell hybrids into the grid to serve both local demand and weak grids are investigated. How hydrogen energy storage and conversion technologies can be controlled to suppress PV fluctuations in future utility grids are also explored. A smoothing algorithm enhanced by a stepwise constant forecast is developed to enable more smooth and subhourly dispatchable power to be fed to the grid. The proposed methods were verified through longtime simulation based on realistic irradiance data over a number of typical days/weeks using suitably defined performance indices. It was learned that using power electronics and sound control methods, PV-hydrogen DGs can be flexibly controlled to solve lifetime and performance issues which are generally considered economic bottle necks. For example, conventionally in PV-hydrogen hybrids, to improve performance and life time, more battery capacity is added to operate fuel cell and electrolyzer under more stable power conditions in the face of highly fluctuating PV generation to prevent low state of charge (SOC) operation of the battery. Contrarily, in this thesis a sound control method is proposed to achieve the same objectives without oversizing the battery. It is shown that the proposed method can give up to 20% higher battery mean state of charge than conventional operation while PV fluctuation suppression rates up to 40% for the fuel cell and 85% for the electrolyzer are found for three typical days. It is also established that by predictively controlling battery SOC instead of conventional SOC setpoint control, substantial improvements can be obtained (up to 20-30% increase in PV energy utilization and ca. 25% reduction in fuel usage for considered days). Concerning use of hydrogen storage and conversion technologies in PV fluctuation suppression, results obtained from the developed smoothing mechanism and performance indices show that a trade-off should be made between smoothing performance and dispatchability. It was concluded that the right size of fuel cell and electrolyzer needs to be selected to optimize the dispatch interval and smoothing performance. Finally, a PV-hydrogen test facility which can act as show case for standalone, grid-connected and UPS applications was designed and built. The test facility was used to characterize key subsystems from which component models developed were experimentally validated. The facility also acted as a reference system for most of the investigations made in this thesis.
Style APA, Harvard, Vancouver, ISO itp.
6

Barroqueiro, Sergio A. B. "Chromatic sensors for aircraft fuel systems". Thesis, University of Liverpool, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.399038.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Robbie, M. J. "Regenerative pumps for aircraft fuel systems". Thesis, Cranfield University, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.359572.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Pulido, Jon R. (Jon Ramon) 1974. "Modeling hydrogen fuel distribution infrastructure". Thesis, Massachusetts Institute of Technology, 2004. http://hdl.handle.net/1721.1/29529.

Pełny tekst źródła
Streszczenie:
Thesis (M. Eng. in Logistics)--Massachusetts Institute of Technology, Engineering Systems Division, 2004.
Includes bibliographical references (p. 70-73).
This thesis' fundamental research question is to evaluate the structure of the hydrogen production, distribution, and dispensing infrastructure under various scenarios and to discover if any trends become apparent after sensitivity analysis. After reviewing the literature regarding the production, distribution, and dispensing of hydrogen fuel, a hybrid product pathway and network flow model is created and solved. In the literature review, an extensive analysis is performed of the forthcoming findings of the National Academy of Engineering Board on Energy and Environmental Systems (BEES). Additional considerations from operations research literature and general supply chain theory are applied to the problem under consideration. The second section develops a general model for understanding hydrogen production, distribution, and dispensing systems based on the findings of the BEES committee. The second chapter also frames the analysis that the thesis will review using the model. In the problem formulation chapter, the details of the analytic model at examined at length and heuristics solution methods are proposed. Three heuristic methodologies are described and implemented. An in-depth discussion of the final model solution method is described. In the fourth chapter, the model uses the state of California as a test case for hydrogen consumption in order to generate preliminary results for the model The results of the MIP solutions for certain market penetration scenarios and the heuristic solutions for each scenario are shown and sensitivity analysis is performed. The final chapter summarizes the results of the model, compares the performance of heuristics, and indicates further areas for research, both in terms of developing strong lower bounds
(cont.) for the heuristics, better optimization techniques, and expanded models for consideration.
by Jon R. Pulido.
M.Eng.in Logistics
Style APA, Harvard, Vancouver, ISO itp.
9

Kroll, Douglas M. (Douglas Michael). "Using polymer electrolyte membrane fuel cells in a hybrid surface ship propulsion plant to increase fuel efficiency". Thesis, Massachusetts Institute of Technology, 2010. http://hdl.handle.net/1721.1/61909.

Pełny tekst źródła
Streszczenie:
Thesis (Nav. E.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering; and, (S.M. in Engineering and Management)--Massachusetts Institute of Technology, Engineering Systems Division, System Design and Management Program, 2010.
Cataloged from PDF version of thesis.
Includes bibliographical references (p. 59).
An increasingly mobile US Navy surface fleet and oil price uncertainty contrast with the Navy's desire to lower the amount of money spent purchasing fuel. Operational restrictions limiting fuel use are temporary and cannot be dependably relied upon. Long term technical research toward improving fuel efficiency is ongoing and includes advanced gas turbines and integrated electric propulsion plants, but these will not be implemented fleet wide in the near future. The focus of this research is to determine if a hybrid fuel cell and gas turbine propulsion plant outweigh the potential ship design disadvantages of physically implementing the system. Based on the potential fuel savings available, the impact on surface ship architecture will be determined by modeling the hybrid fuel cell powered ship and conducting a side by side comparison to one traditionally powered. Another concern that this solution addresses is the trend in the commercial shipping industry of designing more cleanly running propulsion plants.
Douglas M. Kroll.
S.M.in Engineering and Management
Nav.E.
Style APA, Harvard, Vancouver, ISO itp.
10

Shehadi, Charles A. III (Charles Anthony), i Michael R. Witalec. "How to utilize hedging and a fuel surcharge program to stabilize the cost of fuel". Thesis, Massachusetts Institute of Technology, 2010. http://hdl.handle.net/1721.1/61186.

Pełny tekst źródła
Streszczenie:
Thesis (M. Eng. in Logistics)--Massachusetts Institute of Technology, Engineering Systems Division, 2010.
Cataloged from PDF version of thesis.
Includes bibliographical references (p. 101-103).
This paper looks at some of these travails as well as the common tools used to approach a volatile priced commodity, diesel fuel. It focuses on the impacts of hedging for companies that are directly impacted through the consumption of diesel fuel in addition to companies that are indirectly impacted because they outsource their transportation. It examines the impact of a fuel surcharge and how it distributes risk throughout the supply chain. To complement the research, analysis was conducted in the form of a survey to benchmark the industry with respect to current practices of hedging and fuel surcharges, a sensitivity test of a fuel surcharge matrix to find its appropriate usage, and a simulation to provide guidance as to the appropriate strategy for hedging. Lessons learned from the survey flowed into the sensitivity testing and simulation. These three segments of analysis highlighted the problem of volatility, increasing cost, and inability to pass on the cost, proving the true pain of fuel in the market. Ultimately, the paper answers: How to utilize hedging and a fuel surcharge program to stabilize the cost of fuel? The survey showed the wide adoption of fuel surcharges, confirming the academic research. The sensitivity test proved the need to keep the escalator variable in line with a carrier's actual fuel efficiency and standardize for all carriers. The simulation recommended longer term derivatives. Putting this together, the fuel surcharge establishes stability for the carrier, at the risk of the shipper. The shipper must maintain that stability through its maintenance of the escalator in the fuel surcharge matrix. Additionally, the shipper should hedge fuel via long term derivatives to establish personal fuel cost stability, creating a competitive advantage and enabling the shipper to compete more effectively.
by Charles A. Shehadi, III and Michael R. Witalec.
M.Eng.in Logistics
Style APA, Harvard, Vancouver, ISO itp.

Książki na temat "Fuel systems"

1

Roy, Langton, red. Aircraft fuel systems. Chichester, West Sussex, U.K: Wiley, 2008.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Roy, Langton, red. Aircraft fuel systems. Reston, VA: American Institute of Aeronautics and Astronautics, 2008.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Blomen, Leo J. M. J., i Michael N. Mugerwa, red. Fuel Cell Systems. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4899-2424-7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Duffy, James E. Auto fuel systems. South Holland, Ill: Goodheart-Willcox Co., 1987.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Blomen, Leo J. M. J. i Mugerwa Michael N, red. Fuel cell systems. New York: Plenum Press, 1993.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Automobile fuel systems. London: Newnes Technical, 1985.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Institution of Mechanical Engineers. Combustion Engines Group., red. Fuel injection systems. London: Mechanical Engineering Publications for The Institution of Mechanical Engineers, 1999.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Engineers, Society of Automotive, i SAE International Congress & Exposition (1994 : Detroit, Mich.), red. Fuel systems for fuel economy and emissions. Warrendale, PA: Society of Automotive Engineers, 1994.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Andrew, Dicks, red. Fuel cell systems explained. Wyd. 2. Chichester: John Wiley, 2003.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Larminie, James, i Andrew Dicks. Fuel Cell Systems Explained. West Sussex, England: John Wiley & Sons, Ltd,., 2003. http://dx.doi.org/10.1002/9781118878330.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Części książek na temat "Fuel systems"

1

Filburn, Thomas. "Fuel Systems". W Commercial Aviation in the Jet Era and the Systems that Make it Possible, 71–82. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-20111-1_6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Pietrogrande, P., i Maurizio Bezzeccheri. "Fuel Processing". W Fuel Cell Systems, 121–56. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4899-2424-7_5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Egler, Walter, Rolf Jürgen Giersch, Friedrich Boecking, Jürgen Hammer, Jaroslav Hlousek, Patrick Mattes, Ulrich Projahn, Winfried Urner i Björn Janetzky. "Fuel Injection Systems". W Handbook of Diesel Engines, 127–74. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-540-89083-6_5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Raghavan, Vasudevan. "Solid Fuel Systems". W Combustion Technology, 139–70. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-74621-6_6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Projahn, Ulrich, Helmut Randoll, Erich Biermann, Jörg Brückner, Karsten Funk, Thomas Küttner, Walter Lehle i Joachim Zuern. "Fuel Injection System Control Systems". W Handbook of Diesel Engines, 175–91. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-540-89083-6_6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Elter, John F. "Polymer Electrolyte (PE) Fuel Cell Systems". W Fuel Cells, 433–72. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-5785-5_14.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Madhlopa, Amos. "Gas Turbine Fuels and Fuel Systems". W Principles of Solar Gas Turbines for Electricity Generation, 27–49. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-68388-1_2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Goodger, Eric, i Ray Vere. "Fuel Characteristics within Aircraft Fuel Systems". W Aviation Fuels Technology, 74–87. London: Macmillan Education UK, 1985. http://dx.doi.org/10.1007/978-1-349-06904-0_7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Zohuri, Bahman. "Fuel Burnup and Fuel Management". W Neutronic Analysis For Nuclear Reactor Systems, 509–29. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-42964-9_16.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Zohuri, Bahman. "Fuel Burnup and Fuel Management". W Neutronic Analysis For Nuclear Reactor Systems, 501–21. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-04906-5_16.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Streszczenia konferencji na temat "Fuel systems"

1

Borup, Rodney L., Michael A. Inbody, José I. Tafoya, William J. Vigil i Troy A. Semelsberger. "Fuels Testing in Fuel Reformers for Transportation Fuel Cells". W SAE Powertrain & Fluid Systems Conference & Exhibition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2003. http://dx.doi.org/10.4271/2003-01-3271.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Edwards, Tim, i Lourdes Maurice. "HyTech fuels/fuel system research". W 8th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1998. http://dx.doi.org/10.2514/6.1998-1562.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Krumpelt, Michael, Theodore R. Krause i John P. Kopasz. "Fuel Processing for Mobile Fuel Cell Systems". W ASME 2003 1st International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2003. http://dx.doi.org/10.1115/fuelcell2003-1700.

Pełny tekst źródła
Streszczenie:
Fuel cells may in the future compete with heat engines in automobiles and motor generators and with batteries in portable electronics. Hydrogen, either in compressed, cryogenic, or chemically stored form is a good fuel if the storage density can be improved. Alternatively, the hydrogen could be obtained by converting gasoline, alcohols or other liquid hydrocarbons into a hydrogen-rich gas in a fuel processor that is a component of the fuel cell system. Such processors will have to be small, light, and inexpensive, and will have to have rapid ramp-up and ramp-down capabilities to follow the power demands of the applications. Traditional steam reforming technology does not meet these requirements, but newly developed catalytic auto-thermal reformers do. The principles of operation and the status of the technology are discussed.
Style APA, Harvard, Vancouver, ISO itp.
4

Abele, Andris R. "Advanced Hydrogen Fuel Systems for Fuel Cell Vehicles". W ASME 2003 1st International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2003. http://dx.doi.org/10.1115/fuelcell2003-1703.

Pełny tekst źródła
Streszczenie:
On-board storage and handling of hydrogen continues to be a major challenge on the road to the widespread commercialization of hydrogen fuel cell vehicles. QUANTUM Fuel Systems Technologies WorldWide, Inc. (QUANTUM) is developing a number of advanced technologies in response to the demand by its customers for compact, lightweight, safe, robust, and cost-effective hydrogen fuel systems. QUANTUM approaches hydrogen storage and handling as an engineered system integrated into the design of the vehicle. These engineered systems comprise advanced storage, regulation, metering, and electronic controls developed by QUANTUM. In 2001, QUANTUM validated, commercialized, and began production of lightweight compressed hydrogen storage systems. The first commercial products include storage technologies that achieved 7.5 to 8.5 percent hydrogen storage by weight at 350 bar (5,000 psi). QUANTUM has also received German TUV regulatory approval for its 700 bar (10,000-psi) TriShield10™ hydrogen storage cylinder, based on hydrogen standards developed by the European Integrated Hydrogen Project (EIHP). QUANTUM has patented an In-Tank Regulator for use with hydrogen and CNG, which have applications in both fuel cell and alternative fuel vehicle markets. To supplement the inherent safety features designed into the new 700 bar storage tank, QUANTUM’s patented 700 bar In-Tank Regulator provides additional safety by confining the high pressure in the tank and allowing only a maximum delivery pressure of 10 bar (150-psi) outside the storage system. This paper describes initial applications for these hydrogen fuel systems, which have included fuel cell automobiles, buses, and hydrogen refueling stations.
Style APA, Harvard, Vancouver, ISO itp.
5

Pan, Chien-Ping, Min-Chung Li i Syed F. Hussain. "Fuel Pressure Control for Gaseous Fuel Injection Systems". W International Fuels & Lubricants Meeting & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1998. http://dx.doi.org/10.4271/981397.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Hagan, Mark, Will Northrop, Brian Bowers, Jennifer Rumsey i S. Prabhu. "Automotive Fuel Processing Systems for PEM Fuel Cells". W SAE 2000 World Congress. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2000. http://dx.doi.org/10.4271/2000-01-0007.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Bowers, Brian J., Mark Hagan, Jennifer Rumsey i Srinivasa Prabhu. "Emissions from Fuel Processor / Fuel Cell Power Systems". W SAE 2000 World Congress. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2000. http://dx.doi.org/10.4271/2000-01-0375.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Averberg, A., K. R. Meyer i A. Mertens. "Current-fed full bridge converter for fuel cell systems". W 2008 IEEE Power Electronics Specialists Conference - PESC 2008. IEEE, 2008. http://dx.doi.org/10.1109/pesc.2008.4592038.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Olfert, Jason S., i M. David Checkel. "A Fuel Quality Sensor for Fuel Cell Vehicles, Natural Gas Vehicles, and Variable Gaseous Fuel Vehicles". W Powertrain & Fluid Systems Conference & Exhibition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2005. http://dx.doi.org/10.4271/2005-01-3770.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Edwards, Tim, Matthew DeWitt, L. Shafer, D. Brooks, He Huang, Sean Bagley, Jorge Ona i Judy Wornat. "Fuel Composition Influence on Deposition from Endothermic Fuels". W 14th AIAA/AHI Space Planes and Hypersonic Systems and Technologies Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2006. http://dx.doi.org/10.2514/6.2006-7973.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Raporty organizacyjne na temat "Fuel systems"

1

Gaines, L. L., A. Elgowainy i M. Q. Wang. Full Fuel-Cycle Comparison of Forklift Propulsion Systems. Office of Scientific and Technical Information (OSTI), październik 2008. http://dx.doi.org/10.2172/1219584.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Gaines, L. L., A. Elgowainy i M. Q. Wang. Full fuel-cycle comparison of forklift propulsion systems. Office of Scientific and Technical Information (OSTI), listopad 2008. http://dx.doi.org/10.2172/946421.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Mallouk, Thomas. NANOSTRUCTURED SOLAR FUEL SYSTEMS. Office of Scientific and Technical Information (OSTI), styczeń 2020. http://dx.doi.org/10.2172/1582062.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Papadias, D., S. Ahmed i R. Kumar. Fuel quality issues in stationary fuel cell systems. Office of Scientific and Technical Information (OSTI), luty 2012. http://dx.doi.org/10.2172/1035020.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Zabarnick, S., J. S. Ervin, M. J. DeWitt, D. R. Ballal, K. E. Binns, T. F. Williams i S. Stouffer. Advanced Integrated Fuel/Combustion Systems. Fort Belvoir, VA: Defense Technical Information Center, styczeń 2004. http://dx.doi.org/10.21236/ada430732.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

SAN DIEGO STATE UNIV CA DEPT OF PSYCHOLOGY. Aircraft Fuel Systems, AFSC 2A6X4. Fort Belvoir, VA: Defense Technical Information Center, marzec 2001. http://dx.doi.org/10.21236/ada387439.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Carlson, Eric J. Cost Analysis of Fuel Cell Systems for Transportation Compressed Hydrogen and PEM Fuel Cell System. Office of Scientific and Technical Information (OSTI), październik 2004. http://dx.doi.org/10.2172/862021.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Mason, R. E., i R. B. Matthews. Compatibility in space reactor fuel systems. Office of Scientific and Technical Information (OSTI), marzec 1988. http://dx.doi.org/10.2172/5529702.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Mitchell, W. L., J. M. Bentley i J. H. J. Thijssen. Development of fuel processors for transportation and stationary fuel cell systems. Office of Scientific and Technical Information (OSTI), grudzień 1996. http://dx.doi.org/10.2172/460289.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Steve Magee i Richard Gehman. Sensor Development for PEM Fuel Cell Systems. Office of Scientific and Technical Information (OSTI), lipiec 2005. http://dx.doi.org/10.2172/841411.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii