Gotowa bibliografia na temat „Friction in biological systems”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Friction in biological systems”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Friction in biological systems"
WIERZCHOLSKI, Krzysztof, i Andrzej MISZCZAK. "IMPACT OF ADHESION AND VISCOSITY FORCES ON FRICTION VARIATIONS IN BIO-TRIBOLOGICAL SYSTEMS". Tribologia 278, nr 2 (1.05.2018): 139–51. http://dx.doi.org/10.5604/01.3001.0012.6987.
Pełny tekst źródłaTramsen, Halvor T., Stanislav N. Gorb, Hao Zhang, Poramate Manoonpong, Zhendong Dai i Lars Heepe. "Inversion of friction anisotropy in a bio-inspired asymmetrically structured surface". Journal of The Royal Society Interface 15, nr 138 (styczeń 2018): 20170629. http://dx.doi.org/10.1098/rsif.2017.0629.
Pełny tekst źródłaNosonovsky, Michael, i Bharat Bhushan. "Thermodynamics of surface degradation, self-organization and self-healing for biomimetic surfaces". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 367, nr 1893 (28.04.2009): 1607–27. http://dx.doi.org/10.1098/rsta.2009.0009.
Pełny tekst źródłaSekhar, JA. "Tunable coefficient of friction with surface texturing in materials engineering and biological systems". Current Opinion in Chemical Engineering 19 (marzec 2018): 94–106. http://dx.doi.org/10.1016/j.coche.2017.12.002.
Pełny tekst źródłaQian, Shanhua, Liguo Liu, Zifeng Ni i Yong Luo. "Experimental investigation of the dynamic properties of natural cartilage under reciprocating sliding at two typical rubbing pairs". Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology 233, nr 9 (21.03.2019): 1318–26. http://dx.doi.org/10.1177/1350650119836815.
Pełny tekst źródłaEnders, S., N. Barbakadse, S. N. Gorb i E. Arzt. "Exploring Biological Surfaces by Nanoindentation". Journal of Materials Research 19, nr 3 (marzec 2004): 880–87. http://dx.doi.org/10.1557/jmr.2004.19.3.880.
Pełny tekst źródłaReddy, J. Mohan, i Horacio Apolayo. "Friction Correction Factor For Center‐Pivot Irrigation Systems". Journal of Irrigation and Drainage Engineering 114, nr 1 (luty 1988): 183–85. http://dx.doi.org/10.1061/(asce)0733-9437(1988)114:1(183).
Pełny tekst źródłaShivalinga, BM, H. Jyothikiran, Sachin Bansal i Azeem Farhan. "A Comparison of Frictional Resistance between Active and Passive Self-ligating Brackets with Conventional Bracket Systems". World Journal of Dentistry 2, nr 4 (2011): 302–8. http://dx.doi.org/10.5005/jp-journals-10015-1102.
Pełny tekst źródłavan den Boogaart, Luc M., Julian K. A. Langowski i Guillermo J. Amador. "Studying Stickiness: Methods, Trade-Offs, and Perspectives in Measuring Reversible Biological Adhesion and Friction". Biomimetics 7, nr 3 (15.09.2022): 134. http://dx.doi.org/10.3390/biomimetics7030134.
Pełny tekst źródłaAihara, Kazuyuki, i Hideyuki Suzuki. "Theory of hybrid dynamical systems and its applications to biological and medical systems". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 368, nr 1930 (13.11.2010): 4893–914. http://dx.doi.org/10.1098/rsta.2010.0237.
Pełny tekst źródłaRozprawy doktorskie na temat "Friction in biological systems"
Ismail, Mohd. "Shock isolation systems incorporating Coulomb friction". Thesis, University of Southampton, 2012. https://eprints.soton.ac.uk/348953/.
Pełny tekst źródłaLawrence, Jason William. "Improving motion of systems with coulomb friction". Thesis, Georgia Institute of Technology, 2002. http://hdl.handle.net/1853/16012.
Pełny tekst źródłaAltamirano, Gregory L. "Friction Response Approximation Method for Nonlinear Systems". The Ohio State University, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu158584450899486.
Pełny tekst źródłaHagler, Lisle Bruce. "Friction induced vibration in disk brake systems /". Thesis, Connect to this title online; UW restricted, 1998. http://hdl.handle.net/1773/7119.
Pełny tekst źródłaFan, Peng. "Miniaturised biological diagnostic systems". Thesis, University of Sheffield, 2014. http://etheses.whiterose.ac.uk/6856/.
Pełny tekst źródłaPerry, Carole Celia. "Silicification in biological systems". Thesis, University of Oxford, 1985. http://ora.ox.ac.uk/objects/uuid:ae665ac4-63eb-4963-845a-d2db6aea31a6.
Pełny tekst źródłaSatam, Sayali S. "Optimization of Wet Friction Systems Based on Rheological, Adsorption, Lubricant and Friction Material Characterization". University of Akron / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=akron1503358825451407.
Pełny tekst źródłaBaykara, Berkay. "Control Of Systems Under The Effect Of Friction". Master's thesis, METU, 2009. http://etd.lib.metu.edu.tr/upload/12611327/index.pdf.
Pełny tekst źródłanamely the classical Coulomb with viscous friction model, the Stribeck friction model, the LuGre friction model, and the Generalized Maxwell-Slip (GMS) friction model. All friction models are applied to the system together with the same linear, proportional with derivative (PD)-type and proportional with integral and derivative (PID)-type feedback control actions for the sake of being faithful in comparison. The accuracy of the friction compensation methods is examined separately for both the low-velocity and high-velocity motions of the system. The precision of friction estimation is also shown in the case of using both the desired velocity and measured velocity as an input to the friction models. These control studies are verified in simulation environment and the corresponding results are given. Furthermore, an experimental set-up is designed and manufactured as a case study. The parameters of the aforementioned friction models are identified and the control laws with different friction models are applied to the system in order to demonstrate the compensation capabilities of the models. The results of the experiments are evaluated by comparing them among each other and with the simulation results.
Sepehri, Ali. "MULTI-SCALE DYNAMICS OF MECHANICAL SYSTEMS WITH FRICTION". OpenSIUC, 2010. https://opensiuc.lib.siu.edu/dissertations/205.
Pełny tekst źródłaReichenbach, Tobias. "Dynamic patterns of biological systems". Diss., lmu, 2008. http://nbn-resolving.de/urn:nbn:de:bvb:19-84101.
Pełny tekst źródłaKsiążki na temat "Friction in biological systems"
Gorb, Stanislav. Adhesion and friction in biological systems. Dordrecht: Springer, 2012.
Znajdź pełny tekst źródłaSergienko, Vladimir P., i Sergey N. Bukharov. Noise and Vibration in Friction Systems. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-11334-0.
Pełny tekst źródłaMarten, Mark R., Tai Hyun Park i Teruyuki Nagamune, red. Biological Systems Engineering. Washington, DC: American Chemical Society, 2002. http://dx.doi.org/10.1021/bk-2002-0830.
Pełny tekst źródłaHaefner, James W. Modeling Biological Systems. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4615-4119-6.
Pełny tekst źródłaFomina, Irina R., Karl Y. Biel i Vladislav G. Soukhovolsky, red. Complex Biological Systems. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2018. http://dx.doi.org/10.1002/9781119510390.
Pełny tekst źródłavon Byern, Janek, i Ingo Grunwald, red. Biological Adhesive Systems. Vienna: Springer Vienna, 2010. http://dx.doi.org/10.1007/978-3-7091-0286-2.
Pełny tekst źródłaHaefner, James W. Modeling Biological Systems. Boston, MA: Springer US, 2005. http://dx.doi.org/10.1007/b106568.
Pełny tekst źródłaChanna, Reddy C., Hamilton Gordon A, Madyastha K. M, National Science Foundation (U.S.) i Symposium on Biological Oxidation Systems (1989 : Bangalore, India), red. Biological oxidation systems. San Diego: Academic Press, 1990.
Znajdź pełny tekst źródłaBraiman, Y., J. M. Drake, F. Family i J. Klafter, red. Dynamics and Friction in Submicrometer Confining Systems. Washington, DC: American Chemical Society, 2004. http://dx.doi.org/10.1021/bk-2004-0882.
Pełny tekst źródłaAnh, Le xuan. Dynamics of Mechanical Systems with Coulomb Friction. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-36516-7.
Pełny tekst źródłaCzęści książek na temat "Friction in biological systems"
Filippov, Alexander E., i Stanislav N. Gorb. "Anisotropic Friction in Biological Systems". W Biologically-Inspired Systems, 143–75. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-41528-0_5.
Pełny tekst źródłaScherge, Matthias, i Stanislav S. Gorb. "Biological Frictional and Adhesive Systems". W Biological Micro- and Nanotribology, 79–127. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-662-04431-5_3.
Pełny tekst źródłaSmolin, Alexey Yu, Galina M. Eremina i Evgeny V. Shilko. "A Tool for Studying the Mechanical Behavior of the Bone–Endoprosthesis System Based on Multi-scale Simulation". W Springer Tracts in Mechanical Engineering, 91–126. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-60124-9_5.
Pełny tekst źródłaTokita, Masayuki. "Gel-Solvent Friction". W Rheology of Biological Soft Matter, 69–93. Tokyo: Springer Japan, 2016. http://dx.doi.org/10.1007/978-4-431-56080-7_3.
Pełny tekst źródłaScherge, Matthias, i Stanislav S. Gorb. "Case Study II: Friction". W Biological Micro- and Nanotribology, 243–49. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-662-04431-5_10.
Pełny tekst źródłaPersson, Bo N. J. "Novel Sliding Systems". W Sliding Friction, 435–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-04283-0_14.
Pełny tekst źródłaPersson, Bo N. J. "Novel Sliding Systems". W Sliding Friction, 387–444. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-662-03646-4_14.
Pełny tekst źródłaBastien, Jérôme, Frédéric Bernardin, Claude-Henri Lamarque i Noël Challamel. "Systems with Friction". W Non-smooth Deterministic or Stochastic Discrete Dynamical Systems, 155–324. Hoboken, NJ USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118604045.ch5.
Pełny tekst źródłaLudema, Kenneth C., i Oyelayo O. Ajayi. "Example of Tribological Systems". W Friction, Wear, Lubrication, 257–70. Second edition. | Boca Raton : Taylor & Francis, CRC Press,[2019]: CRC Press, 2018. http://dx.doi.org/10.1201/9780429444715-15.
Pełny tekst źródłaPopov, Valentin L. "Lubricated Systems". W Contact Mechanics and Friction, 207–29. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-10803-7_14.
Pełny tekst źródłaStreszczenia konferencji na temat "Friction in biological systems"
Cui, Shuai, i Wei Tech Ang. "Robotic Micromanipulation of Biological Cells with Friction Force-Based Rotation Control". W 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2020. http://dx.doi.org/10.1109/iros45743.2020.9341704.
Pełny tekst źródłaLe Houérou, Vincent, Fabrice Morestin, Christian Gauthier i Marie-Christine Baietto. "Friction of Rough Soft Matter Contacts: Local Investigations Through Image Correlation Technique". W ASME 2014 12th Biennial Conference on Engineering Systems Design and Analysis. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/esda2014-20204.
Pełny tekst źródłaVeeregowda, Deepak H., Jagdish P. Sharma, Ronald A. Wagstaff i Qian J. Wang. "Tribo-Diagnostics of Nanoparticle Coated Smart Surface Using Phase Fluctuation Based Processor". W ASME/STLE 2007 International Joint Tribology Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/ijtc2007-44390.
Pełny tekst źródłaSegal, David, i Leonid Kandel. "Orthopedics and Tribology". W ASME 2008 9th Biennial Conference on Engineering Systems Design and Analysis. ASMEDC, 2008. http://dx.doi.org/10.1115/esda2008-59310.
Pełny tekst źródłaMonsef Khoshhesab, Mona, i Yaning Li. "Mechanical Modeling of Fractal Interlocking". W ASME 2017 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/imece2017-71844.
Pełny tekst źródłaNosonovsky, Michael. "Towards “Green Tribology”: Self-Organization at the Sliding Interface for Biomimetic Surfaces". W ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis. ASMEDC, 2010. http://dx.doi.org/10.1115/esda2010-25047.
Pełny tekst źródłaMohammadi, Alireza. "Design of Propulsive Virtual Holonomic Constraints for Planar Snake Robots". W ASME 2017 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/dscc2017-5159.
Pełny tekst źródłaHaque, Md Rejwanul, Hao Zheng, Saroj Thapa, Geza Kogler i Xiangrong Shen. "A Robotic Ankle-Foot Orthosis for Daily-Life Assistance and Rehabilitation". W ASME 2018 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/dscc2018-9242.
Pełny tekst źródłaPryputniewicz, Ryszard J., Dariusz R. Pryputniewicz i Emily J. Pryputniewicz. "Effect of Process Parameters on TED-Based Q-Factor of MEMS". W ASME 2007 InterPACK Conference collocated with the ASME/JSME 2007 Thermal Engineering Heat Transfer Summer Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/ipack2007-33094.
Pełny tekst źródłaDorsch, Daniel S., i Amos G. Winter. "Design of a Biologically Inspired Underwater Burrowing Robot That Utilizes Localized Fluidization". W ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/detc2015-47459.
Pełny tekst źródłaRaporty organizacyjne na temat "Friction in biological systems"
Akay, Adnan, i Jerry Griffin. Measurement of Friction in Dynamic Systems. Fort Belvoir, VA: Defense Technical Information Center, wrzesień 2003. http://dx.doi.org/10.21236/ada418183.
Pełny tekst źródłaKrim, Jacqueline. Friction, Adhesion and Lubrication of Nanoscale Mechanical Systems. Fort Belvoir, VA: Defense Technical Information Center, kwiecień 1999. http://dx.doi.org/10.21236/ada363467.
Pełny tekst źródłaSingh, Rajendra. Dynamic Analysis of Sliding Friction in Rotorcraft Geared Systems. Fort Belvoir, VA: Defense Technical Information Center, wrzesień 2005. http://dx.doi.org/10.21236/ada440286.
Pełny tekst źródłaHowell, Calvin R., Chantal D. Reid i Andrew G. Weisenberger. Radionuclide Imaging Technologies for Biological Systems. Office of Scientific and Technical Information (OSTI), maj 2014. http://dx.doi.org/10.2172/1244531.
Pełny tekst źródłaFaissol, D. Learning Interactions in Complex Biological Systems. Office of Scientific and Technical Information (OSTI), październik 2019. http://dx.doi.org/10.2172/1573143.
Pełny tekst źródłaEndy, Drew. Design and Fabrication of Integration Biological Systems. Fort Belvoir, VA: Defense Technical Information Center, kwiecień 2008. http://dx.doi.org/10.21236/ada500552.
Pełny tekst źródłaFLORENCE UNIV (ITALY). Metal Ions In Biological Systems. EUROBIC II. Fort Belvoir, VA: Defense Technical Information Center, styczeń 1994. http://dx.doi.org/10.21236/ada338576.
Pełny tekst źródłaMichael Killian. Efficiency Improvement through Reduction in Friction and Wear in Powertrain Systems. Office of Scientific and Technical Information (OSTI), wrzesień 2009. http://dx.doi.org/10.2172/989104.
Pełny tekst źródłaJivkov, Venelin, i Vatko Draganov. Controlled Friction Clutch for Hybrid Propulsion Mechanical Systems with Kinetic Energy Accumulator. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, lipiec 2020. http://dx.doi.org/10.7546/crabs.2020.07.13.
Pełny tekst źródłaGatley, S. J. Radiotracers For Lipid Signaling Pathways In Biological Systems. Office of Scientific and Technical Information (OSTI), wrzesień 2016. http://dx.doi.org/10.2172/1326385.
Pełny tekst źródła