Artykuły w czasopismach na temat „Frequency radar”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Frequency radar”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Caffa, Mattia, Francesco Biletta i Riccardo Maggiora. "Binary-Phase vs. Frequency Modulated Radar Measured Performances for Automotive Applications". Sensors 23, nr 11 (1.06.2023): 5271. http://dx.doi.org/10.3390/s23115271.
Pełny tekst źródłaRoarty, Hugh J., Erick Rivera Lemus, Ethan Handel, Scott M. Glenn, Donald E. Barrick i James Isaacson. "Performance Evaluation of SeaSonde High-Frequency Radar for Vessel Detection". Marine Technology Society Journal 45, nr 3 (1.05.2011): 14–24. http://dx.doi.org/10.4031/mtsj.45.3.2.
Pełny tekst źródłaWang, Dingyang, Sungwon Yoo i Sung Ho Cho. "Experimental Comparison of IR-UWB Radar and FMCW Radar for Vital Signs". Sensors 20, nr 22 (23.11.2020): 6695. http://dx.doi.org/10.3390/s20226695.
Pełny tekst źródłaFrech, Michael, Cornelius Hald, Maximilian Schaper, Bertram Lange i Benjamin Rohrdantz. "Assessing and mitigating the radar–radar interference in the German C-band weather radar network". Atmospheric Measurement Techniques 16, nr 2 (20.01.2023): 295–309. http://dx.doi.org/10.5194/amt-16-295-2023.
Pełny tekst źródłaYang, Jian, Zengtian Chang, Dongchu Su, Chenyong Li, Siwei Luo, BoWei Chang i Lu Qiang. "Influence of Public Mobile Communication System on the Frequency of S-Band Radars". Journal of Physics: Conference Series 2196, nr 1 (1.02.2022): 012031. http://dx.doi.org/10.1088/1742-6596/2196/1/012031.
Pełny tekst źródłaMuaaz, Muhammad, Sahil Waqar i Matthias Pätzold. "Orientation-Independent Human Activity Recognition Using Complementary Radio Frequency Sensing". Sensors 23, nr 13 (22.06.2023): 5810. http://dx.doi.org/10.3390/s23135810.
Pełny tekst źródłaSilva, Murilo Teixeira, Weimin Huang i Eric W. Gill. "Bistatic High-Frequency Radar Cross-Section of the Ocean Surface with Arbitrary Wave Heights". Remote Sensing 12, nr 4 (18.02.2020): 667. http://dx.doi.org/10.3390/rs12040667.
Pełny tekst źródłaMroz, Kamil, Alessandro Battaglia, Cuong Nguyen, Andrew Heymsfield, Alain Protat i Mengistu Wolde. "Triple-frequency radar retrieval of microphysical properties of snow". Atmospheric Measurement Techniques 14, nr 11 (17.11.2021): 7243–54. http://dx.doi.org/10.5194/amt-14-7243-2021.
Pełny tekst źródłaParent du Chatelet, Jacques, Chiraz Boudjabi, Lucas Besson i Olivier Caumont. "Errors Caused by Long-Term Drifts of Magnetron Frequencies for Refractivity Measurement with a Radar: Theoretical Formulation and Initial Validation". Journal of Atmospheric and Oceanic Technology 29, nr 10 (1.10.2012): 1428–34. http://dx.doi.org/10.1175/jtech-d-12-00070.1.
Pełny tekst źródłaLeinonen, Jussi, Matthew D. Lebsock, Simone Tanelli, Ousmane O. Sy, Brenda Dolan, Randy J. Chase, Joseph A. Finlon, Annakaisa von Lerber i Dmitri Moisseev. "Retrieval of snowflake microphysical properties from multifrequency radar observations". Atmospheric Measurement Techniques 11, nr 10 (5.10.2018): 5471–88. http://dx.doi.org/10.5194/amt-11-5471-2018.
Pełny tekst źródłaJohnston, Paul E., James R. Jordan, Allen B. White, David A. Carter, David M. Costa i Thomas E. Ayers. "The NOAA FM-CW Snow-Level Radar". Journal of Atmospheric and Oceanic Technology 34, nr 2 (luty 2017): 249–67. http://dx.doi.org/10.1175/jtech-d-16-0063.1.
Pełny tekst źródłaShi, Di, Gunnar Gidion, Taimur Aftab, Leonhard M. Reindl i Stefan J. Rupitsch. "Frequency Comb-Based Ground-Penetrating Bioradar: System Implementation and Signal Processing". Sensors 23, nr 3 (25.01.2023): 1335. http://dx.doi.org/10.3390/s23031335.
Pełny tekst źródłaFigueras i Ventura, Jordi, i Pierre Tabary. "The New French Operational Polarimetric Radar Rainfall Rate Product". Journal of Applied Meteorology and Climatology 52, nr 8 (sierpień 2013): 1817–35. http://dx.doi.org/10.1175/jamc-d-12-0179.1.
Pełny tekst źródłaBhutani, Akanksha, Sören Marahrens, Michael Gehringer, Benjamin Göttel, Mario Pauli i Thomas Zwick. "The Role of Millimeter-Waves in the Distance Measurement Accuracy of an FMCW Radar Sensor". Sensors 19, nr 18 (12.09.2019): 3938. http://dx.doi.org/10.3390/s19183938.
Pełny tekst źródłaBhutani, Akanksha, Sören Marahrens, Marius Kretschmann, Serdal Ayhan, Steffen Scherr, Benjamin Göttel, Mario Pauli i Thomas Zwick. "Applications of radar measurement technology using 24 GHz, 61 GHz, 80 GHz and 122 GHz FMCW radar sensors". tm - Technisches Messen 89, nr 2 (2.12.2021): 107–21. http://dx.doi.org/10.1515/teme-2021-0034.
Pełny tekst źródłaIlcev, Dimov Stojce. "Introduction to Coastal HF Maritime Surveillance Radars". Polish Maritime Research 26, nr 3 (1.09.2019): 153–62. http://dx.doi.org/10.2478/pomr-2019-0056.
Pełny tekst źródłaДудуш, А. С., І. І. Сачук, Сальман Оваід i А. К. Бідун. "Science & technology trends in cognitive radar concept". Системи обробки інформації, nr 3(166) (24.09.2021): 22–34. http://dx.doi.org/10.30748/soi.2021.166.02.
Pełny tekst źródłaChaudhary, Sushank, Lunchakorn Wuttisittikulkij, Muhammad Saadi, Abhishek Sharma, Sattam Al Otaibi, Jamel Nebhen, Demostenes Zegarra Rodriguez i in. "Coherent detection-based photonic radar for autonomous vehicles under diverse weather conditions". PLOS ONE 16, nr 11 (15.11.2021): e0259438. http://dx.doi.org/10.1371/journal.pone.0259438.
Pełny tekst źródłaShirasawa, K., N. Ebuchi, M. Leppäranta i T. Takatsuka. "Ice-edge detection from Japanese C-band radar and high-frequency radar coastal stations". Annals of Glaciology 54, nr 62 (2013): 59–64. http://dx.doi.org/10.3189/2013aog62a007.
Pełny tekst źródłaMilczarek, Hubert, Czesław Leśnik, Igor Djurović i Adam Kawalec. "Estimating the Instantaneous Frequency of Linear and Nonlinear Frequency Modulated Radar Signals—A Comparative Study". Sensors 21, nr 8 (17.04.2021): 2840. http://dx.doi.org/10.3390/s21082840.
Pełny tekst źródłaLengfeld, Katharina, Marco Clemens, Claire Merker, Hans Münster i Felix Ament. "A Simple Method for Attenuation Correction in Local X-Band Radar Measurements Using C-Band Radar Data". Journal of Atmospheric and Oceanic Technology 33, nr 11 (listopad 2016): 2315–29. http://dx.doi.org/10.1175/jtech-d-15-0091.1.
Pełny tekst źródłaLe, Minda, i V. Chandrasekar. "Ground Validation of Surface Snowfall Algorithm in GPM Dual-Frequency Precipitation Radar". Journal of Atmospheric and Oceanic Technology 36, nr 4 (kwiecień 2019): 607–19. http://dx.doi.org/10.1175/jtech-d-18-0098.1.
Pełny tekst źródłaAlattabi, Zaid R., Douglas Cahl i George Voulgaris. "Swell and Wind Wave Inversion Using a Single Very High Frequency (VHF) Radar". Journal of Atmospheric and Oceanic Technology 36, nr 6 (czerwiec 2019): 987–1013. http://dx.doi.org/10.1175/jtech-d-18-0166.1.
Pełny tekst źródłaLipa, Barrick i Whelan. "A Quality Control Method for Broad-Beam HF Radar Current Velocity Measurements". Journal of Marine Science and Engineering 7, nr 4 (19.04.2019): 112. http://dx.doi.org/10.3390/jmse7040112.
Pełny tekst źródłaLukin, Konstantin, Pavlo Vyplavin, Oleg Zemlyaniy, Volodymyr Palamarchuk i Sergii Lukin. "High Resolution Noise Radar without Fast ADC". International Journal of Electronics and Telecommunications 58, nr 2 (1.06.2012): 135–40. http://dx.doi.org/10.2478/v10177-012-0019-1.
Pełny tekst źródłaKirincich, Anthony. "Toward Real-Time, Remote Observations of the Coastal Wind Resource Using High-Frequency Radar". Marine Technology Society Journal 47, nr 4 (1.07.2013): 206–17. http://dx.doi.org/10.4031/mtsj.47.4.22.
Pełny tekst źródłaPotapov, A. A., V. A. Kuznetsov i E. A. Alikulov. "Methods for Complexing Images Formed by Multi-Band Synthetic Aperture Radars". Journal of the Russian Universities. Radioelectronics 24, nr 3 (24.06.2021): 6–21. http://dx.doi.org/10.32603/1993-8985-2021-24-3-6-21.
Pełny tekst źródłaXu, Yanjie, Chunyang Wang, Guimei Zheng i Ming Tan. "Nonlinear Frequency Offset Beam Design for FDA-MIMO Radar". Sensors 23, nr 3 (28.01.2023): 1476. http://dx.doi.org/10.3390/s23031476.
Pełny tekst źródłaDuke, Jonathan, Eli Neville i Jorge Vargas. "A Modulated Approach for Improving MFSK RADARS to Resolve Mutual Interference on Autonomous Vehicles (AVs)". Sensors 23, nr 16 (15.08.2023): 7192. http://dx.doi.org/10.3390/s23167192.
Pełny tekst źródłaKrasnov, Oleg A., i Alexander G. Yarovoy. "Radar micro-Doppler of wind turbines: simulation and analysis using rotating linear wire structures". International Journal of Microwave and Wireless Technologies 7, nr 3-4 (czerwiec 2015): 459–67. http://dx.doi.org/10.1017/s1759078715000641.
Pełny tekst źródłaCai, Bing, Qingchen Xu, Xiong Hu i Junfeng Yang. "Initial Results of Meteor Wind with Langfang Medium Frequency Radar". Atmosphere 11, nr 5 (14.05.2020): 507. http://dx.doi.org/10.3390/atmos11050507.
Pełny tekst źródłaChoi, Mun Gak, Dong Sik Woo, Hyun Chul Choi i Kang Wook Kim. "High-Accuracy AM-FM Radar with an Active Reflector". Journal of Sensors 2017 (2017): 1–8. http://dx.doi.org/10.1155/2017/8589469.
Pełny tekst źródłaHou, Yidong, Biyang Wen, Yonghuai Yang, Jing Yang i Caijun Wang. "Two-Dimensional River Flow Patterns Observed with a Pair of UHF Radar System". International Journal of Antennas and Propagation 2017 (2017): 1–11. http://dx.doi.org/10.1155/2017/4792324.
Pełny tekst źródłaFranck, Anna, Dmitri Moisseev, Ville Vakkari, Matti Leskinen, Janne Lampilahti, Veli-Matti Kerminen i Ewan O'Connor. "Evaluation of convective boundary layer height estimates using radars operating at different frequency bands". Atmospheric Measurement Techniques 14, nr 11 (24.11.2021): 7341–53. http://dx.doi.org/10.5194/amt-14-7341-2021.
Pełny tekst źródłaIbragimova, Ya G., O. A. Tereshenkova, A. A. Kim i V. S. Luginya. "Methods and tools for radio frequency locators parameters verification". Radio industry (Russia) 30, nr 2 (6.06.2020): 8–17. http://dx.doi.org/10.21778/2413-9599-2020-30-2-8-17.
Pełny tekst źródłaZhu, Langfeng, Tianyi Lu, Fan Yang, Bin Liu, Lunyu Wu i Jun Wei. "Comparisons of Tidal Currents in the Pearl River Estuary between High-Frequency Radar Data and Model Simulations". Applied Sciences 12, nr 13 (27.06.2022): 6509. http://dx.doi.org/10.3390/app12136509.
Pełny tekst źródłaArnold, Emily, Carl Leuschen, Fernando Rodriguez-Morales, Jilu Li, John Paden, Richard Hale i Shawn Keshmiri. "CReSIS airborne radars and platforms for ice and snow sounding". Annals of Glaciology 61, nr 81 (19.11.2019): 58–67. http://dx.doi.org/10.1017/aog.2019.37.
Pełny tekst źródłaPazmany, Andrew L., James B. Mead, Howard B. Bluestein, Jeffrey C. Snyder i Jana B. Houser. "A Mobile Rapid-Scanning X-band Polarimetric (RaXPol) Doppler Radar System". Journal of Atmospheric and Oceanic Technology 30, nr 7 (1.07.2013): 1398–413. http://dx.doi.org/10.1175/jtech-d-12-00166.1.
Pełny tekst źródłaAlvarez-Lopez, Yuri, Cebrian Garcia-Gonzalez, Carlos Vazquez-Antuna, Samuel Ver-Hoeye i Fernando Las-Heras. "FREQUENCY SCANNING BASED RADAR SYSTEM". Progress In Electromagnetics Research 132 (2012): 275–96. http://dx.doi.org/10.2528/pier12071811.
Pełny tekst źródłaHeadrick, J. M., i J. F. Thomason. "Applications of high-frequency radar". Radio Science 33, nr 4 (lipiec 1998): 1045–54. http://dx.doi.org/10.1029/98rs01013.
Pełny tekst źródłaChadwick, A. "Superresolution for high-frequency radar". IET Radar, Sonar & Navigation 1, nr 6 (2007): 431. http://dx.doi.org/10.1049/iet-rsn:20060176.
Pełny tekst źródłaSeyfried, Daniel, i Joerg Schoebel. "Stepped-frequency radar signal processing". Journal of Applied Geophysics 112 (styczeń 2015): 42–51. http://dx.doi.org/10.1016/j.jappgeo.2014.11.003.
Pełny tekst źródłaHuo, Juan, Yongheng Bi, Bo Liu, Congzheng Han i Minzheng Duan. "A Dual-Frequency Cloud Radar for Observations of Precipitation and Cloud in Tibet: Description and Preliminary Measurements". Remote Sensing 13, nr 22 (19.11.2021): 4685. http://dx.doi.org/10.3390/rs13224685.
Pełny tekst źródłaJunyent, Francesc, V. Chandrasekar, V. N. Bringi, S. A. Rutledge, P. C. Kennedy, D. Brunkow, J. George i R. Bowie. "Transformation of the CSU–CHILL Radar Facility to a Dual-Frequency, Dual-Polarization Doppler System". Bulletin of the American Meteorological Society 96, nr 6 (1.06.2015): 975–96. http://dx.doi.org/10.1175/bams-d-13-00150.1.
Pełny tekst źródłaYaghoubi Aliabad, Pourya, Hossein Soleimani i Mohammad Soleimani. "Reducing the Sidelobes in Doppler-Range Beam Pattern and Controlling the Frequency Channel in SIAR". Wireless Communications and Mobile Computing 2023 (24.08.2023): 1–12. http://dx.doi.org/10.1155/2023/3451354.
Pełny tekst źródłaZhao, Hong-Ze, Guang-Hui Wei, Xiao-Dong Pan, Xue Du i Xu-Xu Lyu. "Pseudo-Signal Interference Regularity of Single-Frequency Electromagnetic Radiation to Stepped-Frequency Radar". Electronics 11, nr 17 (2.09.2022): 2768. http://dx.doi.org/10.3390/electronics11172768.
Pełny tekst źródłaLombardo, F., F. Napolitano, F. Russo, G. Scialanga, L. Baldini i E. Gorgucci. "Rainfall estimation and ground clutter rejection with dual polarization weather radar". Advances in Geosciences 7 (16.02.2006): 127–30. http://dx.doi.org/10.5194/adgeo-7-127-2006.
Pełny tekst źródłaLakshmi, K. Jansi, i K. Surya Narayana Reddy. "Implementation of High Speed Self Switching Frequency Agile RADAR". International Journal of Reconfigurable and Embedded Systems (IJRES) 3, nr 1 (1.03.2013): 11. http://dx.doi.org/10.11591/ijres.v3.i1.pp11-17.
Pełny tekst źródłaCao, Yu Peng, Yang Zhang, Jun Luo, Fu Sheng Jian, Xi Guo Dai, Zhu Qun Zhai, Xiao Ying Ma i in. "Simulation Detection Power of Shore-Based Radar under the Influence of Sea Clutter". Advanced Materials Research 1049-1050 (październik 2014): 1200–1204. http://dx.doi.org/10.4028/www.scientific.net/amr.1049-1050.1200.
Pełny tekst źródłaMercuri, Marco, Paweł Barmuta, Ping Jack Soh, Paul Leroux i Dominique Schreurs. "Monostatic continuous-wave radar integrating a tunable wideband leakage canceler for indoor tagless localization". International Journal of Microwave and Wireless Technologies 9, nr 8 (22.05.2017): 1583–90. http://dx.doi.org/10.1017/s1759078717000551.
Pełny tekst źródła