Gotowa bibliografia na temat „Fractured chalk”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Fractured chalk”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Fractured chalk"
Gale, Julia F. W. "Specifying Lengths of Horizontal Wells in Fractured Reservoirs". SPE Reservoir Evaluation & Engineering 5, nr 03 (1.06.2002): 266–72. http://dx.doi.org/10.2118/78600-pa.
Pełny tekst źródłaCarpenter, Chris. "Extended Laterals and Hydraulic Fracturing Redevelop Tight Fractured Carbonates". Journal of Petroleum Technology 76, nr 07 (1.07.2024): 93–95. http://dx.doi.org/10.2118/0724-0093-jpt.
Pełny tekst źródłaBredal, Tine Vigdel, Reidar Inge Korsnes, Udo Zimmermann, Mona Wetrhus Minde i Merete Vadla Madland. "Water Weakening of Artificially Fractured Chalk, Fracture Modification and Mineral Precipitation during Water Injection—An Experimental Study". Energies 15, nr 10 (22.05.2022): 3817. http://dx.doi.org/10.3390/en15103817.
Pełny tekst źródłaBrettmann, K. L., K. Høgh Jensen i R. Jakobsen. "Tracer Test in Fractured Chalk". Hydrology Research 24, nr 4 (1.08.1993): 275–96. http://dx.doi.org/10.2166/nh.1993.0008.
Pełny tekst źródłaZuta, John, i Ingebret Fjelde. "Transport of CO2-Foaming Agents During CO2-Foam Processes in Fractured Chalk Rock". SPE Reservoir Evaluation & Engineering 13, nr 04 (5.08.2010): 710–19. http://dx.doi.org/10.2118/121253-pa.
Pełny tekst źródłaJakobsen, R., K. Høgh Jensen i K. L. Brettmann. "Tracer Test in Fractured Chalk". Hydrology Research 24, nr 4 (1.08.1993): 263–74. http://dx.doi.org/10.2166/nh.1993.0007.
Pełny tekst źródłaEide, Øyvind, Martin A. Fernø, Zachary Alcorn i Arne Graue. "Visualization of Carbon Dioxide Enhanced Oil Recovery by Diffusion in Fractured Chalk". SPE Journal 21, nr 01 (18.02.2016): 112–20. http://dx.doi.org/10.2118/170920-pa.
Pełny tekst źródłaAl-Shuhail, Abdullatif A. "Fracture-porosity inversion from P-wave AVOA data along 2D seismic lines: An example from the Austin Chalk of southeast Texas". GEOPHYSICS 72, nr 1 (styczeń 2007): B1—B7. http://dx.doi.org/10.1190/1.2399444.
Pełny tekst źródłaSayer, Zoë, Jonathan Edet, Rob Gooder i Alexandra Love. "The Machar Field, Block 23/26a, UK North Sea". Geological Society, London, Memoirs 52, nr 1 (2020): 523–36. http://dx.doi.org/10.1144/m52-2018-45.
Pełny tekst źródłaGraue, A., T. Bognø, B. A. Baldwin i E. A. Spinler. "Wettability Effects on Oil-Recovery Mechanisms in Fractured Reservoirs". SPE Reservoir Evaluation & Engineering 4, nr 06 (1.12.2001): 455–66. http://dx.doi.org/10.2118/74335-pa.
Pełny tekst źródłaRozprawy doktorskie na temat "Fractured chalk"
Matthews, Marcus Charles. "The mass compressibility of fractured chalk". Thesis, University of Surrey, 1993. http://epubs.surrey.ac.uk/773029/.
Pełny tekst źródłaPayne, Simon S. "Analysis of multi-component seismic data in fractured chalk". Thesis, University of Oxford, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.437033.
Pełny tekst źródłaChristoffersen, Kjell R. "High-pressure experiments with application to naturally fractured chalk reservoirs". Doctoral thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for petroleumsteknologi og anvendt geofysikk, 1992. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-5290.
Pełny tekst źródłaDarvish, Gholam Reza. "Physical Effects Controlling Mass Transfer in Matrix Fracture System during CO2 Injection Into Chalk Fractured Reservoirs". Doctoral thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for petroleumsteknologi og anvendt geofysikk, 2007. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-1736.
Pełny tekst źródłaDoran, Helen. "Diagenesis of a fractured chalk reservoir : Machar oilfield, Central North Sea". Thesis, University of Edinburgh, 2004. http://hdl.handle.net/1842/13691.
Pełny tekst źródłaMace, Robert Earl. "Ground-water flow and solute transport in a fractured chalk outcrop, North-Central Texas /". Digital version accessible at:, 1998. http://wwwlib.umi.com/cr/utexas/main.
Pełny tekst źródłaDarvish, Gholam Reza. "Physical Effects Controlling Mass Transfer in Matrix Fracture System during CO2 Injection Into Chalk Fractured Reservoirs". Doctoral thesis, Norwegian University of Science and Technology, Department of Petroleum Engineering and Applied Geophysics, 2007. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-1736.
Pełny tekst źródłaTertiary recovery or Improved Oil Recovery (IOR) methods are key processes to replace or upgrade reserves, which can be economically recovered, beyond conventional methods. Therefore, the application of IOR methods offers opportunities to increase the hydrocarbon reserves that have been produced in addition to those coming from exploration and reservoir appraisal.
The purpose of this thesis is to combine experiments, computations, and theory to make fundamental advances in our ability to predict transport phenomena as well as the IOR potential involved in tertiary CO2 injection at the lab scale in a matrix fracture system. This is done by using rock and fluid samples similar to one of the chalk fractured reservoirs in the North Sea.
The work involves a review of key physical mechanisms and calculation methods for the modelling of fluid flow in fractured reservoirs. The main matrix fracture fluid exchange mechanisms described are gravity drainage, capillary imbibition and molecular diffusion. Also described are the estimation of the recovery performance for a single block and a stack of blocks surrounded by gas. The effect of interfacial tension on the ultimate recovery has been discussed and the definition of the minimum miscibility pressure for single porosity and dual porosity system is described.
Numerical modelling of gravity drainage for a matrix blocks surrounded by gas has been described. Numerical estimation of gas-oil gravity drainage by reducing the number of grid blocks in vertical direction in a draining matrix column is common practice in order to reduce the simulation time. However this can lead to systematic numerical errors and consequently underestimation of the recovery.
In order to minimize the underestimation of the reservoir performance, a set of pseudo functions needs to be developed that not only satisfy the actual responses in the fine grid simulation but also reduce the simulation time. The effectiveness and the accuracy of such pseudo functions are extensively discussed and the different simulation models have been run to quantify the underestimation of recovery by coarse griding in the numerical modelling of gravity drainage.
The importance of the molecular diffusion to recover oil from a high fracture intensity system is described as well as the basic concept for calculating the molecular diffusion based on the Fick’s second law. Corresponding laboratory methods for the estimation and measurement of the oil and gas diffusion coefficients are reviewed. The effect of molecular diffusion on the interfacial tension and eventually on the gas-oil capillary pressure is presented.
A compositional study of a non-equilibrium gas injection process such as CO2 requires an equation of state (EOS) model which can predict the CO2/oil phase behaviour. In order to make such EOS model, a set of pVT experiments using fluids involved in the core flooding has been performed and finally the EOS models were tuned against experimental pVT data. The necessary steps to perform pVT experiments including making live reservoir oil, constant composition expansion, single flash, viscosity measurements and CO2-oil swelling are described.
Gas injection is known to have a significant potential for high ultimate recovery in many oil fractured reservoirs with tall matrix blocks. The high ultimate recovery in these reservoirs could be due to the effectiveness of the gravity drainage mechanism.
Fractured chalk reservoirs in the North Sea have a very high porosity (up to 45%), and low matrix permeability (3-4 mD) with small matrix block size. In order to quantify the dominant transport mechanisms and potential of Improved Oil Recovery (IOR) in the case of CO2 injection in the North Sea chalk fractured reservoirs, CO2 injection experiments at reservoir conditions have to be performed in the laboratory.
The feasibility of such laboratory experiments initially has been verified by performing compositional simulation. In these simulations by varying the experimental parameters, such as core height and fracture size, the optimum matrix and fracture geometry were designed and the summary of the task is presented in Paper 1- Appendix A.
CO2 injection experiments under reservoir conditions in the presence of different water saturation at reservoir conditions have been carried out. A unique technique has been developed for saturating the matrix system with reservoir fluids. This method ensures a homogeneous fluid composition within the pore system before the fracture system is initialized with the CO2.
A complete description of, rock and fluids, experimental procedure and experimental results is given in Chapters 3, 4 and Papers 2 and 3 in Appendices B, C. In order to investigate the effect of temperature on the oil recovery mechanism, CO2 injection experiments were carried out at initial reservoir temperature (130 ºC) and a low temperature 60 ºC which representing the water flooded parts in the reservoir. The effect of initial water saturation also was investigated at reservoir temperature 130 ºC by performing two experiments with different initial water saturation.
Results from these experiments show a high potential for oil recovery in all experiments. In the high temperature experiments, the produced oil had a variable composition during CO2 injection, while at the low temperature condition, the produced oil initially had a constant composition and then it started to change. Different behaviour of produced oil composition in the high and low temperature might be due to dominant of diffusion mechanism in the high temperature experiments.
In the low temperature (60 ºC) experiment, at the early stage of CO2 injection the produced oil had constant composition for a short period of time and then it changed to variable composition similar to the high temperature case. This behaviour maybe is due to high solubility of CO2 into oil and consequently more oil swelling than the high temperature condition.
In order to quantify the above mechanisms, several attempts have been done to history match the experiments by using compositional simulator. But in all cases, it was not possible to history match the experiments.
The weakness of the simulator was due to the improper formulation which was used for calculating the cross phase diffusion between the oil and gas phase in the matrix and fracture system. The details of simulation work as well as the cross phase diffusion issue are discussed in Chapter 5 and Paper 2 in Appendix B.
MacAllister, Donald John. "Monitoring seawater intrusion into the fractured UK Chalk aquifer using measurements of self-potential (SP)". Thesis, Imperial College London, 2016. http://hdl.handle.net/10044/1/33350.
Pełny tekst źródłaLaw, Ryan. "Geothermal systems in the Chalk of the south east of England : methods of predicting thermal transport in a fractured aquifer". Thesis, University of Birmingham, 2010. http://etheses.bham.ac.uk//id/eprint/981/.
Pełny tekst źródłaHawi, Hanan. "Μοdélisatiοn de transfert de matières dissοutes et particulaires dans un milieu fracturé". Electronic Thesis or Diss., Normandie, 2024. http://www.theses.fr/2024NORMLH09.
Pełny tekst źródłaIn order to face the emerging problems of pollution and deterioration in water quality, it is necessary to master the hydrogeological functioning of pollutant-receiving rocks. This involves, defining the vulnerability of aquifers and optimising the modelling of the retention phenomena and transport mechanism of particles in rocks. In karstic aquifers, fractures serve as preferential pathways for particles, thus allowing their rapid transport. The transport of particles and dissolved matter in fractures is governed by advection and dispersion which are influenced by several factors. The objective of this study is to contribute to a better understanding of the mechanisms of transport of solid particles and dissolved matter in fractures and the different factors influencing these mechanisms. For this purpose, an experimental program was developed to understand the influence of flow velocity, fracture aperture, fracture orientation and ionic strength on the transport of kaolinite particles and fluorescein dissolved tracer in fractured chalk samples. In addition, a numerical model was developed based on the Advection-Dispersion equation, to determine the transport parameters and deeply understand the particle-fracture surface interactions under different conditions. The results of this study revealed that the hydrodynamic effect is significant regardless of fracture orientation, with particle recovery increasing as flow velocity increases. Kaolinite particles travel faster than fluorescein due to the size exclusion effect and the higher dispersion coefficient of fluorescein. The attachment coefficient increases with flow velocity for all fracture orientations and is independent of fracture aperture. Conversely, the detachment coefficient, which is negligible for small flow velocities, is greater in smaller apertures due to higher shear stress. The findings showed that fracture orientation significantly affects the transport of kaolinite particles but has a negligible impact on fluorescein as a dissolved tracer. Increasing the fracture orientation vertically enhances particle recovery and dispersion, while the attachment coefficient decreases. The effect of ionic strength indicate that higher ionic strength increases particle retention and decreases the recovery rate. With the attachment coefficient exhibiting a linear increase and the detachment coefficient follows an exponential trend with increasing ionic strength.The study findings highlight the importance of considering high flow velocities in studying the hydrodynamic effect, fracture aperture, and IS effect in understanding micron-sized particle transport mechanisms in chalk fractures. It also contributes to the advancement of understanding the effect of fracture orientation on the transport of particles by using experimental methods. These understandings are essential for assessing risks to groundwater resources and advancing environmental protection measures
Książki na temat "Fractured chalk"
Welch, Michael John, i Mikael Lüthje, red. Geomechanical Controls on Fracture Development in Chalk and Marl in the Danish North Sea. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-35327-7.
Pełny tekst źródłaRevitalizing Gilbertown oil field: Characterization of fractured chalk and glauconitic sandstone reservoirs in an extensional fault system. Tuscaloosa, Ala: Geological Survey of Alabama, 2000.
Znajdź pełny tekst źródłaGeomechanical Controls on Fracture Development in Chalk and Marl in the Danish North Sea: Understanding and Predicting Fracture Systems. Springer International Publishing AG, 2023.
Znajdź pełny tekst źródłaCzęści książek na temat "Fractured chalk"
Tran, Emily, i Noam Weisbrod. "Colloid and Colloid-Facilitated Transport in Fractured Chalk". W Springer Hydrogeology, 469–72. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-51148-7_22.
Pełny tekst źródłaDahan, Ofer, Ronit Nativ, Eilon M. Adar i Brian Berkowitz. "Water Flow and Solute Transport in Unsaturated Fractured Chalk". W Flow and Transport through Unsaturated Fractured Rock, 183–96. Washington, D. C.: American Geophysical Union, 2013. http://dx.doi.org/10.1029/gm042p0183.
Pełny tekst źródłaArnon, Shai, Eilon Adar, Zeev Ronen, Alexander Yakirevich i Ronit Nativ. "The Effect of Microbial Activity on Biodegradation of 2,4,6-Tribromophenol and Flow in Naturally Fractured Chalk Cores". W Dynamics of Fluids and Transport in Fractured Rock, 195–207. Washington, D. C.: American Geophysical Union, 2013. http://dx.doi.org/10.1029/162gm18.
Pełny tekst źródłaGlad, Aslaug C., Michael John Welch, Simon John Oldfield, Hamid M. Nick, Thomas M. Jørgensen i Ole Rønø Clausen. "Geomechanical Modelling the Evolution of a Connected Natural Fracture Network to Explain Fluid Flow Variations Across a Fractured Chalk-Marl Reservoir". W Geomechanical Controls on Fracture Development in Chalk and Marl in the Danish North Sea, 215–43. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-35327-7_8.
Pełny tekst źródłaPennequin, Didier, Pierre-Yann David, Marie Servière, Nadia Amraoui i Chrytèle Loiselet. "Hydro-System Flow Modelling for Water Resources Management in the Fractured and Karstified Chalk Aquifer Environment of Eastern Normandy". W EuroKarst 2016, Neuchâtel, 217–29. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-45465-8_22.
Pełny tekst źródłaAgarwal, Bijan, i Scott C. Key. "Reservoir Characterization of the Ekofisk Field: A Giant, Fractured Chalk Reservoir in the Norwegian North Sea-Phase 1, Reservoir Description". W Geology of Fossil Fuels - Oil and Gas, 191–204. London: CRC Press, 2021. http://dx.doi.org/10.1201/9780429087837-19.
Pełny tekst źródłaLynggaard, Julie, i Christian F. Niordson. "Numerical Study on the Influence of Induced Hydraulic Fractures on Oil Production in a Line Drive". W Geomechanical Controls on Fracture Development in Chalk and Marl in the Danish North Sea, 245–67. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-35327-7_9.
Pełny tekst źródłaAabø, Tala Maria, Simon John Oldfield, Hemin Yuan, Janina Kammann, Erik Vest Sørensen, Lars Stemmerik i Lars Nielsen. "Establishing a High Resolution 3D Fracture Dataset in Chalk: Possibilities and Obstacles Working with Outcrop Data". W Geomechanical Controls on Fracture Development in Chalk and Marl in the Danish North Sea, 9–46. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-35327-7_2.
Pełny tekst źródłaClausen, Ole Rønø, Kenni Dinesen Petersen, Torsten Hundebøl Hansen i Katrine Juul Andresen. "Variations in the Porosity of the Chalk Group in the North Sea Basin Due to Subsidence Related Deformation". W Geomechanical Controls on Fracture Development in Chalk and Marl in the Danish North Sea, 121–39. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-35327-7_5.
Pełny tekst źródłaWelch, Michael John. "Using Geomechanical Models to Simulate the Growth of the Fracture Network in the Ekofisk Formation of the Kraka Structure, Danish Central Graben". W Geomechanical Controls on Fracture Development in Chalk and Marl in the Danish North Sea, 167–213. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-35327-7_7.
Pełny tekst źródłaStreszczenia konferencji na temat "Fractured chalk"
Verbiest, M., O. Faÿ-Gomord, C. Allanic, E. Lasseur, B. Gauthier i R. Swennen. "Mechanical stratigraphy of fractured chalks: evaluation of bias associated with fracture density through artificial fracture networks (AFN)". W Chalk 2018 Engineering in Chalk. ICE Publishing, 2018. http://dx.doi.org/10.1680/eiccf.64072.451.
Pełny tekst źródłaFjelde, I., i A. V. Omekeh. "Surfactant Flooding in Fractured Chalk Reservoir". W IOR+ 2023. European Association of Geoscientists & Engineers, 2023. http://dx.doi.org/10.3997/2214-4609.202331011.
Pełny tekst źródłaL. Davis, T. "3D Seismic fractured reservoir characterization, Silo Field, Wyoming". W EAPG/AAPG Special Conference on Chalk. European Association of Geoscientists & Engineers, 1994. http://dx.doi.org/10.3997/2214-4609.201407539.
Pełny tekst źródłaAustad, T., S. Strand, E. J. Høgnesen i P. Zhang. "Seawater as IOR Fluid in Fractured Chalk". W SPE International Symposium on Oilfield Chemistry. Society of Petroleum Engineers, 2005. http://dx.doi.org/10.2118/93000-ms.
Pełny tekst źródłaGutierrez, Marte, Lloyd Tunbridge, Harald Hansteen, Axel Makurat, Nick Barton i Geir Helge Landa. "Modelling of the compaction behaviour of fractured chalk". W Rock Mechanics in Petroleum Engineering. Society of Petroleum Engineers, 1994. http://dx.doi.org/10.2118/28130-ms.
Pełny tekst źródłaZuta, J., I. Fjelde i A. Maqsad. "CO2-Foam Processes in a Fractured Chalk Model". W IOR 2009 - 15th European Symposium on Improved Oil Recovery. European Association of Geoscientists & Engineers, 2009. http://dx.doi.org/10.3997/2214-4609.201404848.
Pełny tekst źródłaAlavian, Sayyed Ahmad, i Curtis Hays Whitson. "Modeling CO2 Injection in a Fractured Chalk Experiment". W SPE/EAGE Reservoir Characterization and Simulation Conference. Society of Petroleum Engineers, 2009. http://dx.doi.org/10.2118/125362-ms.
Pełny tekst źródłaAlavian, S. A., i C. H. Whitson. "Modeling CO2 Injection in a Fractured Chalk Experiment". W SPE/EAGE Reservoir Characterization & Simulation Conference. European Association of Geoscientists & Engineers, 2009. http://dx.doi.org/10.3997/2214-4609-pdb.170.spe125362.
Pełny tekst źródłaW. Teufel, L. "Influence of in situ stress on permeability of naturally fractured chalk reservoirs". W EAPG/AAPG Special Conference on Chalk. European Association of Geoscientists & Engineers, 1994. http://dx.doi.org/10.3997/2214-4609.201407537.
Pełny tekst źródłaB. Brahim, A., i R. T. J. Moody. "Chalks and chalk reservoirs of Tunisia with specific reference to the fractured reservoir of Sidi el Kilani". W EAPG/AAPG Special Conference on Chalk. European Association of Geoscientists & Engineers, 1994. http://dx.doi.org/10.3997/2214-4609.201407563.
Pełny tekst źródłaRaporty organizacyjne na temat "Fractured chalk"
Pashin, J. C., D. E. Raymond, A. K. Rindsberg, G. G. Alabi, R. E. Carroll, R. H. Groshong i G. Jin. Area balance and strain in an extensional fault system: Strategies for improved oil recovery in fractured chalk, Gilbertown Field, southwestern Alabama. Final report, March 1996--September 1998. Office of Scientific and Technical Information (OSTI), grudzień 1998. http://dx.doi.org/10.2172/307863.
Pełny tekst źródłaPashin, J. C., D. E. Raymond, A. K. Rindsberg, G. G. Alabi i R. H. Groshong. Area balance and strain in an extensional fault system: Strategies for improved oil recovery in fractured chalk, Gilbertown Field, southwestern Alabama. Annual report, March 1996--March 1997. Office of Scientific and Technical Information (OSTI), sierpień 1997. http://dx.doi.org/10.2172/520833.
Pełny tekst źródłaPashin, J. C., D. E. Raymond, A. K. Rindsberg, G. G. Alabi i R. E. Carroll. Area balance and strain in an extensional fault system: Strategies for improved oil recovery in fractured chalk, Gilbertown Field, southwestern Alabama -- Year 2. Annual report, March 1997--March 1998. Office of Scientific and Technical Information (OSTI), wrzesień 1998. http://dx.doi.org/10.2172/296687.
Pełny tekst źródłaWarpinski, N. R., i L. W. Teufel. Effective-stress-law behavior of Austin chalk rocks for deformation and fracture conductivity. Office of Scientific and Technical Information (OSTI), sierpień 1994. http://dx.doi.org/10.2172/10181952.
Pełny tekst źródła