Spis treści
Gotowa bibliografia na temat „Formes modulaires p-Adiques”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Formes modulaires p-Adiques”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Formes modulaires p-Adiques"
Pilloni, Vincent. "Formes modulaires p-adiques de Hilbert de poids 1". Inventiones mathematicae 208, nr 2 (9.11.2016): 633–76. http://dx.doi.org/10.1007/s00222-016-0697-x.
Pełny tekst źródłaBreuil, Christophe. "Une remarque sur les représentations locales $p$-adiques et les congruences entre formes modulaires de Hilbert". Bulletin de la Société mathématique de France 127, nr 3 (1999): 459–72. http://dx.doi.org/10.24033/bsmf.2357.
Pełny tekst źródłaRozprawy doktorskie na temat "Formes modulaires p-Adiques"
Dion, Cédric. "Fonction L p-adique d'une forme modulaire". Master's thesis, Université Laval, 2020. http://hdl.handle.net/20.500.11794/66328.
Pełny tekst źródłaDo, Anh Tuan. "Mesures p-adicques admissibles associées aux formes modulaires de Siegel de genre arbitraire". Thesis, Grenoble, 2014. http://www.theses.fr/2014GRENM009/document.
Pełny tekst źródłaDing, Yiwen. "Formes modulaires p-adiques sur les courbes de Shimura unitaires et compatibilité local-global". Thesis, Paris 11, 2015. http://www.theses.fr/2015PA112035/document.
Pełny tekst źródłaThe subject of this thesis is in the p-adic Langlands programme. Let L be a finite extension of \Q_p, \rho_L a 2-dimensional p-adic representation of the Galois group \Gal(\overline{\Q_p}/L) of L, if \rho_L is the restriction of a global modular Galois representation \rho (i.e. \rho appears in the étale cohomology of Shimura curves), one can associate to \rho an admissible Banach representation \widehat{\Pi}(\rho) of \GL_2(L) by using Emerton's completed cohomology theory. Locally, if \rho_L is crystalline (and sufficiently generic), following Breuil, one can associate to \rho_L a locally analytic representation \Pi(\rho_L) of \GL_2(L). In this thesis, we prove results on the compatibility of \widehat{\Pi}(\rho) and \Pi(\rho_L), called local-global compatibility, in the unitary Shimura curves case. By locally analytic representations theory (for \GL_2(L)), the problem of local-global compatibility can be reduced to the study of eigenvarieties X constructed from the completed H^1 of unitary Shimura curves. We prove results on local-global compatibility in non-critical case by using global triangulation theory. We also study the p-adic modular forms over unitary Shimura curves, from which we construct some closed rigid subspaces of X by Coleman-Mazur's method. We prove the existence of overconvergent companion forms (over unitary Shimura curves) by using p-adic comparison theorems, from which we deduce some results on local-global compatibility in critical case
Horte, Stéphane. "Zéros exceptionnels des fonctions L p-adiques de Rankin-Selberg". Thesis, Bordeaux, 2019. http://www.theses.fr/2019BORD0155/document.
Pełny tekst źródłaThe aim of this thesis is to study the extra zeros of the p-adic L functions of Rankin-Selberg. In other words, for a couple of modular forms we study the zeros of the p-adic function interpolating the Rankin-Selberg L function associated to this couple. When the function has a zero we express the value of the derivate in terms of the L invariant, p-adic and infinite periods and the principal term of the complex Rankin-Selberg function
Barrera, Salazar Daniel. "Cohomologie surconvergente des variétés modulaires de Hilbert et fonctions L p-adiques". Thesis, Lille 1, 2013. http://www.theses.fr/2013LIL10014/document.
Pełny tekst źródłaFor each cohomological cuspidal automorphic representation for GL(2,F) where F is a totally real number field, such that is of type (k, r) tand satisfies the condition of non critical slope we construct a p-adic distribution on the Galois group of the maximal abelian extension of F unramified outside p and 1. We prove that the distribution is admissible and interpolates the critical values of L-function of the automorphic representation. This construction is based on the study of the overconvergent cohomology of Hilbert modular varieties
Rodrigues, Jacinto Joaquín. "(ϕ,Γ)-modules de de Rham et fonctions L p-adiques". Thesis, Paris 6, 2016. http://www.theses.fr/2016PA066512.
Pełny tekst źródłaThis thesis studies the construction of p-adic L-functions associated to motives over Q and, in particular, to modular forms.In the first three chapters we generalize some constructions of Perrin-Riou in order to construct, for any p-adic de Rham representation V of the absolute Galois group G_Qp of Qp (or, more generally, any de Rham (ϕ,Γ)-module over the Robba ring) and any compatible system of global elements, a p-adic L-function. We show, by the use of some reciprocity laws proved by Perrin-Riou, Colmez, Cherbonnier-Colmez, Berger and Nakamura, that these functions interpolate interesting arithmetic values at locally algebraic characters.The last three chapters deal with the particular case of dimension 2. We show, inspired by some techniques of Nakamura and certain weight change techniques introduced by Colmez for the study of locally algebraic vectors in the p-adic Langlads correspondence for GL₂(Qp), that our p-adic L-function satisfies a functional equation. As an application of our functional equation, we fulfil the missing arguments in the work of Nakamura, providing a complete proof of Kato's local ε-conjecture for 2-dimensional representations. For the motive associated to a modular form, we use these results to interpret the interpolated values of the p-adic L-function in terms of special values of the complex L-function of the form
Betina, Adel. "Structure locale des variétés p-adiques de Hecke-Hilbert aux points classiques de poids 1". Thesis, Lille 1, 2016. http://www.theses.fr/2016LIL10036/document.
Pełny tekst źródłaWe show that the Eigenvariety attached to Hilbert modular forms over a totally real field F is smooth at the points corresponding to certain classical weight one theta series and we give a precise criterion for etaleness over the weight space at those points. In the case where the theta series has real multiplication, we construct a non-classical overconvergent generalised eigenform and compute its Fourier coefficient in terms of p-adic logarithms of algebraic numbers. When F = Q, we complete the work of Bellaïche-Dimitrov at the points where the Eigencurve is smooth but not etale over the weight space by giving a precise criterion for the ramication index to be 2. Our approach uses deformations and pseudo-deformations of Galois representations
Berger, Diego. "Stratification d'Ekedahl-Oort pour les modèles de Pappas-Rapoport des variétés de Shimura". Electronic Thesis or Diss., Institut polytechnique de Paris, 2024. https://theses.hal.science/tel-04746932.
Pełny tekst źródłaIn this thesis we study the geometry of the reduction of certain Shimuravarieties modulo a prime number p. More precisely, we consider the reductionmodulo p of the integer models of PEL-type Shimura varieties constructed byPappas and Rapoport. In the case of Hilbert-type PEL data, we show that thestratification induced by the Hodge polygon is a good stratification (the adherenceof a stratum is a disjoint union of strata). Next, we compute the G-orbits of thespecial fiber of the Pappas-Raporport local model in the Hilbert case, whereG is the group associated with the PEL datum. These orbits induce a goodstratification of the special fiber of the Shimura variety, which we call Kottwitz-Rapoport stratification (analogous to the Kottwitz-Rapoport stratification ofinteger Kottwitz models). In a recent work, Xu Shen and Yuqiang Zheng havedefined an Ekedahl-Oort stratification of integer Pappas-Rapoport models. Inthe Hilbert case we show that “the intersection” of their stratification with theKottwitz-Rapoport straitification is a good stratification.In the second part of this thesis, we focus on local models in the context ofp-adic Hodge theory. We define an integer-level embedding of Pappas-Rapoportlocal models into a certain affine Grassmannian of Beilinson-Drinfeld type, analogousto the embedding defined by Scholze and Weinstein for Kottwitz local models
Rosso, Giovanni. "Généralisation du théorème de Greenberg-Stevens au cas du carré symétrique d'une forme modulaire et application au groupe de Selmer". Thesis, Paris 13, 2014. http://www.theses.fr/2014PA132018/document.
Pełny tekst źródłaThis thesis is devoted to the study of certain cases of a conjecture of Greenberg and Benois on derivative of p-adic L-functions using the method of Greenberg and Stevens. We first prove this conjecture in the case of the symmetric square of a parallel weight 2 Hilbert modular form over a totally real field where p is inert and whose associated automorphic representation is Steinberg in p, assuming certain hypotheses on the conductor. This is a direct generalization of (unpublished) results of Greenberg and Tilouine. Subsequently, we deal with the symmetric square of a finite slope, elliptic, modular form wich is Steinberg at p. To construct the two-variable p-adic L-function, necessary to apply the method of Greenberg and Stevens, we have to appeal to the recently developped theory of nearly overconvergent forms of Urban. We further strengthen the above result, removing the assumption that the conductor of the form is even, using the construction of the p-adic L-function by Böcherer and Schmidt. In the final chapter we recall the definition and the calculation of the algebraic ℒ-invariant à la Greenberg-Benois, and explain how some of the above-mentioned results could generalized to higher genus Siegel modular forms
Jory, Fabienne. "Familles de symboles modulaires et fonctions L p-adiques". Université Joseph Fourier (Grenoble), 1998. http://www.theses.fr/1998GRE10254.
Pełny tekst źródłaCzęści książek na temat "Formes modulaires p-Adiques"
Serre, Jean-Pierre. "Formes modulaires et fonctions zêta p-adiques". W Oeuvres - Collected Papers III, 95–172. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-39816-2_97.
Pełny tekst źródłaColmez, Pierre. "Zéros supplémentaires de fonctions L p-adiques de formes modulaires". W Algebra and Number Theory, 193–210. Gurgaon: Hindustan Book Agency, 2005. http://dx.doi.org/10.1007/978-93-86279-23-1_13.
Pełny tekst źródła