Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Formation de liaisons C-S.

Artykuły w czasopismach na temat „Formation de liaisons C-S”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Formation de liaisons C-S”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Top, Siden, i Gérard Jaouen. "Formation de liaison CC par couplage réducteur d'ions carbéniums arène chrome tricarbonyle". Journal of Organometallic Chemistry 336, nr 1-2 (grudzień 1987): 143–51. http://dx.doi.org/10.1016/0022-328x(87)87164-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Hiemstra, Henk, Floris P. Rutjes, Sape S. Kinderman, Jan H. van Maarseveen i Hans E. Schoemaker. "C-C Bond Formation viaN-Phosphoryliminium Ions". Synthesis 2004, nr 09 (2004): 1413–18. http://dx.doi.org/10.1055/s-2004-822376.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Peng, Kang, Hui Zhu, Xing Liu, Han-Ying Peng, Jin-Quan Chen i Zhi-Bing Dong. "Chemoselective C-S/S-S Formation between Diaryl Disulfides and Tetraalkylthiuram Disulfides". European Journal of Organic Chemistry 2019, nr 47 (27.11.2019): 7629–34. http://dx.doi.org/10.1002/ejoc.201901401.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Markó, István E., J. Mike Southern i M. Lakshmi Kantam. "Stoichiometric C-C Bond Formation Using Triorganothallium Reagents". Synlett 1991, nr 04 (1991): 235–37. http://dx.doi.org/10.1055/s-1991-20690.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Wang, Haibo, Lu Wang, Jinsai Shang, Xing Li, Haoyuan Wang, Jie Gui i Aiwen Lei. "Fe-catalysed oxidative C–H functionalization/C–S bond formation". Chem. Commun. 48, nr 1 (2012): 76–78. http://dx.doi.org/10.1039/c1cc16184a.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Sharma, Upendra, Ritika Sharma, Rakesh Kumar, Inder Kumar i Bikram Singh. "Selective C–Si Bond Formation through C–H Functionalization". Synthesis 47, nr 16 (9.07.2015): 2347–66. http://dx.doi.org/10.1055/s-0034-1380435.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Zhang, Honghua, Huihong Wang, Yi Jiang, Fei Cao, Weiwei Gao, Longqing Zhu, Yuhang Yang i in. "Recent Advances in Iodine‐Promoted C−S/N−S Bonds Formation". Chemistry – A European Journal 26, nr 72 (5.10.2020): 17289–317. http://dx.doi.org/10.1002/chem.202001414.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Sun, Fengli, Xuemin Liu, Xinzhi Chen, Chao Qian i Xin Ge. "Progress in the Formation of C-S Bond". Chinese Journal of Organic Chemistry 37, nr 9 (2017): 2211. http://dx.doi.org/10.6023/cjoc201703038.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Jean, Mickaël, Jacques Renault, Pierre van de Weghe i Naoki Asao. "Gold-catalyzed C–S bond formation from thiols". Tetrahedron Letters 51, nr 2 (styczeń 2010): 378–81. http://dx.doi.org/10.1016/j.tetlet.2009.11.025.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Choudhuri, Khokan, Milan Pramanik i Prasenjit Mal. "Noncovalent Interactions in C–S Bond Formation Reactions". Journal of Organic Chemistry 85, nr 19 (25.08.2020): 11997–2011. http://dx.doi.org/10.1021/acs.joc.0c01534.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Aitken, R. Alan, Clémence Hauduc, M. Selim Hossain, Emily McHale, Adrian L. Schwan, Alexandra M. Z. Slawin i Colin A. Stewart. "Unexpected Pyrolytic Behaviour of Substituted Benzo[c]thiopyran and Thieno[2,3-c]thiopyran S,S-dioxides". Australian Journal of Chemistry 67, nr 9 (2014): 1288. http://dx.doi.org/10.1071/ch14155.

Pełny tekst źródła
Streszczenie:
Flash vacuum pyrolysis (FVP) of benzo[c]thiopyran S,S-dioxide (1) results in formation of indene and 2-vinylbenzaldehyde as previously described. A range of eight analogues with various substitution patterns are found to behave differently. In general, there is no extrusion of SO2 to give products analogous to indene, but unsaturated carbonyl products analogous to 2-vinylbenzaldehyde are formed in most cases by way of ring expansion to a 7-membered ring sultine, extrusion of SO, and intramolecular hydrogen atom transfer. Other processes observed include formation of anthracene via an isomeric 7-membered sultine with loss of SO, CO and methane or butane, and formation of 4-ethylidene-4,5-dihydrocyclobuta[b]thiophenes by way of SO loss, a radical rearrangement, and extrusion of acetone. The analogues with a halogen substituent at position 8 on the benzene ring require a higher temperature to react and give naphthalene resulting from net elimination of HX and SO2. The X-ray crystal structure of 1 is also reported.
Style APA, Harvard, Vancouver, ISO itp.
12

Shi, Z., S. Yang, B. Li i X. Wan. "C-H Functionalization via C-H Activation and C-C Bond Formation with Arylsilanes". Synfacts 2007, nr 7 (lipiec 2007): 0751. http://dx.doi.org/10.1055/s-2007-968643.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Song, Chunlan, Kun Liu, Xin Dong, Chien-Wei Chiang i Aiwen Lei. "Recent Advances in Electrochemical Oxidative Cross-Coupling for the Construction of C–S Bonds". Synlett 30, nr 10 (15.04.2019): 1149–63. http://dx.doi.org/10.1055/s-0037-1611753.

Pełny tekst źródła
Streszczenie:
With the importance of sulfur-containing organic molecules, developing methodologies toward C–S bond formation is a long-standing goal, and, to date, considerable progress has been made in this area. Recent electrochemical oxidative cross-coupling reactions for C–S bond formation allow the synthesis of sulfur-containing molecules from more effective synthetic routes with high atom economy under mild conditions. In this review, we highlight the vital progress in this novel research arena with an emphasis on the synthetic and mechanistic aspects of the organic electrochemistry reactions.1 Introduction2 Electrochemical Oxidative Sulfonylation for the Formation of C–S Bonds2.1 Applications of Sulfinic Acid Derivatives for the Formation of C–S Bonds2.2 Applications of Sulfonylhydrazide Derivatives for the Formation of C–S Bonds3 Electrochemical Oxidative Thiolation for the Formation of C–S Bonds3.1 Applications of Disulfide Derivatives for the Formation of C–S Bonds3.2 Applications of Thiophenol Derivatives for the Formation of C–S Bonds4 Electrochemical Oxidative Thiocyanation for the Formation of C–S Bonds5 Electrochemical Oxidative Cyclization for the Formation of C–S Bonds6 Conclusion
Style APA, Harvard, Vancouver, ISO itp.
14

Kaur, Navjeet. "Cobalt-catalyzed C–N, C–O, C–S bond formation: synthesis of heterocycles". Journal of the Iranian Chemical Society 16, nr 12 (6.07.2019): 2525–53. http://dx.doi.org/10.1007/s13738-019-01731-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Mejía, Esteban, i Ahmad A. Almasalma. "Recent Advances on Copper-Catalyzed C–C Bond Formation via C–H Functionalization". Synthesis 52, nr 18 (19.05.2020): 2613–22. http://dx.doi.org/10.1055/s-0040-1707815.

Pełny tekst źródła
Streszczenie:
Reactions that form C–C bonds are at the heart of many important transformations, both in industry and in academia. From the myriad of catalytic approaches to achieve such transformations, those relying on C–H functionalization are gaining increasing interest due to their inherent sustainable nature. In this short review, we showcase the most recent advances in the field of C–C bond formation via C–H functionalization, but focusing only on those methodologies relying on copper catalysts. This coinage metal has gained increased popularity in recent years, not only because it is cheaper and more abundant than precious metals, but also thanks to its rich and versatile chemistry.1 Introduction2 Cross-Dehydrogenative Coupling under Thermal Conditions2.1 C(sp3)–C(sp3) Bond Formation2.2 C(sp3)–C(sp2) Bond Formation2.3 C(sp2)–C(sp2) Bond Formation2.4 C(sp3)–C(sp) Bond Formation3 Cross-Dehydrogenative Coupling under Photochemical Conditions3.1 C(sp3)–C(sp3) Bond Formation3.2 C(sp3)–C(sp2) and C(sp3)–C(sp) Bond Formation4 Conclusion and Perspective
Style APA, Harvard, Vancouver, ISO itp.
16

Bhunia, Subhajit, Govind Goroba Pawar, S. Vijay Kumar, Yongwen Jiang i Dawei Ma. "Selected Copper-Based Reactions for C−N, C−O, C−S, and C−C Bond Formation". Angewandte Chemie International Edition 56, nr 51 (15.11.2017): 16136–79. http://dx.doi.org/10.1002/anie.201701690.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Mitrofanov, Alexander Yu, Arina V. Murashkina, Iris Martín-García, Francisco Alonso i Irina P. Beletskaya. "Formation of C–C, C–S and C–N bonds catalysed by supported copper nanoparticles". Catalysis Science & Technology 7, nr 19 (2017): 4401–12. http://dx.doi.org/10.1039/c7cy01343d.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Zhao, Binlin, Torben Rogge, Lutz Ackermann i Zhuangzhi Shi. "Metal-catalysed C–Het (F, O, S, N) and C–C bond arylation". Chemical Society Reviews 50, nr 16 (2021): 8903–53. http://dx.doi.org/10.1039/c9cs00571d.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Wang, G. W., T. T. Yuan i D. D. Li. "Palladium-Catalyzed One-Pot C-C and C-N Bond Formation by Dual C-H Activation". Synfacts 2011, nr 07 (17.06.2011): 0808. http://dx.doi.org/10.1055/s-0030-1260671.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Broniowska, Katarzyna A., Agnes Keszler, Swati Basu, Daniel B. Kim-Shapiro i Neil Hogg. "Cytochrome c-mediated formation of S-nitrosothiol in cells". Biochemical Journal 442, nr 1 (27.01.2012): 191–97. http://dx.doi.org/10.1042/bj20111294.

Pełny tekst źródła
Streszczenie:
S-nitrosothiols are products of nitric oxide (NO) metabolism that have been implicated in a plethora of signalling processes. However, mechanisms of S-nitrosothiol formation in biological systems are uncertain, and no efficient protein-mediated process has been identified. Recently, we observed that ferric cytochrome c can promote S-nitrosoglutathione formation from NO and glutathione by acting as an electron acceptor under anaerobic conditions. In the present study, we show that this mechanism is also robust under oxygenated conditions, that cytochrome c can promote protein S-nitrosation via a transnitrosation reaction and that cell lysate depleted of cytochrome c exhibits a lower capacity to synthesize S-nitrosothiols. Importantly, we also demonstrate that this mechanism is functional in living cells. Lower S-nitrosothiol synthesis activity, from donor and nitric oxide synthase-generated NO, was found in cytochrome c-deficient mouse embryonic cells as compared with wild-type controls. Taken together, these data point to cytochrome c as a biological mediator of protein S-nitrosation in cells. This is the most efficient and concerted mechanism of S-nitrosothiol formation reported so far.
Style APA, Harvard, Vancouver, ISO itp.
21

Jung, K., K. Yoo i C. Yoon. "Highly Efficient Pd-Catalyzed Oxidative sp2-sp2 C-C Bond Formation". Synfacts 2007, nr 3 (marzec 2007): 0301. http://dx.doi.org/10.1055/s-2007-968179.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Basak, Amit, Sayantan Mondal, Tapobrata Mitra, Raja Mukherjee i Partha Addy. "Garratt–Braverman Cyclization, a Powerful Tool for C–C Bond Formation". Synlett 23, nr 18 (19.10.2012): 2582–602. http://dx.doi.org/10.1055/s-0032-1317321.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Yoshikai, Naohiko. "Recent Advances in Enantioselective C–C Bond Formation via Organocobalt Species". Synthesis 51, nr 01 (3.12.2018): 135–45. http://dx.doi.org/10.1055/s-0037-1610397.

Pełny tekst źródła
Streszczenie:
This Short Review describes recent developments in cobalt-catalyzed enantioselective C–C bond-forming reactions. The article focuses on reactions that most likely involve chiral organocobalt species as crucial catalytic intermediates and their mechanistic aspects.1 Introduction2 Hydrovinylation3 C–H Functionalization4 Cycloaddition and Cyclization5 Addition of Carbon Nucleophiles6 Cross-Coupling7 Conclusion
Style APA, Harvard, Vancouver, ISO itp.
24

Wang, Congyang. "Manganese-Mediated C-C Bond Formation via C-H Activation: From Stoichiometry to Catalysis". Synlett 24, nr 13 (11.07.2013): 1606–13. http://dx.doi.org/10.1055/s-0033-1339299.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Modha, Sachin G., Vaibhav P. Mehta i Erik V. Van der Eycken. "Transition metal-catalyzed C–C bond formation via C–S bond cleavage: an overview". Chemical Society Reviews 42, nr 12 (2013): 5042. http://dx.doi.org/10.1039/c3cs60041f.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Wang, Haibo, Lu Wang, Jinsai Shang, Xing Li, Haoyuan Wang, Jie Gui i Aiwen Lei. "ChemInform Abstract: Fe-Catalyzed Oxidative C-H Functionalization/C-S Bond Formation." ChemInform 43, nr 16 (22.03.2012): no. http://dx.doi.org/10.1002/chin.201216130.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Ngo, Thi-Thuy-Duong, Thi-Huong Nguyen, Chloée Bournaud, Régis Guillot, Martial Toffano i Giang Vo-Thanh. "Phosphine-Thiourea-Organocatalyzed Asymmetric C−N and C−S Bond Formation Reactions". Asian Journal of Organic Chemistry 5, nr 7 (30.05.2016): 895–99. http://dx.doi.org/10.1002/ajoc.201600212.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Borpatra, Paran J., Bhaskar Deka, Mohit L. Deb i Pranjal K. Baruah. "Recent advances in intramolecular C–O/C–N/C–S bond formation via C–H functionalization". Organic Chemistry Frontiers 6, nr 20 (2019): 3445–89. http://dx.doi.org/10.1039/c9qo00863b.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Yeung, Ying-Yeung, i Jonathan Wong. "Recent Advances in C–Br Bond Formation". Synlett 32, nr 13 (16.04.2021): 1354–64. http://dx.doi.org/10.1055/s-0037-1610772.

Pełny tekst źródła
Streszczenie:
AbstractOrganobromine compounds are extremely useful in organic synthesis. In this perspective, a focused discussion on some recent advancements in C–Br bond-forming reactions is presented.1 Introduction2 Selected Recent Advances2.1 Catalytic Asymmetric Bromopolycyclization of Olefinic Substrates2.2 Catalytic Asymmetric Intermolecular Bromination2.3 Some New Catalysts and Reagents for Bromination2.4 Catalytic Site-Selective Bromination of Aromatic Compounds2.5 sp3 C–H Bromination via Atom Transfer/Cross-Coupling3 Outlook
Style APA, Harvard, Vancouver, ISO itp.
30

Sundaravelu, Nallappan, Subramani Sangeetha i Govindasamy Sekar. "Metal-catalyzed C–S bond formation using sulfur surrogates". Organic & Biomolecular Chemistry 19, nr 7 (2021): 1459–82. http://dx.doi.org/10.1039/d0ob02320e.

Pełny tekst źródła
Streszczenie:
This review presents the metal-catalyzed C–S bond-formation reaction to access organosulfur compounds using various sulfur surrogates with an extended discussion on the reaction mechanism, regioselectivity of product and pharmaceutical application.
Style APA, Harvard, Vancouver, ISO itp.
31

Prabhu, Achutha, Jorge S. Dolado, Eddie A. B. Koenders, Rafael Zarzuela, María J. Mosquera, Ines Garcia-Lodeiro i María Teresa Blanco-Varela. "A patchy particle model for C-S-H formation". Cement and Concrete Research 152 (luty 2022): 106658. http://dx.doi.org/10.1016/j.cemconres.2021.106658.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Huang, Zhiliang, Dongchao Zhang, Xiaotian Qi, Zhiyuan Yan, Mengfan Wang, Haiming Yan i Aiwen Lei. "Radical–Radical Cross-Coupling for C–S Bond Formation". Organic Letters 18, nr 10 (6.05.2016): 2351–54. http://dx.doi.org/10.1021/acs.orglett.6b00764.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Suzuki, Kazutaka, Tadahiro Nishikawa i Suketoshi Ito. "Formation and carbonation of C-S-H in water". Cement and Concrete Research 15, nr 2 (marzec 1985): 213–24. http://dx.doi.org/10.1016/0008-8846(85)90032-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Broniowska, Katarzyna A., Agnes Keszler, Swati Basu, Daniel B. Kim-Shapiro i Neil Hogg. "Cytochrome C-Mediated Formation of S-Nitrosothiol in Cells". Free Radical Biology and Medicine 51 (listopad 2011): S156. http://dx.doi.org/10.1016/j.freeradbiomed.2011.10.208.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Li, Jianxiao, Shaorong Yang, Wanqing Wu i Huanfeng Jiang. "Recent developments in palladium-catalyzed C–S bond formation". Organic Chemistry Frontiers 7, nr 11 (2020): 1395–417. http://dx.doi.org/10.1039/d0qo00377h.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Bahekar, Sushilkumar S., Aniket P. Sarkate, Vijay M. Wadhai, Pravin S. Wakte i Devanand B. Shinde. "CuI catalyzed C S bond formation by using nitroarenes". Catalysis Communications 41 (listopad 2013): 123–25. http://dx.doi.org/10.1016/j.catcom.2013.07.019.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Manzano, H., A. Ayuela i J. S. Dolado. "On the formation of cementitious C–S–H nanoparticles". Journal of Computer-Aided Materials Design 14, nr 1 (23.01.2007): 45–51. http://dx.doi.org/10.1007/s10820-006-9030-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Xu, Yulong, Xiaonan Shi i Lipeng Wu. "tBuOK-triggered bond formation reactions". RSC Advances 9, nr 41 (2019): 24025–29. http://dx.doi.org/10.1039/c9ra04242c.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Peng, Kang, Ming-Yuan Gao, Yu-Yan Yi, Jia Guo i Zhi-Bing Dong. "Copper/Nickel-Catalyzed Selective C-S/S-S Bond Formation Starting from O -Alkyl Phenylcarbamothioates". European Journal of Organic Chemistry 2020, nr 11 (11.03.2020): 1665–72. http://dx.doi.org/10.1002/ejoc.201901884.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Xu, Jian, Fan Zhang, Shifan Zhang, Li Zhang, Xiaoxia Yu, Jianxiang Yan i Qiuling Song. "Radical Promoted C(sp2)–S Formation and C(sp3)–S Bond Cleavage: Access to 2-Substituted Thiochromones". Organic Letters 21, nr 4 (28.01.2019): 1112–15. http://dx.doi.org/10.1021/acs.orglett.9b00023.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Zhang, Ning, Lingling Miao, Yu Yang, Guohang Duan, Linlin Shi, Xin‐Qi Hao, Mao‐Ping Song, Yan Xu i Xinju Zhu. "Assembly of Highly Functionalized Allylic Sulfones via a Stereoselective Pd‐Catalyzed Sequential C−C/C−S Cleavage and C−S Formation Process". ChemistrySelect 6, nr 19 (17.05.2021): 4736–40. http://dx.doi.org/10.1002/slct.202101190.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Gao, Jian, Jie Feng i Ding Du. "Shining Light on C−S Bonds: Recent Advances in C−C Bond Formation Reactions via C−S Bond Cleavage under Photoredox Catalysis". Chemistry – An Asian Journal 15, nr 22 (14.10.2020): 3637–59. http://dx.doi.org/10.1002/asia.202000905.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Núñez, Oswaldo, José Rodríguez i Larry Angulo. "Kinetic study of the formation and rupture of stable tetrahedral intermediates. CO, CN and CS bond formation". Journal of Physical Organic Chemistry 7, nr 2 (luty 1994): 80–89. http://dx.doi.org/10.1002/poc.610070205.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Amekura, H., K. Narumi, A. Chiba, Y. Hirano, K. Yamada, S. Yamamoto, N. Ishikawa, N. Okubo, M. Toulemonde i Y. Saitoh. "Mechanism of ion track formation in silicon by much lower energy deposition than the formation threshold". Physica Scripta 98, nr 4 (6.03.2023): 045701. http://dx.doi.org/10.1088/1402-4896/acbbf5.

Pełny tekst źródła
Streszczenie:
Abstract Mechanism of the ion track formation in crystalline silicon (c-Si) is discussed, particularly under 1–9 MeV C60 ion irradiation. In this energy region, the track formation was not expected because the energy E was much lower than the threshold of E th = 17 MeV determined by extrapolation from higher energy data in the past literature. The track formation is different between irradiations of C60 ions and of monoatomic ions: The tracks were observed under 3 MeV C60 ion irradiation but not under 200 MeV Xe ions, while both the irradiations have the same electronic stopping (S e) of 14 keV nm−1 but much higher nuclear stopping (S n) for the former ions. The involvement of S n is suggested for the C60 ions. While the inelastic thermal spike (i-TS) calculations predict that the high energy monoatomic ion irradiation forms the tracks, the tracks have never been experimentally detected, suggesting quick annihilation of the tracks by highly enhanced recrystallization in c-Si. Exceptions are C60 ions of 1–9 MeV, where the track radii are well reproduced by the i-TS theory with assuming the melting transition. Collisional damage induced by the high S n from C60 ions obstructs the recrystallization in c-Si. Then the tracks formed by the melting transition survive against the recrystallization. This is a new type of the synergy effect between S e and S n, different from the already-known mechanisms, i.e., the pre-damage effect and the unified thermal spike. While c-Si was believed as a radiation-hard material in the S e regime with high S e threshold, this study suggests that c-Si has a low S e threshold but with efficient recrystallization.
Style APA, Harvard, Vancouver, ISO itp.
45

Hesse, Stéphanie, i Gilbert Kirsch. "Palladium-Catalyzed C-C Bond Formation from β-Chloroacroleins in Aqueous Media". Synthesis 2001, nr 05 (2001): 0755–58. http://dx.doi.org/10.1055/s-2001-12775.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Macabeo, Allan. "Synthetic Uses of Chlorotitanium(IV) Triisopropoxide in C-C(N) Bond Formation". Synlett 2008, nr 20 (24.11.2008): 3247–48. http://dx.doi.org/10.1055/s-0028-1083139.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Sieber, Joshua D., i Toolika Agrawal. "Recent Developments in C–C Bond Formation Using Catalytic Reductive Coupling Strategies". Synthesis 52, nr 18 (25.05.2020): 2623–38. http://dx.doi.org/10.1055/s-0040-1707128.

Pełny tekst źródła
Streszczenie:
Metal-catalyzed reductive coupling processes have emerged as a powerful methodology for the introduction of molecular complexity from simple starting materials. These methods allow for an orthogonal approach to that of redox-neutral strategies for the formation of C–C bonds by enabling cross-coupling of starting materials not applicable to redox-neutral chemistry. This short review summarizes the most recent developments in the area of metal-catalyzed reductive coupling utilizing catalyst turnover by a stoichiometric reductant that becomes incorporated in the final product.1 Introduction2 Ni Catalysis3 Cu Catalysis4 Ru, Rh, and Ir Catalysis4.1 Alkenes4.2 1,3-Dienes4.3 Allenes4.4 Alkynes4.5 Enynes5 Fe, Co, and Mn Catalysis6 Conclusion and Outlook
Style APA, Harvard, Vancouver, ISO itp.
48

Haag, Rainer, Dietmar Kuck, Xiao-Yong Fu, James M. Cook i Armin de Meijere. "Facile Formation of Dihydroacepentalenediide fromcentro-Substituted Tribenzotriquinacenes with C-C Bond Cleavage". Synlett 1994, nr 05 (1994): 340–42. http://dx.doi.org/10.1055/s-1994-22846.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Kobayashi, S., U. Schneider i H. Dao. "Indium(I)-Catalyzed C-C Bond Formation between Allyl Boronates and Acetals". Synfacts 2010, nr 09 (23.08.2010): 1055. http://dx.doi.org/10.1055/s-0030-1257900.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Flood, Dillon T., Xuejing Zhang, Xiang Fu, Zhenxiang Zhao, Shota Asai, Brittany B. Sanchez, Emily J. Sturgell i in. "RASS‐Enabled S/P−C and S−N Bond Formation for DEL Synthesis". Angewandte Chemie 132, nr 19 (11.03.2020): 7447–53. http://dx.doi.org/10.1002/ange.201915493.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii