Artykuły w czasopismach na temat „Formation de liaisons C-N”

Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Formation de liaisons C-N.

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Formation de liaisons C-N”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Raczyńska, Ewa D., Christian Laurence i Michel Berthelot. "Basicité de liaison hydrogène de formamidines substituées sur l'azote imino". Canadian Journal of Chemistry 70, nr 8 (1.08.1992): 2203–8. http://dx.doi.org/10.1139/v92-276.

Pełny tekst źródła
Streszczenie:
The basicity of the hydrogen bonds of formamidines 1–19 was measured by means of the formation constant KHB of their complexes with p-fluorophenol and the frequency shift Δν(OH) of methanol hydrogen-bonded to 1–19. The study of the ν(C=N) band shows that hydrogen bonding takes place with the imino nitrogen atom. On the hydrogen-bonding basicity scale, the formamidines appear to be more basic than the corresponding amides and pyridines, and as basic as the imidazoles. The field effect of electron-withdrawing substituents and the steric effect of bulky alkyl groups on the imino nitrogen atom markedly decrease the hydrogen-bonding basicity.
Style APA, Harvard, Vancouver, ISO itp.
2

Allemane, H., M. Prados-Ramirez, J. P. Croué i B. Legube. "Recherche et identification des premiers sous-produits d'oxydation de l'isoproturon par le système ozone/peroxyde d'hydrogène". Revue des sciences de l'eau 8, nr 3 (12.04.2005): 315–31. http://dx.doi.org/10.7202/705226ar.

Pełny tekst źródła
Streszczenie:
Une solution aqueuse tamponnée par des phosphates (pH initial - 8) dopée en isoproturon (N- (isopropyl-4-phényl)-N-N'-diméthylurée) (~ 20 mg 1-1), a été oxydée par le système perozone, combinant l'ozone et le peroxyde d'hydrogène dans un rapport molaire de 0,5 à 0,6 moles de H2O2 par mole d'ozone. Les disparitions du composé parent, du carbone organique total (COT), du carbone total (CT) et de la consommation d'ozone, ont été suivies au cours de l'oxydation. Les premiers sous-produits d'oxydation, ceux susceptibles de conserver une formulation moléculaire proche de celle du composé initial, et par conséquent de posséder encore une activité toxique, ont été isolés et caractérisés par chromatographie gazeuse couplée à la spectrométrie de masse. Il a été trouvé que l'isoproturon requiert un taux d'oxydation molaire de 10 moles d'ozone par mole d'isoproturon introduit, pour obtenir une élimination complète de cet herbicide. En revanche, le COT n'est pratiquement pas minéralisé, même avec de très forts taux d'ozone, ce qui indique la présence dans le milieu de sous-produits rémanents. La plupart des premiers sous-produits d'oxydation détectés conservent le cycle aromatique dans leur structure, et au moins un atome d'azote, et sont présents à des concentrations significatives. Ces composés semblent aussi réactifs que l'isoproturon vis-à-vis de la perozonation puisqu'ils disparaissent lorsqu'on prolonge l'oxydation. De plus, l'identification de ces sous-produits laisse supposer que l'attaque des radicaux hydroxyles générés par le procédé perozone, entraîne la rupture d'une liaison C-N ou d'une liaison C-H, conduisant à la formation de composés oxygénés.
Style APA, Harvard, Vancouver, ISO itp.
3

Derdour, Aïcha, i Fernand Texier. "Étude cinétique de l'ouverture thermique de la liaison C—C d'aziridines et d'époxydes dipôles-1,3 potentiels: I. Méthode d'étude expérimentale". Canadian Journal of Chemistry 63, nr 8 (1.08.1985): 2245–52. http://dx.doi.org/10.1139/v85-370.

Pełny tekst źródła
Streszczenie:
The thermolysis of the 2-cyanoaziridines (1), 2-alkoxycarbonylaziridines (2), 2-arylaziridines (3), and 2,2-dicyano-3-aryloxiranes (4) leads to a rupture of the carbon –carbon bond yielding an azomethine ylide and the ylide of a carbonyl. The reaction of these ylides of azomethine with methyl acetylene dicarboxylate (MADC) leads to the formation of a 3-pyroline, which is transformed, according to the substituants, to a 2-pyrroline or to pyrrole. The addition of the ylides of carbonyl leads to the formation of dihydrofurans. Through the kinetic treatment of the addition of these heterocyclic compounds (1 to 4) to MADC, it is possible to determine the rate constants for the opening of the C—C bond (k1). In the case of the aziridines 1, the rates have been determined by ir while hplc has been used in the other cases. Relative to the heterocyclic compounds, the order of the experimental rate constants (kex) is always equal to one. In the cases of theN-cyclohexyl-2-cyano-3-alkylaziridines and of the N-cyclohexyl-2-carbomethoxy-3-phenylaziridine, kex varies with the concentration of MADC and this implies that the rate constants for the cycloaddition of the ylide of azomethine and its reclosing to give aziridine are similar. In the other cases, kex is independent of the concentration of MADC and this implies that the heterocyclic compounds are slowly transformed into 1,3-dipoles, followed by a rapid cycloaddition, [Formula: see text]. [Journal translation]
Style APA, Harvard, Vancouver, ISO itp.
4

Top, Siden, i Gérard Jaouen. "Formation de liaison CC par couplage réducteur d'ions carbéniums arène chrome tricarbonyle". Journal of Organometallic Chemistry 336, nr 1-2 (grudzień 1987): 143–51. http://dx.doi.org/10.1016/0022-328x(87)87164-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Andersen, Heidi Gade, David Kvaskoff i Curt Wentrup. "Bisiminopropadienes R-N=C=C=C=N-R from Pyridopyrimidines". Australian Journal of Chemistry 65, nr 6 (2012): 686. http://dx.doi.org/10.1071/ch12039.

Pełny tekst źródła
Streszczenie:
Chlorination of the N,N′-di(2-pyridyl)malonamide 13a affords 2-chloro-8-methyl-4-(2-(4-picolinyl)imino-4H-pyrido[1,2-a]pyrimidine 17a. Flash vacuum thermolysis of 17a causes efficient ring opening to the valence-tautomeric ketenimine 18a/19a, elimination of HCl, and formation of the bis(4-methyl-2-pyridyl)iminopropadiene, R-N=C=C=C=N-R 20a.
Style APA, Harvard, Vancouver, ISO itp.
6

Ghorai, Sujit K., Vijaya G. Gopalsamuthiram, Anup M. Jawalekar, Rupesh E. Patre i Sitaram Pal. "Iron catalyzed C N bond formation". Tetrahedron 73, nr 14 (kwiecień 2017): 1769–94. http://dx.doi.org/10.1016/j.tet.2017.02.033.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Neumann, Julia J., Mamta Suri i Frank Glorius. "Efficient Synthesis of Pyrazoles: Oxidative CC/NN Bond-Formation Cascade". Angewandte Chemie International Edition 49, nr 42 (6.09.2010): 7790–94. http://dx.doi.org/10.1002/anie.201002389.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Eftaiha, Ala'a F., Abdussalam K. Qaroush, Ibrahim K. Okashah, Fatima Alsoubani, Jonas Futter, Carsten Troll, Bernhard Rieger i Khaleel I. Assaf. "CO2 activation through C–N, C–O and C–C bond formation". Physical Chemistry Chemical Physics 22, nr 3 (2020): 1306–12. http://dx.doi.org/10.1039/c9cp05961j.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Li, Wenjuan, Xiaojian Zheng i Zhiping Li. "Iron-Catalyzed CC Bond Cleavage and CN Bond Formation". Advanced Synthesis & Catalysis 355, nr 1 (4.01.2013): 181–90. http://dx.doi.org/10.1002/adsc.201200324.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Guo, Wei, Mingming Zhao, Wen Tan, Lvyin Zheng, Kailiang Tao i Xiaolin Fan. "Developments towards synthesis of N-heterocycles from amidines via C–N/C–C bond formation". Organic Chemistry Frontiers 6, nr 13 (2019): 2120–41. http://dx.doi.org/10.1039/c9qo00283a.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Frey, Johanna, Sabine Choppin, Françoise Colobert i Joanna Wencel-Delord. "Towards Atropoenantiopure N–C Axially Chiral Compounds via Stereoselective C–N Bond Formation". CHIMIA International Journal for Chemistry 74, nr 11 (25.11.2020): 883–89. http://dx.doi.org/10.2533/chimia.2020.883.

Pełny tekst źródła
Streszczenie:
N–C axial chirality, although disregarded for decades, is an interesting type of chirality with appealing applications in medicinal chemistry and agrochemistry. However, atroposelective synthesis of optically pure compounds is extremely challenging and only a limited number of synthetic routes have been designed. In particular, asymmetric N-arylation reactions allowing atroposelective N–C bond forming events remain scarce, although great advances have been achieved recently. In this minireview we summarize the synthetic approaches towards synthesis of N–C axially chiral compounds via stereocontrolled N–C bond forming events. Both organo-catalyzed and metal-catalyzed transformations are described, thus illustrating the diversity and specificity of both strategies.
Style APA, Harvard, Vancouver, ISO itp.
12

Fletcher, Rodney J., Murat Kizil i John A. Murphy. "Novel radical-induced CN bond formation". Tetrahedron Letters 36, nr 2 (styczeń 1995): 323–26. http://dx.doi.org/10.1016/0040-4039(94)02241-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Abellán-López, Antonio, María-Teresa Chicote, Delia Bautista i José Vicente. "From Chelate C,N-Cyclopalladated Oximes to C,N,N′-, C,N,S-, or C,N,C′-Pincer Palladium(II) Complexes by Formation of Oxime Ether Ligands". Organometallics 31, nr 21 (11.10.2012): 7434–46. http://dx.doi.org/10.1021/om3007213.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Wu, Xiao-Feng, i Helfried Neumann. "Zinc-Catalyzed Organic Synthesis: CC, CN, CO Bond Formation Reactions". Advanced Synthesis & Catalysis 354, nr 17 (12.11.2012): 3141–60. http://dx.doi.org/10.1002/adsc.201200547.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Zhu, Chen, Rui Wang i John R. Falck. "Amide‐Directed Tandem CC/CN Bond Formation through CH Activation". Chemistry – An Asian Journal 7, nr 7 (11.04.2012): 1502–14. http://dx.doi.org/10.1002/asia.201200035.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Hashmi, A. Stephen K. "N-2-Phenylaziridinyl imines: Fragmentation and C-C-bond formation". Journal für praktische Chemie 341, nr 6 (sierpień 1999): 600–604. http://dx.doi.org/10.1002/(sici)1521-3897(199908)341:6<600::aid-prac600>3.0.co;2-w.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Marquis, Eric, Jérôme Graton, Michel Berthelot, Aurélien Planchat i Christian Laurence. "Liaison hydrogène des arylamines : compétition des sites π et N". Canadian Journal of Chemistry 82, nr 9 (1.09.2004): 1413–22. http://dx.doi.org/10.1139/v04-128.

Pełny tekst źródła
Streszczenie:
An IR study, in the region of OH stretching, of a reference hydrogen-bond donor, 4-fluorophenol, hydrogen bonded to primary, secondary, and tertiary arylamines differently substituted on the ring and on the nitrogen, shows the formation of two kinds of 1:1 complexes in CCl4 solution: an OH···π and an OH···N hydrogen-bonded complex. The IR method gives only access to a global complexation constant Kt. A method is proposed for separating Kt into a Kπ component for hydrogen bonding to the π system and a KN component for hydrogen bonding to the nitrogen atom. This method is validated by comparing the estimated Kπ and KN values to theoretically calculated descriptors of basicity: the nitrogen lone pair orientation towards the aromatic ring, the molecular electrostatic potentials around the nitrogen and the π cloud, and the enthalpy of hydrogen bonding of hydrogen fluoride with the π system of selected arylamines. The main electronic and steric factors governing the competition between π and N sites are analysed. The strongest π and N bases among the arylamines are julolidine and Tröger's base, respectively. Triphenylamine and diphenylamine, which are nitrogen Brønsted bases, become π bases in hydrogen bonding. Moreover, there is no correlation between the pKHB and the pKBH+ scales of basicity of arylamines. The use of the pKBH+ scale is therefore not recommended in hydrogen-bonding studies.Key words: hydrogen bonding, arylamines, pKHB scale, competition of π and N hydrogen-bonded sites.
Style APA, Harvard, Vancouver, ISO itp.
18

Li, Ying-Xiu, Ke-Gong Ji, Hai-Xi Wang, Shaukat Ali i Yong-Min Liang. "ChemInform Abstract: Iodine-Induced Regioselective C-C and C-N Bonds Formation of N-Protected Indoles." ChemInform 42, nr 16 (24.03.2011): no. http://dx.doi.org/10.1002/chin.201116105.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Schranck, Johannes, Anis Tlili i Matthias Beller. "More Sustainable Formation of CN and CC Bonds for the Synthesis of N-Heterocycles". Angewandte Chemie International Edition 52, nr 30 (17.06.2013): 7642–44. http://dx.doi.org/10.1002/anie.201303015.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

He, Qianlin, Feng Xie, Chuanjiang Xia, Wanyi Liang, Ziyin Guo, Zhongzhi Zhu, Yibiao Li i Xiuwen Chen. "Copper-Catalyzed Selective 1,2-Difunctionalization of N-Heteroaromatics through Cascade C–N/C═C/C═O Bond Formation". Organic Letters 22, nr 20 (30.09.2020): 7976–80. http://dx.doi.org/10.1021/acs.orglett.0c02910.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Jala, Ranjith, i Radha Krishna Palakodety. "Copper-catalyzed oxidative C H bond functionalization of N-allylbenzamide for C N and C C bond formation". Tetrahedron Letters 60, nr 21 (maj 2019): 1437–40. http://dx.doi.org/10.1016/j.tetlet.2019.04.041.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Zinser, Caroline M., Katie G. Warren, Fady Nahra, Abdullah Al-Majid, Assem Barakat, Mohammad Shahidul Islam, Steven P. Nolan i Catherine S. J. Cazin. "Palladate Precatalysts for the Formation of C–N and C–C Bonds". Organometallics 38, nr 14 (2.07.2019): 2812–17. http://dx.doi.org/10.1021/acs.organomet.9b00326.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Majek, Michal, i Axel Jacobi von Wangelin. "Ambient-Light-Mediated Copper-Catalyzed CC and CN Bond Formation". Angewandte Chemie International Edition 52, nr 23 (6.05.2013): 5919–21. http://dx.doi.org/10.1002/anie.201301843.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Neumann, Julia J., Mamta Suri i Frank Glorius. "ChemInform Abstract: Efficient Synthesis of Pyrazoles: Oxidative C-C/N-N Bond-Formation Cascade." ChemInform 42, nr 6 (13.01.2011): no. http://dx.doi.org/10.1002/chin.201106144.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Zha, Quanwen, Qiulan Xie, Yimin Hu, Jie Han, Lingling Ge i Rong Guo. "Metallosurfactants C n –Cu–C n : vesicle formation and its drug-controlled release properties". Colloid and Polymer Science 294, nr 5 (12.02.2016): 841–49. http://dx.doi.org/10.1007/s00396-016-3841-7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Tiritiris, Ioannis, i Willi Kantlehner. "Crystal structure ofN-[3-(dimethylamino)propyl]-N′,N′,N′′,N′′-tetramethyl-N-(N,N,N′,N′-tetramethylformamidiniumyl)guanidinium bis(tetraphenylborate)". Acta Crystallographica Section E Crystallographic Communications 71, nr 12 (1.12.2015): o1045—o1046. http://dx.doi.org/10.1107/s2056989015023336.

Pełny tekst źródła
Streszczenie:
In the title salt, C15H36N62+·2C24H20B−, the three N—C bond lengths in the central C3N unit of the bisamidinium ion range between 1.388 (3) and 1.506 (3) Å, indicating single- and double-bond character. Furthermore, four C—N bonds have double-bond character. Here, the bond lengths range from 1.319 (3) to 1.333 (3) Å. Delocalization of the positive charges occurs in the N/C/N and C/N/C planes. The dihedral angle between both N/C/N planes is 70.5 (2)°. In the crystal, C—H...π interactions between H atoms of the cation and the benzene rings of both tetraphenylborate ions are present. The benzene rings form aromatic pockets, in which the bisamidinium ion is embedded. This leads to the formation of a two-dimensional supramolecular pattern along theabplane.
Style APA, Harvard, Vancouver, ISO itp.
27

Tsarev, Vasily N., Stanislav I. Konkin, Alexei A. Shyryaev, Vadim A. Davankov i Konstantin N. Gavrilov. "Enantioselective Pd-catalyzed C*–C, C*–N, and C*–S bond formation reactions using first P,P,N,N-tetradentate chiral phosphites". Tetrahedron: Asymmetry 16, nr 10 (maj 2005): 1737–41. http://dx.doi.org/10.1016/j.tetasy.2005.04.010.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Morris, Scott A., Theresa H. Nguyen i Nan Zheng. "Diastereoselective Oxidative CN/CO and CN/CN Bond Formation Tandems Initiated by Visible Light: Synthesis of FusedN-Arylindolines". Advanced Synthesis & Catalysis 357, nr 10 (6.07.2015): 2311–16. http://dx.doi.org/10.1002/adsc.201500317.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Sana, Michel, Georges Leroy, Mustapha Hilali, Minh Tho Nguyen i L. G. Vanquickenborne. "Heats of formation of isomeric [C, H4, O]+, [C, H3, N]+ and [C, H5, N]+ radical cations". Chemical Physics Letters 190, nr 6 (marzec 1992): 551–56. http://dx.doi.org/10.1016/0009-2614(92)85190-l.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Morris, Scott A., Theresa H. Nguyen i Nan Zheng. "ChemInform Abstract: Diastereoselective Oxidative C-N/C-O and C-N/C-N Bond Formation Tandems Initiated by Visible Light: Synthesis of Fused N-Arylindolines." ChemInform 46, nr 46 (27.10.2015): no. http://dx.doi.org/10.1002/chin.201546150.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Tunge, Jon A., Shelli R. Mellegaard-Waetzig i Dinesh Kumar Rayabarapu. "Allylic Amination via Decarboxylative C-N Bond Formation". Synlett, nr 18 (2005): 2759–62. http://dx.doi.org/10.1055/s-2005-918949.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Yeston, Jake. "A light approach to C-N bond formation". Science 353, nr 6296 (14.07.2016): 258.9–259. http://dx.doi.org/10.1126/science.353.6296.258-i.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Mirvich, S. S. "Vitamin C inhibition of N-nitroso compound formation". American Journal of Clinical Nutrition 57, nr 4 (1.04.1993): 598–99. http://dx.doi.org/10.1093/ajcn/57.4.598.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Wang, Pengfei, Wenya Lu, Dattatray Devalankar i Zhenying Ding. "Photochemical Formation and Cleavage of C–N Bond". Organic Letters 17, nr 1 (18.12.2014): 170–72. http://dx.doi.org/10.1021/ol503473c.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Marchetti, Louis, Abhishek Kantak, Riley Davis i Brenton DeBoef. "Regioselective Gold-Catalyzed Oxidative C–N Bond Formation". Organic Letters 17, nr 2 (24.12.2014): 358–61. http://dx.doi.org/10.1021/ol5034805.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Kärkäs, Markus D. "Electrochemical strategies for C–H functionalization and C–N bond formation". Chemical Society Reviews 47, nr 15 (2018): 5786–865. http://dx.doi.org/10.1039/c7cs00619e.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Tsang, W. C. Peter, Nan Zheng i Stephen L. Buchwald. "Combined C−H Functionalization/C−N Bond Formation Route to Carbazoles". Journal of the American Chemical Society 127, nr 42 (październik 2005): 14560–61. http://dx.doi.org/10.1021/ja055353i.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Rit, Raja K., Majji Shankar i Akhila K. Sahoo. "C–H imidation: a distinct perspective of C–N bond formation". Organic & Biomolecular Chemistry 15, nr 6 (2017): 1282–93. http://dx.doi.org/10.1039/c6ob02162j.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Möhlmann, Lennart, Moritz Baar, Julian Rieß, Markus Antonietti, Xinchen Wang i Siegfried Blechert. "Carbon Nitride-Catalyzed Photoredox CC Bond Formation with N-Aryltetrahydroisoquinolines". Advanced Synthesis & Catalysis 354, nr 10 (5.06.2012): 1909–13. http://dx.doi.org/10.1002/adsc.201100894.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Zhang, Qian, i Yan Li. "N-Fluorobenzenesulfonimide: An Efficient Nitrogen Source for C–N Bond Formation". Synthesis 47, nr 02 (20.11.2014): 159–74. http://dx.doi.org/10.1055/s-0034-1379396.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Xie, E. Q., Y. F. Jin, Z. G. Wang i D. Y. He. "Formation of C–N compounds by N-implantation into diamond films". Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 135, nr 1-4 (luty 1998): 224–28. http://dx.doi.org/10.1016/s0168-583x(97)00595-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Dacho, Vladimír, Dária Nitrayová, Michal Šoral, Andrea Machyňáková, Ján Moncoľ i Peter Szolcsányi. "Access to N-Alkylpyrazin-2-ones via C–O to C–N Rearrangement of Pyrazinyl Ethers". SynOpen 03, nr 04 (październik 2019): 108–13. http://dx.doi.org/10.1055/s-0039-1690222.

Pełny tekst źródła
Streszczenie:
The reaction of tosylated 2-alkoxypyrazines with potassium halides led to the unexpected formation of N-alkylated pyrazinones. Such rare example of substitutive C–O → C–N rearrangement on pyrazines was then scrutinised by using various nucleophiles to afford the respective products in moderate to good yields. This method provides a direct access to N-alkylated-1H-pyrazin-2-ones. The formation of the rearranged products is conveniently and reliably determined by characteristic NMR shifts of their heteroaromatic protons.
Style APA, Harvard, Vancouver, ISO itp.
43

Sun, Jiyun, Guangchen Li, Guangtao Zhang, Ying Cong, Xuechan An, Daisy Zhang-Negrerie i Yunfei Du. "Cascade Formation of C3-Unsymmetric Spirooxindoles via PhI(OAc)2-Mediated Oxidative C−C/C−N Bond Formation". Advanced Synthesis & Catalysis 360, nr 13 (16.05.2018): 2476–81. http://dx.doi.org/10.1002/adsc.201800314.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Li, Ying-Xiu, Ke-Gong Ji, Hai-Xi Wang, Shaukat Ali i Yong-Min Liang. "Iodine-Induced Regioselective C−C and C−N Bonds Formation ofN-Protected Indoles". Journal of Organic Chemistry 76, nr 2 (21.01.2011): 744–47. http://dx.doi.org/10.1021/jo1023014.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Lennon, Ian C., i Ashok V. Bhatia. "SPECIAL FEATURE SECTION: Transition-Metal-Mediated C-C and C-N Bond Formation". Organic Process Research & Development 12, nr 3 (16.05.2008): 467. http://dx.doi.org/10.1021/op800082j.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Pratap, Ramendra, Damon Parrish, Padmaja Gunda, D. Venkataraman i Mahesh K. Lakshman. "Influence of Biaryl Phosphine Structure on C−N and C−C Bond Formation". Journal of the American Chemical Society 131, nr 34 (2.09.2009): 12240–49. http://dx.doi.org/10.1021/ja902679b.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Kaur, Navjeet. "Cobalt-catalyzed C–N, C–O, C–S bond formation: synthesis of heterocycles". Journal of the Iranian Chemical Society 16, nr 12 (6.07.2019): 2525–53. http://dx.doi.org/10.1007/s13738-019-01731-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Feng, Guangshou, Xiaofei Wang i Jian Jin. "Decarboxylative C-C and C-N Bond Formation by Ligand-Accelerated Iron Photocatalysis". European Journal of Organic Chemistry 2019, nr 39 (11.10.2019): 6728–32. http://dx.doi.org/10.1002/ejoc.201901381.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Li, Wenjuan, Xiaojian Zheng i Zhiping Li. "ChemInform Abstract: Iron-Catalyzed C-C Bond Cleavage and C-N Bond Formation." ChemInform 44, nr 23 (16.05.2013): no. http://dx.doi.org/10.1002/chin.201323076.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Siebeneicher, Holger, i Sven Doye. "Dimethyltitanocene Cp2TiMe2: A Useful Reagent for C—C and C—N Bond Formation". Journal für praktische Chemie 342, nr 1 (styczeń 2000): 102–6. http://dx.doi.org/10.1002/(sici)1521-3897(200001)342:1<102::aid-prac102>3.0.co;2-n.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii