Gotowa bibliografia na temat „Formamidinium”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Formamidinium”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Formamidinium"
Ahlawat, Paramvir, Alexander Hinderhofer, Essa A. Alharbi, Haizhou Lu, Amita Ummadisingu, Haiyang Niu, Michele Invernizzi i in. "A combined molecular dynamics and experimental study of two-step process enabling low-temperature formation of phase-pure α-FAPbI3". Science Advances 7, nr 17 (kwiecień 2021): eabe3326. http://dx.doi.org/10.1126/sciadv.abe3326.
Pełny tekst źródłaFan, Zhicheng, Chuwu Xing, Yi Tan, Jinxia Xu, Lingyun Liu, Yuanming Zhou i Yan Jiang. "The effect of CO2-doped spiro-OMeTAD hole transport layer on FA(1−x)CsxPbI3 perovskite solar cells". Journal of Chemical Research 46, nr 6 (listopad 2022): 174751982211360. http://dx.doi.org/10.1177/17475198221136079.
Pełny tekst źródłaSukmas, Wiwittawin, Piyanooch Nedkun, Udomsilp Pinsook, Prutthipong Tsuppayakorn-aek i Thiti Bovornratanaraks. "Effect of formamidinium cation on electronic structure of formamidinium lead iodide". Journal of Physics: Conference Series 1380 (listopad 2019): 012080. http://dx.doi.org/10.1088/1742-6596/1380/1/012080.
Pełny tekst źródłaDemant, Udo, Elke Conradi, Ulrich Müller i Kurt Dehnicke. "Formamidinhim-Hexachloroferrat(III) Synthese und Kristallstruktur / Formamidinium-Hexachloroferrate(III) Synthesis and Crystal Structure". Zeitschrift für Naturforschung B 40, nr 3 (1.03.1985): 443–46. http://dx.doi.org/10.1515/znb-1985-0324.
Pełny tekst źródłaMarchenko, Anatoliy, Georgyi Koidan, Anastasiya Hurieva, Eduard Rusanov, Alexander B. Rozhenko i Aleksandr Kostyuk. "Dichlorophosphoranides Stabilized by Formamidinium Substituents". Heteroatom Chemistry 2020 (13.02.2020): 1–6. http://dx.doi.org/10.1155/2020/9856235.
Pełny tekst źródłaJeong, Jaeki, Haeyeon Kim, Yung Jin Yoon, Bright Walker, Seyeong Song, Jungwoo Heo, Song Yi Park, Jae Won Kim, Gi-Hwan Kim i Jin Young Kim. "Formamidinium-based planar heterojunction perovskite solar cells with alkali carbonate-doped zinc oxide layer". RSC Advances 8, nr 43 (2018): 24110–15. http://dx.doi.org/10.1039/c8ra02637h.
Pełny tekst źródłaEnomoto, Ayu, Atsushi Suzuki, Takeo Oku, Sakiko Fukunishi, Tomoharu Tachikawa i Tomoya Hasegawa. "First-principles calculations and device characterizations of formamidinium-cesium lead triiodide perovskite crystals stabilized by germanium or copper". Japanese Journal of Applied Physics 62, SK (14.04.2023): SK1015. http://dx.doi.org/10.35848/1347-4065/acc6d8.
Pełny tekst źródłaSzostak, Rodrigo, Paulo Ernesto Marchezi, Adriano dos Santos Marques, Jeann Carlos da Silva, Matheus Serra de Holanda, Márcio Medeiros Soares, Hélio Cesar Nogueira Tolentino i Ana Flávia Nogueira. "Exploring the formation of formamidinium-based hybrid perovskites by antisolvent methods: in situ GIWAXS measurements during spin coating". Sustainable Energy & Fuels 3, nr 9 (2019): 2287–97. http://dx.doi.org/10.1039/c9se00306a.
Pełny tekst źródłaKoh, Teck Ming, Thirumal Krishnamoorthy, Natalia Yantara, Chen Shi, Wei Lin Leong, Pablo P. Boix, Andrew C. Grimsdale, Subodh G. Mhaisalkar i Nripan Mathews. "Formamidinium tin-based perovskite with low Eg for photovoltaic applications". Journal of Materials Chemistry A 3, nr 29 (2015): 14996–5000. http://dx.doi.org/10.1039/c5ta00190k.
Pełny tekst źródłaRuan, Shuai, Rong Fan, Narendra Pai, Jianfeng Lu, Nathan A. S. Webster, Yinlan Ruan, Yi-Bing Cheng i Christopher R. McNeill. "Incorporation of γ-butyrolactone (GBL) dramatically lowers the phase transition temperature of formamidinium-based metal halide perovskites". Chemical Communications 55, nr 78 (2019): 11743–46. http://dx.doi.org/10.1039/c9cc05753f.
Pełny tekst źródłaRozprawy doktorskie na temat "Formamidinium"
Chen-LunLan i 藍振倫. "Stability Improvement of Low-bandgap Perovskite Solar Cell Using Formamidinium as Cation". Thesis, 2018. http://ndltd.ncl.edu.tw/handle/3679f7.
Pełny tekst źródła國立成功大學
微電子工程研究所
106
In this thesis, in order to improve the stability of the perovskite solar cells, we substituted original cation of typical perovskite solar cells, Methylammonium (MA) with Formamidinium (FA). Because of the higher crystallization temperature of FA perovskite solar cells, we assumed that the binding energy of FA perovskite solar cells was higher than MA perovskite solar cells, enhancing the resistance of oxide and moisture, and finally enlarging its stability. Moreover, using formamidinium as the cation can reduce the bandgap of the perovskite solar cells, which means its absorption edge shifts to longer wavelength. We can apply this type of solar cells on tandem-structure perovskite solar cells, since it can absorb near-IR wavelength light of sunlight. In addition, so as to enhance its stability further, we used lead thiocyanate (Pb(SCN)2) as additive, which can enlarge grain size and crystallinity of perovskite phase. For FA-based perovskite solar cell has a tolerance factor larger than 1, it’s difficult to form high quality black phase FAPbI3 and easy to become yellow phase, an unfavorable phase for perovskite solar cells. Therefore, adding small amount of methylammonium and lead thiocyanate can restrain perovskite from forming yellow phase and it can be confirmed by X-ray diffraction measurement. Meanwhile, since tin and lead have similar atomic arrangement, we applied tin as replacement to reduce the content of lead in perovskite solar cells with a view to being less toxicity. We partially substituted lead with tin content of 12.5%, 25%, 37.5% in this work and we observed the more tin we substituted, the lower bandgap it became. Moreover, 37.5% tin substitution provides the best alternative because of the highest efficiency and tin percentage. In the end of this thesis, we successfully improved the stability of perovskite material by using formamidinium as cation and adding lead thiocyanate in perovskite layer. Formamidinium and partially tin substitution based perovskite solar cells lead to a red shift of optical absorbance compared to methylammonium and pure lead based solar cells and we hope we can apply this type of perovskite solar cells on tandem-structure solar cells.
An-ZheLiou i 劉安哲. "Fast Deposition-Crystallization Procedure for Formamidinium lead iodide inverted type planar-structured perovskite solar cell". Thesis, 2015. http://ndltd.ncl.edu.tw/handle/q476we.
Pełny tekst źródła國立成功大學
航空太空工程學系
103
The cubic HC(NH2)2PbI3 (FAPbI3) perovskite has the measured band gap of 1.43 eV and its corresponding absorption edge reaches 870 nm. Therefore, the material is potentially superior than the CH3NH3PbI3 (MAPbI3) as the light harvester. The current work made FAPbI3 perovskite solar cell with structure, as shown in Fig. 1a, by depositing a thin layer of FA-perovskite film with a one-step process. This is done by spin-coating of 40 wt % PbI2 : FAI (at 1:1) mixture in DMSO to get a pure FAPbI3 perovskite phase. To adopt the solvent-induced, fast crystallization process, the spin-coated film is immediately exposed to different kinds of non-solvents, such as toluene, chlorobenzene to induce crystallization. All the spin-coated films can be annealed at relatively low temperatures such that the cell can be made on a flexible substrate. Six different kinds of non-solvents, such as toluene, chlorobenzene, dichlorobenzene, 2-isopronol, chloroform, acetonitrile, were used to test the crystallization of FA-perovskite film at 160oC. It was found that the non-solvent of 2-isopronol has the best result of crystallization and coverage of entire film. The crystallization process took only 10 mins in comparison to the traditional method of annealing for two hours at 160oC. In order to improve the cell performance, the mixed solution of DMSO and GBL was used to dissolve PbI2 : FAI (at 1:1). It is found that the mixing ratio for DMSO versus GBL at 7:3 v/v has the best crystallization and coverage of the entire film, as shown in Fig. 1, leading to significant increase in the cell performance. The Jsc of the solar cell with PbI2 and FAI dissolved in the mixture of DMSO and GBL at 7:3 can increase from 9.585 to 10.249 mA/cm2 and FF from 0.421 to 0.56 and PEC from 3.228% to 4.596%, as shown in Fig. 2 for I-V characteristic measurements. Further improvement in cell performance will be discussed in the conference.
Hassan, Mahmoud Mohamed Mohyeldin Mostafa, i 莫海森. "Femtosecond Transient Absorption Spectral Studies of the Carrier Relaxation Dynamics of Formamidinium Tin Iodide Thin films and the effects of varied additives". Thesis, 2018. http://ndltd.ncl.edu.tw/handle/yaf6n5.
Pełny tekst źródła國立交通大學
應用化學系碩博士班
106
Our study mainly focuses on the effects of additives on the optical properties and carrier generation and carrier recombination mechanisms of formamidinium tin iodide perovskites. The additives are bulkier organic cations like ethyl diammonium diiodide (EDAI2) and butyl ammonium iodide (BAI), passivate the crystal surface, control the film morphology and improve the crystallinity for the FASnI3 PSC. Though passivation effects can be visualized by optical imaging techniques like scanning emission microscopy and the subsequent photo conversion efficiency improvements of solar cells fabricated with passivated thin films, the actual microscopic picture on the mechanism of charge transport and band gap changes can only be accessed through steady state and ultrafast time-resolved absorption spectroscopy. Here, we present the band gap changes between pristine FASnI3 sample and added additive samples using steady state UV-Vis, PL spectroscopy and carrier generation/relaxation mechanisms by using ultrafast femtosecond transient absorption spectroscopic experiments performed on the all the samples under similar experimental conditions. Exciton formation from hot carriers were detected for all the samples measured due to the so-called phonon bottle neck effect. Laser fluence studies reveal that exciton formation or onset of photoinduced absorption is delayed due to the increase of hot carrier densities and carrier-carrier interactions in conduction and valence bands. Band broadening and blue shifts is also observed in the laser fluence studies confirms band filling effect due to accumulation of charge carriers in the conduction and valence bands. The estimated carrier cooling rates indicates that additives delay the cooling of hot carriers and thereby retard the recombination of carrier relaxation processes. Thus, the reasons for the retardation of fluorescence lifetimes of the samples with additives might be due to retardation of hot carrier cooling and there by re-generation and decays of hot excitons at slower rates. A kinetics study on carrier relaxation and transport processes and their device efficiencies will be presented and compared with those of their Pb-based analogues. Such a time-resolved information obtained in the present study would help us to design Sn-based perovskite solar cells with greater device performance.
Pariari, Debasmita. "Opto-electronic Properties of a Few Dimensionally Controlled Hybrid Halides and Related Systems". Thesis, 2022. https://etd.iisc.ac.in/handle/2005/6183.
Pełny tekst źródłaCzęści książek na temat "Formamidinium"
Fairbanks, Teresa G., Chris L. Andrus i David D. Busath. "Lorentzian Noise in Single Gramicidin A Channel Formamidinium Currents". W Novartis Foundation Symposium 225 - Gramicidin and Related Ion Channel-Forming Peptides, 74–92. Chichester, UK: John Wiley & Sons, Ltd., 2007. http://dx.doi.org/10.1002/9780470515716.ch6.
Pełny tekst źródłaDiaper, C. M. "Addition of Alkoxides to Uronium and Formamidinium Salts". W Four Carbon-Heteroatom Bonds, 1. Georg Thieme Verlag KG, 2005. http://dx.doi.org/10.1055/sos-sd-018-01445.
Pełny tekst źródłaRudorf, W. D. "Reaction of 3-Aminoprop-2-enethiones with -(1-Chloroalkylidene)formamidinium Perchlorates". W Six-Membered Hetarenes with One Chalcogen, 1. Georg Thieme Verlag KG, 2003. http://dx.doi.org/10.1055/sos-sd-014-00776.
Pełny tekst źródłaDiaper, C. M. "Tetrakis(dialkylamino)methanes from Formamidinium Salts by Addition of Metalated Dialkylamines". W Four Carbon-Heteroatom Bonds, 1. Georg Thieme Verlag KG, 2005. http://dx.doi.org/10.1055/sos-sd-018-01504.
Pełny tekst źródłaStreszczenia konferencji na temat "Formamidinium"
Borchert, Juliane, Rebecca L. Milot, Jay B. Patel, Christopher L. Davies, Adam D. Wright, Laura Martínez Maestro, Henry J. Snaith, Laura M. Herz i Michael B. Johnston. "Co-evaporated Formamidinium Lead Iodide Solar Cells". W 10th International Conference on Hybrid and Organic Photovoltaics. Valencia: Fundació Scito, 2018. http://dx.doi.org/10.29363/nanoge.hopv.2018.028.
Pełny tekst źródłaDirin, Dmitry, Anna Vivani, Maryna Bodnarchuk, Ihor Cherniukh, Antonietta Guagliardi i Maksym Kovalenko. "Trap-states in monodisperse formamidinium tin iodide nanocrystals". W Internet Conference for Quantum Dots. València: Fundació Scito, 2020. http://dx.doi.org/10.29363/nanoge.icqd.2020.047.
Pełny tekst źródłaItskos, Grigorios, Paris Papagiorgis, Andreas Manoli, Andreas Othonos, Maryna Bodnarchuk i Maksym Kovalenko. "Stimulated Emission in Formamidinium Lead Iodide Perovskite Nanocrystals". W nanoGe International Conference on Perovskite Solar Cells, Photonics and Optoelectronics. València: Fundació Scito, 2018. http://dx.doi.org/10.29363/nanoge.nipho.2019.050.
Pełny tekst źródłaNonomura, Ren, Takeo Oku, Iori Ono, Atsushi Suzuki, Masanobu Okita, Sakiko Fukunishi, Tomoharu Tachikawa i Tomoya Hasegawa. "Effects of Cesium/Formamidinium Co-Addition to Perovskite Solar Cells". W ASEC 2022. Basel Switzerland: MDPI, 2022. http://dx.doi.org/10.3390/asec2022-13789.
Pełny tekst źródłaSavill, Kimberley, Matthew Klug, Rebecca Milot, Henry Snaith i Laura Herz. "Charge-Carrier Cooling and Polarization Memory Loss in Formamidinium Tin Triiodide". W 2nd nanoGe International Conference on Perovskite Thin Film Photovoltaics and Perovskite Photonics and Optoelectronics. València: Fundació Scito, 2019. http://dx.doi.org/10.29363/nanoge.nipho.2020.007.
Pełny tekst źródłaDirin, Dmitry, Maryna Bodnarchuk, Marios Zacharias, Ihor Cherniukh, Sergii Yakunin, Federica Bertolotti, Marcel Aebli i in. "Intrinsic formamidinium tin iodide nanocrystals by suppressing the Sn(IV) impurities". W International Conference on Emerging Light Emitting Materials. València: FUNDACIO DE LA COMUNITAT VALENCIANA SCITO, 2022. http://dx.doi.org/10.29363/nanoge.emlem.2022.004.
Pełny tekst źródłaDirin, Dmitry, Maryna Bodnarchuk, Marios Zacharias, Taras Sekh, Ihor Cherniukh, Sergii Yakunin, Federica Bertolotti i in. "Intrinsic formamidinium tin iodide nanocrystals by suppressing the Sn(IV) impurities". W MATSUS23 & Sustainable Technology Forum València (STECH23). València: FUNDACIO DE LA COMUNITAT VALENCIANA SCITO, 2022. http://dx.doi.org/10.29363/nanoge.matsus.2023.246.
Pełny tekst źródłaDirin, Dmitry, Maryna Bodnarchuk, Marios Zacharias, Ihor Cherniukh, Sergii Yakunin, Federica Bertolotti, Marcel Aebli i in. "Intrinsic formamidinium tin iodide nanocrystals by suppressing the Sn(IV) impurities". W Sustainable Metal-halide perovskites for photovoltaics, optoelectronics and photonics. València: FUNDACIO DE LA COMUNITAT VALENCIANA SCITO, 2022. http://dx.doi.org/10.29363/nanoge.sus-mhp.2022.029.
Pełny tekst źródłaSubedi, Biwas, Lei Guan, Yue Yu, Kiran Ghimire, Prakash Uprety, Maxwell M. Junda, Yanfa Yan i Nikolas J. Podraza. "Formamidinium + Cesium Lead Triiodide Perovskite Thin Films: Optical Properties and Devices". W 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC). IEEE, 2018. http://dx.doi.org/10.1109/pvsc.2018.8547384.
Pełny tekst źródłaLavén, Rasmus, Michael Marek Koza, Lorenzo Malavasi, Adrien Perrichon, Markus Appel i Maths Karlsson. "Neutron spectroscopy studies of organic cation dynamics in formamidinium lead iodide perovskites". W Online Conference on Atomic-level Characterisation of Hybrid Perovskites. València: Fundació Scito, 2022. http://dx.doi.org/10.29363/nanoge.hpatom.2022.005.
Pełny tekst źródła