Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Food and Processing.

Artykuły w czasopismach na temat „Food and Processing”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Food and Processing”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Bredihin, Sergei, Vladimir Andreev, Alexander Martekha, Matthias Schenzle i Igor Korotkiy. "Erosion potential of ultrasonic food processing". Foods and Raw Materials 9, nr 2 (9.11.2021): 335–44. http://dx.doi.org/10.21603/2308-4057-2021-2-335-344.

Pełny tekst źródła
Streszczenie:
Introduction. Cavitation is the most significant factor that affects liquid food products during ultrasound treatment. Ultrasonic treatment intensifies diffusion, dissolution, and chemical interactions. However, no physical model has yet been developed to unambiguously define the interaction between ultrasonic cavities and structural particles of liquid food media. Physical models used to describe ultrasonic interactions in liquid food media are diverse and, sometimes, contradictory. The research objective was to study ultrasonic devices in order to improve their operating modes and increase reliability. Study objects and methods. The present research featured ultrasonic field generated in water by the cylindrical emitter, the intensity of flexural ultrasonic waves and their damping rate at various distances from the emitter. Results and discussion. The paper offers a review of available publications on the theory of acoustic cavitation in various media. The experimental studies featured the distribution of cavities in the ultrasound field of rod vibrating systems in water. The research revealed the erosion capacity of ultrasonic waves generated by the cylindrical emitter. The article also contains a theoretical analysis of the cavitation damage to aluminum foil in water and the erosive effect of cavitation on highly rigid materials of ultrasonic vibration systems. The obtained results were illustrated by semi-graphical dependences. Conclusion. The present research made it possible to assess the energy capabilities of cavities generated by ultrasonic field at different distances from the ultrasonic emitter. The size of the contact spot and the penetration depth can serve as a criterion for the erosion of the surface of the ultrasonic emitter.
Style APA, Harvard, Vancouver, ISO itp.
2

ME, E. Sankaran. "Distributed Control Systems in Food Processing". International Journal of Trend in Scientific Research and Development Volume-3, Issue-1 (31.12.2018): 27–30. http://dx.doi.org/10.31142/ijtsrd18921.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Ross, Charles C., G. Edward Valentine, Brandon M. Smith i James L. Walsh. "Food-Processing Wastes". Water Environment Research 72, nr 6 (1.10.2001): 915–31. http://dx.doi.org/10.2175/106143000x138526.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Grismer, Mark E., Charles C. Ross, G. Edward Valentine, Brandon M. Smith i James L. Walsh. "Food-Processing Wastes". Water Environment Research 73, nr 6 (1.10.2001): 932–60. http://dx.doi.org/10.2175/106143001x143664.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Grismer, Mark E., Charles C. Ross, G. Edward Valentine, Brandon M. Smith i James L. Walsh. "Food-Processing Wastes". Water Environment Research 74, nr 4 (lipiec 2002): 377–84. http://dx.doi.org/10.2175/106143002x140143.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Smith, Brandon M., i Charles C. Ross. "Food-Processing Wastes". Water Environment Research 75, nr 6 (1.10.2003): 933–74. http://dx.doi.org/10.2175/106143003x141493.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Smith, Brandon M., Charles C. Ross i James L. Walsh. "Food-Processing Wastes". Water Environment Research 76, nr 6 (wrzesień 2004): 1589–650. http://dx.doi.org/10.2175/106143004x142149.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Smith, Brandon M., Charles C. Ross i James L. Walsh. "Food-processing Wastes". Water Environment Research 77, nr 6 (wrzesień 2005): 1829–57. http://dx.doi.org/10.2175/106143005x54506.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Smith, Brandon M., Charles C. Ross, James L. Walsh, Val Frenkel i Sherman May. "Food-processing Wastes". Water Environment Research 78, nr 10 (wrzesień 2006): 1620–41. http://dx.doi.org/10.2175/106143006x119323.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Smith, Brandon M., Charles C. Ross i James L. Walsh. "Food Processing Wastes". Water Environment Research 79, nr 10 (wrzesień 2007): 1665–81. http://dx.doi.org/10.2175/106143007x218539.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Frenkel, Val S., Gregg Cummings, Dennis E. Scannell, Walter Z. Tang i Krishnanand Y. Maillacheruvu. "Food-Processing Wastes". Water Environment Research 80, nr 10 (październik 2008): 1458–80. http://dx.doi.org/10.2175/106143008x328707.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Frenkel, Val S., Gregg Cummings, Dennis E. Scannell, Walter Z. Tang, Krishnanand Y. Maillacheruvu i Patrick Treanor. "Food-Processing Wastes". Water Environment Research 81, nr 10 (10.09.2009): 1593–605. http://dx.doi.org/10.2175/106143009x12445568400098.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Frenkel, Val S., Gregg Cummings, Dennis E. Scannell, Walter Z. Tang, Krishnanand Y. Maillacheruvu i Patrick Treanor. "Food-Processing Wastes". Water Environment Research 82, nr 10 (1.01.2010): 1468–84. http://dx.doi.org/10.2175/106143010x12756668801455.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Frenkel, Val S., Gregg Cummings, Dennis E. Scannell, Walter Z. Tang, Krishnanand Y. Maillacheruvu i Patrick Treanor. "Food-Processing Wastes". Water Environment Research 83, nr 10 (1.01.2011): 1488–505. http://dx.doi.org/10.2175/106143011x13075599869696.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Frenkel, Val S., Gregg Cummings, Walter Z. Tang i Krishnanand Y. Maillacheruvu. "Food-Processing Wastes". Water Environment Research 84, nr 10 (1.10.2012): 1485–501. http://dx.doi.org/10.2175/106143012x13407275695319.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Frenkel, Val S., Gregg Cummings, K. Y. Maillacheruvu i Walter Z. Tang. "Food-Processing Wastes". Water Environment Research 85, nr 10 (1.10.2013): 1501–14. http://dx.doi.org/10.2175/106143013x13698672322462.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Frenkel, Val S., Gregg A. Cummings, K. Y. Maillacheruvu i Walter Z. Tang. "Food-Processing Wastes". Water Environment Research 86, nr 10 (1.10.2014): 1498–514. http://dx.doi.org/10.2175/106143014x14031280668056.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Frenkel, Val S., Gregg A. Cummings, K. Y. Maillacheruvu i Walter Z. Tang. "Food-Processing Wastes". Water Environment Research 87, nr 10 (1.10.2015): 1360–72. http://dx.doi.org/10.2175/106143015x14338845155868.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Frenkel, Val S., Gregg A. Cummings, K. Y. Maillacheruvu i Walter Z. Tang. "Food-Processing Wastes". Water Environment Research 88, nr 10 (1.10.2016): 1395–408. http://dx.doi.org/10.2175/106143016x14696400495091.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Frenkel, Val S., Gregg A. Cummings, K. Y. Maillacheruvu i Walter Z. Tang. "Food-Processing Wastes". Water Environment Research 89, nr 10 (1.10.2017): 1360–83. http://dx.doi.org/10.2175/106143017x15023776270368.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Frenkel, Val S., Gregg A. Cummings, K. Y. Maillacheruvu i Walter Z. Tang. "Food-Processing Wastes". Water Environment Research 90, nr 10 (1.10.2018): 1033–53. http://dx.doi.org/10.2175/106143018x15289915807146.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Walsh, James L., Charles C. Ross i G. Edward Valentine. "Food processing waste". Water Environment Research 67, nr 4 (czerwiec 1995): 522–27. http://dx.doi.org/10.2175/106143095x135787.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Walsh, James L., Charles C. Ross i G. Edward Valentine. "Food processing waste". Water Environment Research 68, nr 4 (czerwiec 1996): 535–38. http://dx.doi.org/10.2175/106143096x135416.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Walsh, James L., Charles C. Ross i G. Edward Valentine. "Food-processing wastes". Water Environment Research 69, nr 4 (czerwiec 1997): 623–26. http://dx.doi.org/10.2175/106143097x134911.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Ross, Charles C., James L. Walsh i G. Edward Valentine. "Food-processing wastes". Water Environment Research 70, nr 4 (czerwiec 1998): 642–46. http://dx.doi.org/10.2175/106143098x134343.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Ross, Charles C., G. Edward Valentine i James L. Walsh. "Food-Processing Wastes". Water Environment Research 71, nr 5 (sierpień 1999): 812–16. http://dx.doi.org/10.2175/106143099x133802.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Ačkar, Đurđica. "Sustainable Food Processing". Sustainability 13, nr 17 (27.08.2021): 9628. http://dx.doi.org/10.3390/su13179628.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Swallow, A. J. "Food Irradiation Processing". International Journal of Radiation Biology and Related Studies in Physics, Chemistry and Medicine 50, nr 2 (styczeń 1986): 372–73. http://dx.doi.org/10.1080/09553008614550781.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Frenkel, Val S., Gregg A. Cummings, Kris Y. Maillacheruvu i Walter Z. Tang. "Food‐processing wastes". Water Environment Research 92, nr 10 (13.09.2020): 1726–40. http://dx.doi.org/10.1002/wer.1428.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Borup, M. Brett, i Denny R. Muchmore. "Food-processing waste". Water Environment Research 64, nr 4 (czerwiec 1992): 413–17. http://dx.doi.org/10.1002/j.1554-7531.1992.tb00021.x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Walsh, James L., Charles C. Ross i G. Edward Valentine. "Food processing waste". Water Environment Research 65, nr 4 (czerwiec 1993): 402–7. http://dx.doi.org/10.1002/j.1554-7531.1993.tb00069.x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Walsh, James L., Charles C. Ross i G. Edward Valentine. "Food processing waste". Water Environment Research 66, nr 4 (czerwiec 1994): 409–13. http://dx.doi.org/10.1002/j.1554-7531.1994.tb00110.x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Schiffrin, Eduardo J., i Stephanie Blum. "Food processing: probiotic microorganisms for beneficial foods". Current Opinion in Biotechnology 12, nr 5 (październik 2001): 499–502. http://dx.doi.org/10.1016/s0958-1669(00)00253-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Smith, Robert E. "Food processing: a food scientist's perspective". Food Policy 24, nr 2-3 (maj 1999): 255–64. http://dx.doi.org/10.1016/s0306-9192(99)00023-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Kumar, Dr P. Surya. "FDI Trends in Food Processing Sector in India". Paripex - Indian Journal Of Research 2, nr 3 (15.01.2012): 54–56. http://dx.doi.org/10.15373/22501991/mar2013/20.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Upadhyay, Garima. "Changing Trend in Food Processing in Transforming Society". Food Science & Nutrition Technology 4, nr 3 (16.05.2019): 1–2. http://dx.doi.org/10.23880/fsnt-16000182.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Bleiweiss-Sande, Rachel, Kenneth Chui, E. Whitney Evans, Jeanne Goldberg, Sarah Amin i Jennifer Sacheck. "Robustness of Food Processing Classification Systems". Nutrients 11, nr 6 (14.06.2019): 1344. http://dx.doi.org/10.3390/nu11061344.

Pełny tekst źródła
Streszczenie:
Discrepancies exist among food processing classification systems and in the relationship between processed food intake and dietary quality of children. This study compared inter-rater reliability, food processing category, and the relationship between processing category and nutrient concentration among three systems (Nova, International Food Information Council (IFIC), and University of North Carolina at Chapel Hill (UNC)). Processing categories for the top 100 most commonly consumed foods children consume (NHANES 2013–2014) were independently coded and compared using Spearman’s rank correlation coefficient. Relative ability of nutrient concentration to predict processing category was investigated using linear discriminant analysis and multinomial logistic regression and compared between systems using Cohen’s kappa coefficient. UNC had the highest inter-rater reliability (ρ = 0.97), followed by IFIC (ρ = 0.78) and Nova (ρ = 0.76). UNC and Nova had the highest agreement (80%). Lower potassium was predictive of IFIC’s classification of foods as moderately compared to minimally processed (p = 0.01); lower vitamin D was predictive of UNC’s classification of foods as highly compared to minimally processed (p = 0.04). Sodium and added sugars were predictive of all systems’ classification of highly compared to minimally processed foods (p < 0.05). Current classification systems may not sufficiently identify foods with high nutrient quality commonly consumed by children in the U.S.
Style APA, Harvard, Vancouver, ISO itp.
38

Cuadrado, Carmen, África Sanchiz i Rosario Linacero. "Nut Allergenicity: Effect of Food Processing". Allergies 1, nr 3 (2.08.2021): 150–62. http://dx.doi.org/10.3390/allergies1030014.

Pełny tekst źródła
Streszczenie:
Nuts are considered healthy foods due to their high content of nutritional compounds with functional properties. However, the list of the most allergenic foods includes tree nuts, and their presence must be indicated on food labels. Most nut allergens are seed storage proteins, pathogenesis-related (PR) proteins, profilins and lipid transfer proteins (LTP). Nut allergenic proteins are characterized by their resistance to denaturation and proteolysis. Food processing has been proposed as the method of choice to alter the allergenicity of foods to ensure their safety and improve their organoleptic properties. The effect of processing on allergenicity is variable by abolishing existing epitopes or generating neoallergens. The alterations depend on the intrinsic characteristics of the protein and the type and duration of treatment. Many studies have evaluated the molecular changes induced by processes such as thermal, pressure or enzymatic treatments. As some processing treatments have been shown to decrease the allergenicity of certain foods, food processing may play an important role in developing hypoallergenic foods and using them for food tolerance induction. This work provides an updated overview of the applications and influence of several processing techniques (thermal, pressure and enzymatic digestion) on nut allergenicity for nuts, namely, hazelnuts, cashews, pistachios, almonds and walnuts.
Style APA, Harvard, Vancouver, ISO itp.
39

Balasubramaniam, V. M., i D. Farkas. "High-pressure Food Processing". Food Science and Technology International 14, nr 5 (październik 2008): 413–18. http://dx.doi.org/10.1177/1082013208098812.

Pełny tekst źródła
Streszczenie:
High pressure processing (HPP) of foods offers a commercially viable and practical alternative to heat processing by allowing food processors to pasteurize foods at or near room temperature. Pressure in combination with moderate temperature also seems to be a promising approach for producing shelf-stable foods. This paper outlines research needs for further advancement of high pressure processing technology. Kinetic models are needed for describing bacterial inactivation under combined pressure-thermal conditions and for microbial process evaluation. Further, identification of suitable surrogate organisms are needed for use as indicator organisms and for process validation studies. More research is needed to evaluate process uniformity at elevated pressure-thermal conditions to facilitate successful introduction of low-acid shelf-stable foods. Combinations of non-thermal technologies with high pressure could reduce the severity of the process pressure requirement. Likewise, processing equipment requires improvements in reliability and line-speed to compete with heat pasteurization lines. More studies are also needed to document the changes in animal and vegetable tissue and nutrient content during pressure processing, from types of packaging, and from storage.
Style APA, Harvard, Vancouver, ISO itp.
40

Anderson, M. "Physical properties of foods and food processing systems". Food Chemistry 28, nr 1 (styczeń 1988): 82–83. http://dx.doi.org/10.1016/0308-8146(88)90009-x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Bodmer, S., C. Imark i M. Kneubühl. "Biogenic amines in foods: Histamine and food processing". Inflammation Research 48, nr 6 (czerwiec 1999): 296–300. http://dx.doi.org/10.1007/s000110050463.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Skovgaard, Niels. "Physical properties of foods and food processing systems". International Journal of Food Microbiology 94, nr 1 (lipiec 2004): 106. http://dx.doi.org/10.1016/j.ijfoodmicro.2004.02.006.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Nabi, Brera Ghulam, Kinza Mukhtar, Rai Naveed Arshad, Emanuele Radicetti, Paola Tedeschi, Muhammad Umar Shahbaz, Noman Walayat, Asad Nawaz, Muhammad Inam-Ur-Raheem i Rana Muhammad Aadil. "High-Pressure Processing for Sustainable Food Supply". Sustainability 13, nr 24 (16.12.2021): 13908. http://dx.doi.org/10.3390/su132413908.

Pełny tekst źródła
Streszczenie:
Sustainable food supply has gained considerable consumer concern due to the high percentage of spoilage microorganisms. Food industries need to expand advanced technologies that can maintain the nutritive content of foods, enhance the bio-availability of bioactive compounds, provide environmental and economic sustainability, and fulfill consumers’ requirements of sensory characteristics. Heat treatment negatively affects food samples’ nutritional and sensory properties as bioactives are sensitive to high-temperature processing. The need arises for non-thermal processes to reduce food losses, and sustainable developments in preservation, nutritional security, and food safety are crucial parameters for the upcoming era. Non-thermal processes have been successfully approved because they increase food quality, reduce water utilization, decrease emissions, improve energy efficiency, assure clean labeling, and utilize by-products from waste food. These processes include pulsed electric field (PEF), sonication, high-pressure processing (HPP), cold plasma, and pulsed light. This review describes the use of HPP in various processes for sustainable food processing. The influence of this technique on microbial, physicochemical, and nutritional properties of foods for sustainable food supply is discussed. This approach also emphasizes the limitations of this emerging technique. HPP has been successfully analyzed to meet the global requirements. A limited global food source must have a balanced approach to the raw content, water, energy, and nutrient content. HPP showed positive results in reducing microbial spoilage and, at the same time, retains the nutritional value. HPP technology meets the essential requirements for sustainable and clean labeled food production. It requires limited resources to produce nutritionally suitable foods for consumers’ health.
Style APA, Harvard, Vancouver, ISO itp.
44

Isobe, Seiichiro. "Food Rheology and Processing". Seikei-Kakou 18, nr 9 (20.09.2006): 677. http://dx.doi.org/10.4325/seikeikakou.18.677_1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Gioielli, Luiz Antonio. "lnovations in food processing". Revista Brasileira de Ciências Farmacêuticas 39, nr 4 (grudzień 2003): 467–68. http://dx.doi.org/10.1590/s1516-93322003000400016.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Uma Mageshwari, S. "Technologies in Food Processing". Indian Journal of Nutrition and Dietetics 57, nr 1 (3.01.2020): 115. http://dx.doi.org/10.21048/ijnd.2020.57.1.24724.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Putnik, Predrag, i Danijela Bursać Kovačević. "Sustainable Functional Food Processing". Foods 10, nr 7 (22.06.2021): 1438. http://dx.doi.org/10.3390/foods10071438.

Pełny tekst źródła
Streszczenie:
Functional nutrition has become one of the main directions for a healthy lifestyle and sustainable food production due to its promising positive influence on health and its association with the use of raw materials of natural origin [...]
Style APA, Harvard, Vancouver, ISO itp.
48

Mickelsen, Olaf. "CHEMICALS AND FOOD PROCESSING". Nutrition Reviews 15, nr 5 (27.04.2009): 129–31. http://dx.doi.org/10.1111/j.1753-4887.1957.tb00504.x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Grandison, Alistair. "Food Proteins. Processing Applications". Food Chemistry 72, nr 1 (styczeń 2001): 135. http://dx.doi.org/10.1016/s0308-8146(00)00208-9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Chandrapala, Jayani, Christine Oliver, Sandra Kentish i Muthupandian Ashokkumar. "Ultrasonics in food processing". Ultrasonics Sonochemistry 19, nr 5 (wrzesień 2012): 975–83. http://dx.doi.org/10.1016/j.ultsonch.2012.01.010.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii