Rozprawy doktorskie na temat „Fodder and bioethanol production”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych rozpraw doktorskich naukowych na temat „Fodder and bioethanol production”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj rozprawy doktorskie z różnych dziedzin i twórz odpowiednie bibliografie.
Schiener, Peter. "Bioethanol production from macroalgae". Thesis, University of the Highlands and Islands, 2014. https://pure.uhi.ac.uk/portal/en/studentthesis/bioethanol-production-from-macroalgae(d1c0fd4d-3a91-4d17-be4f-0b7b2af86e11).html.
Pełny tekst źródłaEspinal, Bustos Raúl Uziel. "Hydrogen production from bioethanol using cobalt hydrotalcites". Doctoral thesis, Universitat Politècnica de Catalunya, 2013. http://hdl.handle.net/10803/134509.
Pełny tekst źródłaUncu, Oya Nihan. "Optimization Of Bioethanol Production From Kitchen Waste". Master's thesis, METU, 2010. http://etd.lib.metu.edu.tr/upload/3/12611373/index.pdf.
Pełny tekst źródłas yeast, Saccharomyces cerevisiae, was used in fermentation experiments conducted with and without fermentation medium at pH 4.5 and 30oC for 48 hours. Close values of glucose concentration were obtained from no pretreated and hot water treated samples. The fermentation results indicated that ethanol can be produced at similar concentrations in bioreactors with and without fermentation medium addition (p >
0.05). Thus, it is concluded that use of kitchen wastes as is disposed and without fermentation medium in ethanol fermentation could lower the cost to a large extent. In the second part of this study, the effects of solid load, which is proportional to the glucose concentration (10% to 20% (w/w)), inoculum level of Saccharomyces cerevisiae (5% to 15% (v/v)), and fermentation time (48 to 96 h) on production of bioethanol from kitchen waste were studied using Response Surface Methodology (RSM). A three-factor Box Behnken design was used. Ethanol concentration was used as a response in the resulting experimental design. High Pressure Liquid Chromatography (HPLC) method was used to determine ethanol and glucose concentrations. The statistical analysis of the constructed model developed by RSM suggested that linear effects of solid load, inoculum level, and fermentation time and quadratic effects of inoculum level and fermentation time were all significant (p <
0.05) on bioethanol production. The model was verified by additional runs, which were not present in the design matrix. It was found that the constructed model could be used to determine successfully the bioethanol concentration with >
90% precision. An optimum ethanol concentration of 32.16 g/L was suggested by the model with 20% (w/w) solid load, 8.85% (v/v) inoculum level and 58.8 hours of fermentation. Further study is needed to evaluate the optimal fermentation conditions in a large scale fermentation
Namthabad, Sainath, i Ramesh Chinta. "Robust Encapsulation of Yeast for Bioethanol Production". Thesis, Högskolan i Borås, Institutionen Ingenjörshögskolan, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:hb:diva-17499.
Pełny tekst źródłaProgram: Industrial Biotechnology
Le, Valant Anthony. "Production d'hydrogène par vaporeformage du bioethanol brut". Poitiers, 2008. http://theses.edel.univ-poitiers.fr/theses/2008/Le-Valant-Anthony/2008-Le-Valant-Anthony-These.pdf.
Pełny tekst źródłaThis work is devoted to the study of raw bioethanol catalytic steam reforming reaction to evidence the effect of impurities of raw alcohol on the catalyst performances. The Rh/MgAl2O4/Al2O3 catalyst uses evaluated in the ethanol steam reforming reaction, with or without impurities. The nature of the impurity plays a promoting effect or results in the decrease of the catalytic activity. This promoting effect can be explained by a blocking of active sites for C2H4 formation while the deactivation seems to be linked to coke deposition. Further, the study focused on the improvement of the catalyst formulation and an active, selective and stable catalyst (RhNi/Y-Al) for the hydrogen production from raw bioethanol was developped. Integration of rare earth oxide to alumina and addition of a second metal has improved the acid-base properties of the support, allowing the limitation of the coke production during raw bioethanol steam reforming
Khatiwada, Dilip. "Assessing the sustainability of bioethanol production in Nepal". Licentiate thesis, KTH, Energi och klimatstudier, ECS, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-25336.
Pełny tekst źródłaQC 20101029
Bansal, Sunil. "Evaluation of different agricultural biomass for bioethanol production". Thesis, Kansas State University, 2010. http://hdl.handle.net/2097/4623.
Pełny tekst źródłaDepartment of Grain Science and Industry
Praveen V. Vadlani
In our study, five different bioenergy crops: wheat straw (Triticum aestivum), forage sorghum stover (sorghum bicolor), switchgrass (Panicum virgatum), miscanthus (Miscanthus giganteus) and sweet sorghum baggase (Sorghum bicolor) were evaluated for bio-ethanol production at 20% (w/v) initial substrate concentration under separate hydrolysis and fermentation (SHF) process. The substrates were ground to pass through 600µm mesh size and treated with 2% (w/v) NaOH at 121oC for 30 minutes. The washed and neutralized pretreated residues were subjected to saccharification using cellulase and β-glucosidase enzymes (ratio 1:1.25) at concentrations of 25 filter paper unit (fpu)/g and 31.25fpu/g, respectively, in pH 5.0 citrate buffer in an orbital incubator shaker at 150 rpm for 72 h. The hydrolysate obtained was centrifuged and supernatant was collected for fermentation. Fermentation was performed in shake flasks using Saccharomyces cerevisiae at 10% (w/v) inoculum concentration at 100 rpm for 24 h. Alkali treatment was effective in delignification of all the biomass feedstocks. The highest percent removal on raw biomass basis was attained for sorghum stover BMR-DP (81.3%, w/w) followed by miscanthus (79.9%, w/w), sorghum stover BMR-RL (69.2 %, w/w), wheat straw (68.0 %, w/w), switchgrass (66.0%, w/w), and sorghum baggase (65.4%, w/w). Glucan saccharification varied from 56.4-72.6 % (w/w) corresponding to a glucose levels of 0.45-0.34 g/g of dry substrate. Highest saccharification was observed for wheat straw while lowest was observed for miscanthus after 48 hours of hydrolysis. A maximum final ethanol concentration of 4.3% (w/v) was observed for wheat straw followed by sorghum baggase (4.2%), sorghum RL-BMR (3.6%), miscanthus (3.4%), sorghum DP-BMR (3.4%), and switchgrass (3.2%). From our studies, it is evident that high substrate concentration used for enzymatic hydrolysis was able to provide high final ethanol concentration. The lignin content and its arrangement in different biomass feedstocks may have affected saccharification and subsequent ethanol production. Bulk density and flowability are the two major key parameters that should be addressed to reduce processing cost of biomass for bioethanol production. Pelleting of biomass can increase the bulk density, thereby reducing the handling and transportation costs. In addition to above study, I analyzed the changes in chemical composition due to pelletization and pretreatment, and its effect on ethanol production by comparing unpelleted and pelleted biomass ethanol production efficiency. Wheat straw and big bluestem pelleted and unpelleted biomass were compared for their ethanol production efficiency. Pelleted and unpelleted wheat straw (Triticum aestivum) and bigblue stem (Andropogon gerardii Vitman) at a substrate concentration of 10% (w/v) were subjected to 2% NaOH treatment at 1210C for 30 min and the resulting residues were analyzed for changes in chemical composition. Saccharification of residue was done at substrate concentration of 12% (w/v) for 48 h. The sugars obtained were fermented to ethanol using Saccharomyces cerevisiae. Pelletization did not significantly affect the chemical composition of biomass in terms of glucan, xylan and lignin content. Delignification of pelleted biomass was greater than unpelleted biomass. Pelletization did not influence final ethanol production for both substrates.
Voigt, Paul George. "Bioethanol production from waste paper through fungal biotechnology". Thesis, Rhodes University, 2010. http://hdl.handle.net/10962/d1013447.
Pełny tekst źródłaHemmati, Naghmeh. "Engineering yeast strains to enhance bioethanol production efficiency /". Available to subscribers only, 2008. http://proquest.umi.com/pqdweb?did=1674956301&sid=4&Fmt=2&clientId=1509&RQT=309&VName=PQD.
Pełny tekst źródłaNguyen, Thi Hong Minh, i Van Hanh Vu. "Bioethanol production from marine algae biomass: prospect and troubles". Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2012. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-99282.
Pełny tekst źródłaSự gia tăng giá nhiên liệu hóa thạch cùng với cảnh báo toàn cầu về biến đổi khí hậu hướng đến việc nghiên cứu tìm ra những nguồn năng lượng có thể tái tạo. Năng lượng sinh học là một trong những nguồn quan trọng được các nhà khoa học và doanh nghiệp quan tâm. Mặc dù ethanol sinh học đã được biết đến như là một trong những dạng năng lượng tái tạo quan trọng nhất để giảm thiểu các khí nhà kính và cảnh báo toàn cầu, nhưng chỉ có một số ít bài báo về nó. Trong bài tổng quan này, chúng tôi giới thiệu vắn tắt việc sản xuất ethanol sinh học từ tảo. Nó đưa ra cái nhìn sâu hơn về những khó khăn và tiềm năng hứa hẹn của sản xuất ethanol sinh học từ tảo
Jakkamsetty, Chamundeshwari, i Chaitanya Medapudi. "Stress tolerance of encapsulated yeast used for bioethanol production". Thesis, Högskolan i Borås, Akademin för textil, teknik och ekonomi, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:hb:diva-9745.
Pełny tekst źródłaPortugal-Nunes, Diogo João. "Bioethanol production from SSLs: S. stipitis vs S. cerevisiae". Master's thesis, Universidade de Aveiro, 2012. http://hdl.handle.net/10773/11279.
Pełny tekst źródłaO objectivo desta dissertação foi a comparação da produção de bioetanol de 2ª geração por Scheffersomyces stipitis (em suspensão e imobilizada) e por duas estirpes industriais de Saccharomyces cerevisiae. Os substratos utilizados para a realização das fermentações foram os Licores de Cozimento ao Sulfito Ácido (SSLs) provenientes de madeira de resinosas (HSSL) e de madeiras de folhosas (SSSL – Domsjö hydrolysate). O HSSL e o SSSL são sub-produtos da indústria de pastas de papel, resultando do processo de cozimento ao sulfito com magnésio e sódio, respetivamente. Além de lenhosulfonatos, estes SSLs contêm monossacarídeos, destacando-se a glucose, xilose e manose. O ácido acético, composto inibidor da fermentação alcoólica por leveduras, também está presente em concentrações relativamente elevadas (≥ 5.0 g . L-1). O HSSL foi pré-tratado físico-quimicamente e submetido a uma remoção biológica de inibidores com P. variotii, enquanto o Domsjö hydrolysate foi utilizado sem qualquer tratamento. S. stipitis e S. cerevisiae são leveduras extensamente estudadas devido à sua capacidade de fermentação de pentoses e hexoses, respetivamente. Num estágio prévio às fermentações dos SSLs, as leveduras foram pré-adaptadas em 60% HSSL ou 40% SSSL. Os máximos de rendimento (0.440 g etanol . g açúcares-1) e produtividade em etanol (0.885 g etanol . L-1 . h-1) foram obtidos nas fermentações com S. cerevisiae TMB 3500 em SSSL, sendo estas as variáveis com maior potencial para aplicação industrial. Embora a cultura suspensa de S. stipitis tenha resultado numa menor produtividade (0.010 g etanol . L-1 . h-1), a optimização do fornecimento de oxigénio ao biorreator deverá conduzir ao aumento da produtividade volumétrica em etanol. A imobilização celular e o controlo do pH em 5.5 nas fermentações com S. stipitis melhoraram a eficiência fermentativa ao aumentarem a produção de etanol em 1.3 e 1.6 vezes, respetivamente. Quando aplicadas simultaneamente, estas duas condições aumentaram o rendimento em etanol 2.2 vezes, sugerindo que (i) a imobilização numa matriz de alginato de cálcio protegeu a levedura dos inibidores químicos e que (ii) o controlo de pH em 5.5 foi determinante para a produção de etanol a partir de HSSL biologicamente pré-tratado. Os resultados comprovam que ambos os SSLs são potenciais substratos para a produção de bioetanol de 2ª geração usando S. stipitis ou S. cerevisiae, sob o conceito de biorefinaria.
The aim of this work was the comparison of second-generation bioethanol production by Scheffersomyces stipitis (free-culture and immobilized) and two Saccharomyces cerevisiae industrial strains, using Hardwood Spent Sulphite Liquor (HSSL) or Domsjö hydrolysate (SSSL) as substrate. HSSL and SSSL are side products of pulp and paper industry, from magnesium and sodium-based acidic sulphite pulping, respectively. Besides sulphonated lignin, SSLs contain fermentable sugars, mainly glucose, xylose and mannose. Acetic acid, a known inhibitor of ethanol fermentation by yeasts, is also present in a relatively high content (≥ 5.0 g . L-1). HSSL was previously physico-chemically pretreated and bio-detoxified with P. variotii, whereas SSSL was used without any treatment. S. stipitis and S. cerevisiae are the most widely studied pentose and hexose-fermenting yeasts, respectively. Before fermentations in SSLs, all yeast strains were pre-adapted by growing them in 60% HSSL or 40% SSSL. The highest maximum ethanol yield (0.440 g ethanol . g sugars-1) and productivity (0.885 g ethanol . L-1 . h-1) were obtained using S. cerevisiae TMB 3500 and SSSL. Suspended S. stipitis achieved a lower ethanol productivity (0.010 g ethanol . L-1 . h-1) but further optimization on the supplied oxygen in the fermentor might lead to higher ethanol productivity. Immobilization and pH control at 5.5 on S. stipitis fermentations improved the fermentation efficiency, increasing up the ethanol production by 1.3-fold and 1.6-fold, respectively. When applied simultaneously, these two conditions increased the ethanol yield 2.2-fold, suggesting that (i) immobilization with a calcium-alginate matrix protected the yeast from the inhibitory compounds and (ii) the controlled pH at 5.5 was essential for ethanol production from bio-detoxified HSSL. Results showed that both SSLs are potential substrates for the production of 2nd generation bioethanol by S. stipitis or S. cerevisiae, under the biorefinery concept.
Pereira, Susana Raquel de Sousa. "Bioethanol production from a sub-product of pulping industry". Doctoral thesis, Universidade de Aveiro, 2013. http://hdl.handle.net/10773/12134.
Pełny tekst źródłaA vida da sociedade atual é dependente dos recursos fósseis, tanto a nível de energia como de materiais. No entanto, tem-se verificado uma redução das reservas destes recursos, ao mesmo tempo que as necessidades da sociedade continuam a aumentar, tornando cada vez mais necessárias, a produção de biocombustíveis e produtos químicos. Atualmente o etanol é produzido industrialmente a partir da cana-de-açúcar e milho, matérias-primas usadas na alimentação humana e animal. Este fato desencadeou o aumento de preços dos alimentos em todo o mundo e, como consequência, provocou uma série de distúrbios sociais. Os subprodutos industriais, recursos independentes das cadeias alimentares, têm-se posicionado como fonte de matérias-primas potenciais para bioprocessamento. Neste sentido, surgem os subprodutos gerados em grande quantidade pela indústria papeleira. Os licores de cozimento da madeira ao sulfito ácido (SSLs) são uma matériaprima promissora, uma vez que durante este processo os polissacarídeos da madeira são hidrolisados originando açúcares fermentáveis. A composição dos SSLs varia consoante o tipo de madeira usada no processo de cozimento (de árvores resinosas, folhosas ou a mistura de ambas). O bioprocessamento do SSL proveniente de folhosas (HSSL) é uma metodologia ainda pouco explorada. O HSSL contém elevadas concentrações de açúcares (35-45 g.L-1), na sua maioria pentoses. A fermentação destes açúcares a bioetanol é ainda um desafio, uma vez que nem todos os microrganismos são capazes de fermentar as pentoses a etanol. De entre as leveduras capazes de fermentar naturalmente as pentoses, destaca-se a Scheffersomyces stipitis, que apresenta uma elevada eficiência de fermentação. No entanto, o HSSL contém também compostos conhecidos por inibirem o crescimento de microrganismos, dificultando assim o seu bioprocessamento. Neste sentido, o principal objetivo deste trabalho foi a produção de bioetanol pela levedura S. stipitis a partir de HSSL, resultante do cozimento ao sulfito ácido da madeira de Eucalyptus globulus. Para alcançar este objetivo, estudaram-se duas estratégias de operação diferentes. Em primeiro lugar estudou-se a bio-desintoxicação do HSSL com o fungo filamentoso Paecilomyces variotii, conhecido por crescer em resíduos industriais. Estudaram-se duas tecnologias fermentativas diferentes para a biodesintoxicação do HSSL: um reator descontínuo e um reator descontínuo sequencial (SBR). A remoção biológica de inibidores do HSSL foi mais eficaz quando se usou o SBR. P. variotii assimilou alguns inibidores microbianos como o ácido acético, o ácido gálico e o pirogalol, entre outros. Após esta desintoxicação, o HSSL foi submetido à fermentação com S. stipitis, na qual foi atingida a concentração máxima de etanol de 2.36 g.L-1 com um rendimento de 0.17 g.g-1. P. variotti, além de desintoxicar o HSSL, também é útil na produção de proteína microbiana (SCP) para a alimentação animal pois, a sua biomassa é rica em proteína. O estudo da produção de SCP por P. variotii foi efetuado num SBR com HSSL sem suplementos e suplementado com sais. A melhor produção de biomassa foi obtida no HSSL sem adição de sais, tendo-se obtido um teor de proteína elevado (82,8%), com uma baixa concentração de DNA (1,1%). A proteína continha 6 aminoácidos essenciais, mostrando potencial para o uso desta SCP na alimentação animal e, eventualmente, em nutrição humana. Assim, a indústria papeleira poderá integrar a produção de bioetanol após a produção SCP e melhorar a sustentabilidade da indústria de pastas. A segunda estratégia consistiu em adaptar a levedura S. stipitis ao HSSL de modo a que esta levedura conseguisse crescer e fermentar o HSSL sem remoção de inibidores. Operou-se um reator contínuo (CSTR) com concentrações crescentes de HSSL, entre 20 % e 60 % (v/v) durante 382 gerações em HSSL, com uma taxa de diluição de 0.20 h-1. A população adaptada, recolhida no final do CSTR (POP), apresentou uma melhoria na fermentação do HSSL (60 %), quando comparada com a estirpe original (PAR). Após esta adaptação, a concentração máxima de etanol obtida foi de 6.93 g.L-1, com um rendimento de 0.26 g.g-1. POP possuía também a capacidade de metabolizar, possivelmente por ativação de vias oxidativas, compostos derivados da lenhina e taninos dissolvidos no HSSL, conhecidos inibidores microbianos. Por fim, verificou-se também que a pré-cultura da levedura em 60 % de HSSL fez com que a estirpe PAR melhorasse o processo fermentativo em HSSL, em comparação com o ensaio sem pré-cultura em HSSL. No entanto, no caso da estirpe POP, o seu metabolismo foi redirecionado para a metabolização dos inibidores sendo que a produção de etanol decresceu.
The fossil resources are declining while the requirements of modern lifestyle for energy and materials are growing. Hence, the search for sustainable alternatives to produce fuels and chemicals from non-fossil feedstocks is increasing. Among all biofuels, ethanol is currently being industrially produced from sugar-containing biomass such as sugarcane and corn. The use of these raw-materials, belonging to human and animal feeding, resulted in the rise of prices of food all over the world and, consequently, in social disturbance. The use of industrial by-products, raw-materials outside the food chain, with polysaccharides hydrolysed to fermentable sugars, is an attractive prospect for future biotechnologies. In this context, spent sulphite liquors (SSLs), by-products from the pulp and paper industry, are promising feedstocks for bioprocessing. The composition of SSLs depends on the type of wood used by the pulp and paper industry (softwoods, hardwoods or mixture of both). Hardwood spent sulphite liquor (HSSL) is a by-product from the pulp and paper industry, rich in pentoses, which is not fully exploited for bioprocessing. The sustainable fermentation of pentoses into bioethanol is a challenge to overcome since not all the microorganisms are able to use these sugars. Scheffersomyces stipitis is one of the most efficient yeast to naturally ferment pentoses to ethanol. However, besides sugars (35-45 g.L-1), HSSL contains microbial inhibitors that limit the possibility of its bioprocessing. Therefore, the main purpose of this work was the production of bioethanol by S. stipitis from HSSL of Eucalypt globulus. To accomplish this objective two different strategies were studied. The first one was the bio-detoxification of HSSL with the filamentous fungus Paecilomyces variotii, known for growing in polluted residues. Two fermentative approaches were compared, a single batch and a sequential batch reactor (SBR). Biological treatment of HSSL to remove microbial inhibitors was more efficient in the SBR. P. variotti was able to assimilate acetic acid as well as low molecular weight phenolics such as, gallic acid and pyrogallol, recognized yeast inhibitors. This bio-detoxified HSSL was subjected to a successful fermentation by S. stipitis, attaining a maximum ethanol concentration of 2.36 g.L−1 with a yield of 0.17 g.g−1. Moreover, the biomass produced by P. variotii is a potential source of protein and other nutrients for animal feeding. Hence, SCP production by P. variotii from HSSL was studied using a SBR with and without mixed salts supplementation. The best approach for SCP production was the SBR without salts addition. The biomass produced presented 82.8 % of protein with 6 essential amino acids and 1.1 % of DNA. Therefore the produced SCP could be considered a good candidate for animal feeding and, eventually, human nutrition. This is a major advantage for a biorefinary approach, since this bio-detoxification process and the SCP production can be integrated with bioethanol production by S. stipitis. The second strategy to produce bioethanol was to improve the tolerance of S. stipitis in order to utilize the xylose present in HSSL without the removal of inhibitory compounds. A continuous reactor with increasing HSSL concentrations, between 20 % and 60 % (v/v) was operated during 382 generations of HSSL, at a dilution rate of 0.20 h-1. The resulting adapted population (POP) showed improved fermentation behaviour in 60 % HSSL when compared with the parental strain (PAR). POP achieved a maximum ethanol concentration of 6.93 g.L-1, with a maximum ethanol yield of 0.26 g.g-1. It was also showed that POP could assimilate dissolved lignin oligomers and tannins probably through activating oxidative pathways. Moreover, preculturing PAR in HSSL improved its tolerance towards the HSSL inhibitors and also the yeast fermentation ability. Nevertheless, preculturing POP in HSSL, redirected its metabolism to the assimilation of inhibitors, reducing the ethanol production.
Chen, Yanli Wang Jin. "Initial investigation on xylose fermentation for lignocellulosic bioethanol production". Auburn, Ala., 2009. http://hdl.handle.net/10415/1578.
Pełny tekst źródłavan, Zyl Leonardo Joaquim. "Engineering Parageobacillus thermoglucosidans as a robust platform for bioethanol production". University of the Western Cape, 2018. http://hdl.handle.net/11394/5845.
Pełny tekst źródłaParageobacillus thermoglucosidans is a promising “platform” organism to use in the production ofa range of useful metabolites with demonstrated ability to produce ethanol, isobutanol and polylactic acid for bio-degradable plastics. Extensive work has been done in engineering the organism for enhanced ethanol production. However, an often used and highly effective alternative pathway (pyruvate decarboxylase mediated) for ethanol production has not yet been demonstrated in P. thermoglucosidans. We first characterize two novel bacterial pyruvate decarboxylase enzymes (PDC’s) then attempt to express the more thermostable of these enzymes from Gluconobacter oxydans in P. thermoglucosidans to improve ethanol yields. Initial expression was unsuccessful. Analysis of the codon usage pattern for the gene revealed that the codon usage was suboptimal in the heterologous host P. thermoglucosidans. After codon harmonization, we could demonstrate successful expression of the enzyme at 45°C, however not at the bacterium’s optimum growth temperature of 60°C. This was concomitant with enhanced ethanol production close to the theoretical yield possible (0.5g/l).
Iye, Edward Lucky. "Assessmant of the potential for lignocellulosic bioethanol production in Nigeria". Thesis, University of Newcastle Upon Tyne, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.578550.
Pełny tekst źródłaMuniz, de Barros Arielle. "A new approach to develop cost-effective lignocellulosic bioethanol production". Thesis, University of Birmingham, 2016. http://etheses.bham.ac.uk//id/eprint/6854/.
Pełny tekst źródłaZhao, Xin. "Optimization of the production of bioethanol from duckweed (Lemna minor)". Thesis, University of East Anglia, 2014. https://ueaeprints.uea.ac.uk/54302/.
Pełny tekst źródłaTAMUNAIDU, PRAMILA. "POTENTIAL EVALUATION OF NIPA PALM (Nypa fruticans) FOR BIOETHANOL PRODUCTION". Kyoto University, 2011. http://hdl.handle.net/2433/151898.
Pełny tekst źródłaNyaata, Zachariah Obadiah. "Management of Calliandra calothyrsus in association with Pennisetum purpureum for increased dry season forage production on small holder dairy farms in central Kenya". Thesis, University of Reading, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.245005.
Pełny tekst źródłaRicciotti, Federica. "Plasma based pretreatments of lignocellulosic biomass for Biogas and Bioethanol production". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2018.
Znajdź pełny tekst źródłaNguyen, Van Dung. "ADVANCED BIOETHANOL PRODUCTION FROM NIPA PALM SAP VIA ACETIC ACID FERMENTATION". 京都大学 (Kyoto University), 2017. http://hdl.handle.net/2433/225704.
Pełny tekst źródłaExtance, Jonathan. "Bioethanol production : characterisation of a bifunctional alcohol dehydrogenase from Geobacillus thermoglucosidasius". Thesis, University of Bath, 2012. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.604564.
Pełny tekst źródłaRobus, Charles Louis Loyalty. "Production of bioethanol from paper sludge using simultaneous saccharification and fermentation". Thesis, Stellenbosch : Stellenbosch University, 2013. http://hdl.handle.net/10019.1/80251.
Pełny tekst źródłaENGLISH ABSTRACT: Whereas fuel used for transport and electricity production are mainly fossil–derived, there has recently been an increased focus on bio-fuels due to the impact of fossil derived fuel on the environment as well as the increased energy demand worldwide, concomitant with the depletion of fossil fuel reserves. Paper sludge produced by paper mills are high in lignocellulose and represents a largely untapped feedstock for bio-energy production. The aim of this study was to determine the composition, fermentability and optimum paper sludge loading and enzyme dosage for producing ethanol from paper sludge. This information was used to develop a model of the process in Aspen Plus®. The mass and energy balances obtained from the Aspen Plus® model were used to develop equipment specifications which were used to source equipment cost data. A techno-economic model was developed from the equipment cost data to assess the economic viability of the simultaneous saccharification and fermentation (SSF) process utilising paper sludge as feedstock. Nine paper sludge samples obtained from Nampak Tissue (Pty) Ltd. were evaluated in terms of ethanol production and those samples yielding the highest and lowest ethanol titres were selected for optimisation. This allowed for the determination of a range of ethanol concentrations and yields, expressed as percentage of the theoretical maximum, which could be expected on an industrial scale. Response surface methodology was used to obtain quadratic mathematical models to determine the effects of solid loading and cellulase dosage on ethanol production and ethanol yield from paper sludge during anoxic fed-batch fermentations using Saccharomyces cerevisiae strain MH1000. This approach was augmented with a multi response optimisation approach incorporating a desirability function to determine the optimal solid loading and cellulase dosage in fed-batch SSF cultures. The multi response optimisation revealed that an optimum paper sludge loading of 21% (w/w) and a cellulase loading of 14.5 FPU g-1 be used regardless of the paper sludge sample. The fact that one optimal enzyme dosage and paper sludge loading is possible, regardless the paper sludge feed stock, is attractive since the SSF process can be controlled efficiently, while not requiring process alterations to optimize ethanol production when different batches of paper sludge are processed. At the optimum paper sludge loading and cellulase dosage a minimum ethanol concentration of 47.36 g l-1 (84.69% of theoretical maximum) can be expected regardless of the paper sludge used. An economic assessment was conducted to ascertain whether ethanol production from paper sludge using SSF is economically viable. Three scenarios were investigated. In the first scenario revenue was calculated from the ethanol sales linked to the basic fuel price, whereas in the second and third scenarios liquefied petroleum gas (LPG) consumption at the paper mill was replaced with anhydrous and 95% ethanol respectively. In all the cases, paper sludge feed rates of 15, 30 and 50 t d-1 were used. The production of ethanol from paper sludge for ethanol sales (scenario 1) resulted in higher IRR and NPV values, as well as shorter payback periods, compared to replacement of LPG at the paper mill (scenarios 2 and 3). At an assumed enzyme cost of $ 0.90 gal-1 (R 2.01 litre-1), IRR values of 11%, 22% and 30% were obtained at paper sludge feed rates of 15, 30 and 50 t d-1. A sensitivity analysis performed on the total capital investment and enzyme cost revealed that the SSF process is only economically viable at a paper sludge feed rate of 50 t d-1 irrespective of the variation in capital investment. For the SSF process to be economically viable the enzyme costs must be lower than $ 0.70 gal-1 (R 1.56 litre-1) and $ 1.20 gal-1 (R 2.68 litre-1) for paper sludge feed rates of 30 and 50 t d-1 respectively. The SSF process at a paper sludge feed rate of 15 t d-1 was not economically viable even assuming a zero enzyme cost. A Monte Carlo simulation revealed that the SSF process is economically viable at a paper sludge feed rate of 50 t d-1 as a mean IRR value of 32% were obtained with a probability of 26% to attain an IRR value lower than 25%. The SSF process at lower paper sludge loadings is not economically viable as probabilities of 70% and 95% were obtained to attain IRR values lower than 25% at paper sludge feed rates of 30 and 15 t d-1 respectively. From this study it can be concluded that paper sludge is an excellent feedstock for ethanol production for the sales of ethanol at a paper sludge feed rate in excess of 50 t d-1 with the added environmental benefit of reducing GHG emissions by 42.5%.
AFRIKAANSE OPSOMMING: Aangesien dat brandstof vir vervoer en energie meestal vanaf fossiel afgeleide bronne kom, is daar onlangs ʼn groter fokus op bio-brandstowwe as gevolg van die impak van fossiel afgeleide brandstowwe op die omgewing en 'n verhoogde aanvraag na energie wêreldwyd, gepaardgaande met die uitputting van fossielbrandstof-reserwes. Papier slyk geproduseer deur papier meule is hoog in lignosellulose en verteenwoordig 'n grootliks onontginde grondstof vir etanol produksie. Die doel van die studie was om vas te stel wat die samestelling, fermenteerbaarheid, optimale papier slyk en ensiem ladings is vir die vervaardiging van etanol uit papier slyk. Die inligting was gebruik om 'n model van die proses in Aspen Plus® te ontwikkel. Die massa-en energiebalanse wat verkry is van die Aspen Plus® model was gebruik om toerusting spesifikasies te ontwikkel wat gebruik was om toerusting kostes te bereken. ‘n Tegno-ekonomiese model is ontwikkel om die ekonomiese lewensvatbaarheid van die gelyktydige versuikering en fermentasie proses “SSF” wat gebruik maak van papier slyk as grondstof te assesseer. Nege papier slyk monsters verkry vanaf Nampak Tissue (Pty) Ltd. is geëvalueer in terme van etanol produksie. Die monsters wat die hoogste en laagste etanol konsentrasies opgelewer het, is geselekteer vir optimalisering omdat dit toegelaat het vir die vasstelling van etanol konsentrasies en opbrengste, uitgedruk as persentasie van die teoretiese maksimum, wat verwag kan word in industrie. Reaksie oppervlak metodologie “RSM” is gebruik om wiskundige modelle te ontwikkel om die impak van papier slyk lading en sellulase dosis op etanol produksie en etanol opbrengs te assesseer. Die RSM is aangevul met 'n multi effek optimiserings benadering wat 'n wenslikheid funksie inkorporeer om die optimale papier slyk lading en sellulase dosis in gevoerde-enkellading SSF kulture te bepaal. Die multi effek optimalisering het getoon dat 'n optimale papier slyk lading van 21% (w/w) en 'n sellulase dosis van 14.5 FPU g-1 gebruik moet word, ongeag van die papier slyk monster. Die feit dat die optimale ensiem dosis en papier slyk lading dieselfde is ongeag die papier slyk monster, is aantreklik aangesien die SSF proses meer doeltreffend beheer kan word omdat proses veranderinge nie nodig is om die proses te optimaliseer nie. By die optimale papier slyk lading en sellulase dosis kan 'n minimum etanol konsentrasie van 47.36 g l-1 (84,69% van die teoretiese maksimum) verwag word ongeag van die papier slyk wat gebruik word. 'n Ekonomiese evaluasie is gedoen om vas te stel of etanol produksie vanaf papier slyk met behulp van SSF ekonomies lewensvatbaar is. Drie moontlikhede is ondersoek. In die eerste moontlikheid is die inkomste bereken vanaf etanol verkope gekoppel aan die basiese brandstofprys, terwyl in die tweede en derde moontlikhede, LPG by die papier meul vervang is met anhidriese en 95% etanol onderskeidelik. In al die gevalle was daar gebruik gemaak van papier slyk voer tempo’s van 15, 30 en 50 t d-1. Die produksie van etanol uit papier slyk vir verkope (moontlikheid 1) het gelei tot hoër IRR en die NPV waardes, sowel as korter terugverdien tydperke, in vergelyking met die vervanging van LPG by die papier meul (moontlikhede 2 en 3). Met ʼn ensiem koste van $ 0.90 gal-1 (R 2.01 litre-1) is IRR-waardes van 11%, 22% en 30% verkry teen papier slyk voer tempo’s van 15, 30 en 50 t d-1 onderskeidelik. 'n Sensitiwiteitsanalise uitgevoer op die totale kapitale belegging en ensiem koste het aan die lig gebring dat 'n SSF proses slegs ekonomies lewensvatbaar is op 'n papier slyk voer tempo van 50 t d-1 ongeag van die variasie in die kapitale belegging. Vir die SSF proses om ekonomies lewensvatbaar te wees, moet die ensiem kostes laer wees as $ 0.70 gal-1 (R 1.56 liter-1) en $ 1.20 gal-1 (R 2.68 liter-1) vir papier slyk voer tempo’s van onderskeidelik 30 en 50 t d-1. Die SSF proses was op 'n papier slyk voer tempo van 15 t d-1 nie ekonomies lewensvatbaar nie, selfs teen 'n ensiem koste van nul. 'n Monte Carlo-simulasie het getoon dat die SSF proses ekonomies lewensvatbaar is met 'n papier slyk voer tempo van 50 t d-1 omdat 'n gemiddelde IRR-waarde van 32% verkry is met 'n waarskynlikheid van 26% om 'n IRR-waarde laer as 25% te verkry. Die SSF proses teen papier slyk voer tempo’s van 30 en 15 t d-1 is nie ekonomies lewensvatbaar nie omdat waarskynlikhede van 70% en 95% onderskeidelik verkry is om IRR-waardes laer as 25% te kry. Daar kan van die studie afgelei word dat papier slyk 'n uitstekende grondstof is vir die produksie van etanol mits 'n papier slyk voer tempo van meer as 50 t d-1 bereik kan word. Die produksie van etanol vanaf papier slyk het die bykomende voordeel dat kweekhuis gasse (GHG) met 42.5% verminder word.
Uwinez, Clarisse. "Intensification of lignocellulosic bioethanol production process using multi-staged membrane bioreactors". Thesis, Högskolan i Borås, Akademin för textil, teknik och ekonomi, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:hb:diva-21635.
Pełny tekst źródłaDe, Farias Silva Carlos Eduardo. "Exploitation of microalgal biomass as an alternative source to bioethanol production". Doctoral thesis, Università degli studi di Padova, 2017. http://hdl.handle.net/11577/3427146.
Pełny tekst źródłaL’obiettivo generale di questo progetto di ricerca è stato di verificare la potenzialità delle microalghe come fonte alternativa di biomassa per la produzione di etanolo. In particolare, sono state discusse teoricamente, sperimentalmente e tramite simulazione di processo la coltivazione, l’idrolisi e la fermentazione della biomassa microalgale. Inizialmente, grazie ad un’ampia ricerca bibliografica ed a prove preliminari effettuate nel Laboratorio Microalghe del Dipartimento di Ingegneria Industriale della Università di Padova si è dimostrato che le specie più promettenti da studiare erano Synechococcus PCC 7002, Chlorella vulgaris e Scenedesmus obliquus, grazie alle loro elevate velocità di crescita e capacità di accumulo di carboidrati, che costituiscono le materia-prima per la produzione di etanolo (fino al 50-60% del peso secco). In particolare, l’attenta analisi della letteratura riguardo a queste specie ha consentito di verificare che: - per la produzione di carboidrati è preferibile sviluppare un processo continuo, perché richiede un solo step, mentre il processo batch ne richiede due, e perciò consente di ottenere produttività significativamente inferiori; - sono disponibili pochi lavori sulla possibilità di usare le microalghe in un processo continuo di questo tipo, mentre sono parecchi i riferimenti al processo batch; - mancano informazioni sulla capacità di produrre carboidrati da parte di S. PCC 7002. In una prima parte del lavoro sono stati quindi pianificati e condotti esperimenti in modalità batch con S. PCC 7002, per studiare come mantenere la stabilità e vitalità della coltura durante tutto il periodo di coltivazione. Si sono rilevati problemi con il controllo del pH, ed é stato approfondito l’uso di bicarbonato come fonte di carbonio assieme ad un tampone inorganico, dimostrando in un primo lavoro che il suo impiego è efficiente per la produzione di biomassa ma insufficiente per accumulare un alto contenuto di carboidrati, a causa di una significativa inibizione osmotica causata dall’alta concentrazione di sodio in soluzione. D’altro canto, l’applicazione di un tampone con sostanze organiche, generalmente usato nella coltivazione di microalghe e cianobatteri, ha evidenziato notevoli fenomeni di tossicità per questa specie. Al contrario, il tampone inorganico CO2-bicarbonato messo a punto successivamente è stato capace di garantire la stabilità del pH durante 12 giorni di coltivazione, ed ha consentito di ottenere 6 g L-1 di biomassa (peso secco) con circa il 60% di contenuto di carboidrati. La coltivazione in continuo di C. vulgaris in un fotobioreattore piatto e sottile è stata studiata per verificare la produzione di carboidrati secondo questa modalità operativa. Il lavoro ha evidenziato l’importanza della riduzione della concentrazione di azoto in entrata al reattore, che va rapportata ai valori di intensità di luce e tempo di residenza per massimizzare la produzione di carboidrati. Si sono misurati valori massimi per la produttività di biomassa e di carboidrati pari a 0.7 e 0.37 g L-1 giorno-1. La stessa procedura é stata usata nello studio del comportamento di S. obliquus, per vedere se l’approccio era valido anche durante la coltivazione all’aperto, simulando la fornitura della luce in modo stagionale. S. obliquus ha mostrato una produttività quasi tre volte maggiore che Chlorella, raggiungendo valori di 0.8 g L-1 giorno-1 (con luce costante) e di 0.71 g L-1 giorno-1 (nell’estate). Questa produttività di carboidrati, se estrapolata a dimensioni industriali, consentirebbe di ottenere tra 45–100 tonbiomass ha-1 anno-1, ben di più di quanto prodotto con le fonti tradizionali di carboidrati. Un sistema reattore-sedimentatore con riciclo parziale di biomassa è generalmente usato a livello industriale in processi di coltivazione e/o fermentazione. Questo sistema fornisce semplicità e diversi vantaggi per la produzione su larga scala. É stato quindi messo a punto un modello per la simulazione di tale processo, nel caso specifico delle microalghe, per verificare l’influenza dei gradi di libertà (tempo di residenza, rapporto di riciclo della biomassa, età della biomassa e sua velocità di sedimentazione) sulle prestazioni. I principali risultati sono: - la definizione di un rapporto di riciclo minimo Rmin, di un intervallo operativo per la stessa variabile, e di un valore massimo per la portata di spurgo di biomassa Fwmax; - la dimostrazione che la perdita di biomassa dalle sommità del sedimentatore abbassa significativamente le prestazioni del sistema; - la costruzione di grafici adimensionali che legano R a θc/θ e FI/FW (età della biomassa/tempo di residenza, e rapporto tra le portate di ingresso e di spurgo); - il confronto fra il modello rigoroso messo a punto ed il modello semplificato generalmente considerato in letteratura. Synechococcus è stata coltivata in acque reflue urbane (sintetiche e reali, con valori di COD pari a 340.0 ± 14.1 mg L-1, di azoto totale pari a 31.0 ± 1.4 mg L-1, e di fosforo totale a 8.20 ± 0.99 mg L-1), con l’obbiettivo di ottenere la depurazione da questi inquinanti. Questa specie è stata molto efficiente nella rimozione di COD, azoto e fosforo totale, raggiungendo valori sotto i limiti di legge in due giorni di coltivazione. L’acqua reflua sintetica ha evidenziato una limitazione dei micronutrienti quando la concentrazione di COD era elevata, differentemente dell’acqua reflua reale, in cui Synechococcus è cresciuta più velocemente. Successivamente, l’idrolisi e la fermentazione di biomassa microalgale sono state studiate con riferimento ai processi di saccarificazione acida ed enzimatica, e con riferimento ai microorganismi Saccharomyces cerevisiae e Pichia stipitis, rispettivamente. L’idrolisi acida, con acido solforico 0-5% v/v, è stata condotta a diverse temperature (110-130 °C) e tempi di reazione (0-60 min) partendo da 100 g L-1 di concentrazione di biomassa (Chlorella vulgaris). Gli zuccheri idrolizzati sono stati recuperati con un valore massimo pari al 92%, ottenuto con il 3% di acido e 20 min di reazione a 120 °C. La solubilizzazione di biomassa ha esibito un ordine di reazione n = 3.63 ± 0.18 ed un’energia di attivazione pari a 41.19 ± 0.18 kJ/mol. Questi valori sono significativamente diversi di quelli trovati per l’idrolisi di matrici lignocellulosiche, generalmente considerata di primo ordine con Ea = 100-200 kJ/mol, e dimostrano che la biomassa microalgale è più suscettibile al trattamento termico catalizzato all’acido in confronto ai lignocellulosici. Un’equazione basata sulla cinetica di Michaelis-Menten modificata per tenere conto della concentrazione di acido è riuscita a modellare tutti i risultati sperimentali, con un valore della costante di semi-saturazione per la biomassa PolKM pari al 42% della concentrazione iniziale, e con una resa di fermentazione di circa il 60%. Prima di realizzare l’idrolisi enzimatica, si é reso necessario procedere ad un’ottimizzazione del pretrattamento della biomassa. È stata studiata l’ultrasonicazione applicando un piano statistico di sperimentazione su tre livelli con 3 esperimenti centrali (in tutto si sono condotte 11 prove). Le variabili ottimizzate sono state l’intensità, il tempo di pretrattamento e la concentrazione di biomassa. I risultati hanno dimostrato che l’intensità e il tempo di trattamento sono più importanti e consentono di ottenere un recupero degli zuccheri superiore al 90%, in 4-8 ore. Si é visto che l’energia spesa nel processo di ultrasonicazione non è direttamente collegata con l’efficienza dell’idrolisi, per cui questa può essere condotta efficientemente anche riducendo il consumo di energia nel pretrattamento. Infine, si sono eseguiti esperimenti di fermentazione dell’idrolizzato ad etanolo con le due specie menzionate (S. cerevisiae e P. stipitis). Si sono ottimizzati la concentrazione di inoculo (7.5 g L-1) ed il consorzio (25% Pichia + 75% Saccharomyces) per avere una produttività tra 5 e 10 g L-1 ora-1 (prossimo al valore industriale). Si è però visto che le velocità di fermentazione sono però più basse a causa di una inibizione dovuta alla accresciuta salinità dell’idrolizzato, un fattore. Per questo motivo, la parte di fermentazione necessita di essere più approfondita al fine di validare l’impiego di questo tipo di biomassa a livello industriale.
Wan, Md Zain Wan Salwanis. "Bioprocess intensification : production of bioethanol from Saccharomyces cerevisiae W303 in monolithic microreactor". Thesis, University of Newcastle upon Tyne, 2013. http://hdl.handle.net/10443/3164.
Pełny tekst źródłaNdaba, Busiswa. "Microwave assisted pretreatment of sweet sorghum bagasse for bioethanol production / Busiswa Ndaba". Thesis, North-West University, 2013. http://hdl.handle.net/10394/9806.
Pełny tekst źródłaThesis (MSc (Engineering Sciences in Chemical Engineering))--North-West University, Potchefstroom Campus, 2013.
Hills, Christopher. "Acetate metabolism in Geobacillus thermoglucosidasius and strain engineering for enhanced bioethanol production". Thesis, University of Bath, 2015. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.665397.
Pełny tekst źródłaFernandes, Talita Ferreira Marques da Silva. "Bioethanol production from lignocellulosic materials mixtures using recombinant strains of Saccharomyces cerevisiae". Doctoral thesis, ISA/UL, 2015. http://hdl.handle.net/10400.5/9254.
Pełny tekst źródłaKhin, San Jessica. "Production of bioethanol from wheat straw hydrolysate using reverse membrane bioreactor (rMBR)". Thesis, Högskolan i Borås, Akademin för textil, teknik och ekonomi, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:hb:diva-21239.
Pełny tekst źródłaGalafassi, S. "Bioethanol production from renewable sources using yeasts of the Dekkera/Brettanomyces group". Doctoral thesis, Università degli Studi di Milano, 2009. http://hdl.handle.net/2434/64132.
Pełny tekst źródłaHassan, El Sayed Rabie El Sayed. "Use of Ionic Liquids for the Treatment of Biomass Materials and Biofuel Production". Thesis, Université de Lorraine, 2014. http://www.theses.fr/2014LORR0043/document.
Pełny tekst źródłaThe replacement of conventional organic solvents by a new generation of solvents less toxic, less flammable and less polluting is a major challenge for the chemical industry. Ionic liquids have been widely promoted as interesting substitutes for traditional solvents. The purpose of this work is to study the solubility of carbohydrates or biomass based materials in ionic liquids in order to overcome the lack of experimental data on phase equilibria of {biomass or carbohydrate-ILs} mixtures. Solubility data were successfully correlated using NRTL and UNIQUAC thermodynamic models. It was found that the antisolvent method is a good technique for the extraction of carbohydrates from ILs. Ionic liquids could be then recycled successfully for reuse. The fundamental natures of the interaction between carbohydrates and ionic liquids were investigated using ab initio calculations. The theoretical results are in good agreement with experimental data. It was concluded that ionic liquids mainly interact with carbohydrates via hydrogen bonding formation. This confirms that the process of dissolution and regeneration of cellulose in ionic liquids is accompanied only with a physical change. The preatreatment of miscanthus with ionic liquids resulted in the regeneration of amorphous, porous cellulose almost free of lignin, which is suitable for enzymatic hydrolysis and fermentation processes. A successful ethanol production was obtained with an overall ethanol yield reached up to 150 g ethanol kg-1 miscanthus. This indicates the high performance of ionic liquids in converting biomass feedstocks into biofuel. Indeed, applying the cellulose extraction processes on the industrial scale could be of great interest
Neupane, Binod. "Incorporating Biodiversity Impact into Environmental Life Cycle Assessment of Woodchips for Bioethanol Production". Fogler Library, University of Maine, 2011. http://www.library.umaine.edu/theses/pdf/NeupaneB2011.pdf.
Pełny tekst źródłaNasidi, Muhammad. "The potential of sorghum as a feedstock source for bioethanol production in Nigeria". Thesis, Abertay University, 2013. https://rke.abertay.ac.uk/en/studentTheses/64907acc-93ba-49d4-80e8-0ad4674e808a.
Pełny tekst źródłaKhatiwada, Dilip. "Assessing the sustainability of bioethanol production in different development contexts: A systems approach". Doctoral thesis, KTH, Energi och klimatstudier, ECS, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-125618.
Pełny tekst źródłaIntresset för ökad exploatering, produktion och användning av bioenergi och biobränslen har föranletts av den kontinuerliga utmattningen av fossila bränslen, den globala agendan för att motverka klimatförändringar samt hoten mot energisäkerheten. Tillgången till moderna bioenergibärare, effektivt framställda från lokal råvara, är grundläggande för ekonomisk tillväxt, landsbygdsutveckling samt för hållbar utveckling i utvecklingsländer. Användandet av bioenergi- och biobränsleteknologi har varierat markant världen över. De minst utvecklade länderna (LDCs) samt övriga utvecklingsländer är fortfarande beroende av traditionella biomassabaserade tekniker till stor utsträckning. Dessa tekniker har låg effektivitet och är ofta sammankopplade med stora miljö- och hälsoskador. Samtidigt främjar tillväxtekonomier och utvecklingsländer biobränsleindustrin och internationell handel progressivt. Länderna arbetar även för att biobränslen ska bli ett hållbart alternativ genom att utveckla hållbarhetskriterier. Den här avhandlingens mål är att adressera hållbarheten hos bioetanolproduktion från sockerrör, en av bioetanolens nyckelråvaror. Målet kommer att nås genom analyser av industrins nationella utvecklingsmiljö samt miljö- och klimatmässiga begränsningar som härstammar från den geopolitiska situationen och den ekonomiska tillväxten i landet, samt analyser av teknologier i den agro-industriella utvecklingen. De huvudsakliga metoder som använts är livscykelanalys (LCA), systemstudier och tekno-ekonomisk optimering. Avhandlingen adresserar primärt tre nyckelfrågor för att analysera hållbarheten hos bioetanolproduktion. Den första forskningsfrågan belyser hur nyckelparametrar påverkar hållbarheten hos produktion och användning av bioetanol i låginkomstländer, med fallstudien Nepal som utgångspunkt. Nettoenergi- och växthusgasbalanser identifieras som de huvudsakliga hållbarhetskriterierna för sockerrör-melass-baserad bioetanol (Artikel I och II). Livscykelstudiernas resultat visar att produktionen av bioetanol är energieffektiv sett från den mängd fossila bränslen som produktionen av förnybart bränsle krävt. Växthusgasutsläppen från produktion och förbränning av etanol är dessutom lägre än utsläppen från bensin. Studien utvärderar de socio-ekonomiska och miljö- och klimatmässiga fördelarna med produktion och användning av etanol i Nepal. Slutsatsen är att indikatorerna för hållbarhet ligger i linje med målen för hållbar utveckling (Artikel III). Bedömningen av biobränslens (melass-baserad etanol) hållbarhet i Nepal är den första studien i sitt slag för låginkomstländer. Studien motiverar dessutom en bedömning av potentialen för etanolproduktion i andra LDCs, speciellt i de afrikanska länderna söder om Sahara. Den andra forskningsfrågan kräver en kritisk utvärdering av metoderna för hur livscykelutsläpp från brasiliansk sockerrörsetanol redovisas i europeiska och amerikanska regleringar (Artikel IV). Artikeln, som påvisar likheter och skillnader mellan regionerna, visar att växthusgasutsläpp blir en mer och mer viktig del i hur hållbarhetskriterier definieras när expansionen av biobränsleproduktion och internationell handel diskuteras. Olika metoder för redovisningen av växthusgasutsläpp leder dock till mycket olika resultat och tolkningar. Det är nödvändigt att etablera en enhetlig metod för redovisning av växthusgasutsläpp för att skapa ett kriterium som möjliggör internationella jämförelser. Avhandlingen identifierar de mest beaktansvärda problemen för att etablera en enhetlig metod: N2O-utsläpp från jordbruksprocesser, tillgodoräknande av bioelektricitet inom bränsleproduktion, samt modelleringsmetoder för att uppskatta utsläpp relaterade till direkt och indirekt landanvändning (LUC och iLUC). Den tredje forskningsfrågan utreder hur industrin för sockerrörsbioetanol kan utvecklas från ett energisäkerhetsperspektiv, med speciell hänsyn till diversifieringen av energikällor. I Artikel V presenteras hur bioelektricitetsproduktion och vattenkraft kan komplettera varandra i fallen Nepal och Brasilien. Bioelektricitet skulle kunna bidra markant till tillförseln av elektricitet i båda länderna under förutsättning att de politiska och institutionella förutsättningarna är fördelaktiga. Slutligen utförs en tekno-ekonomisk studie för att identifiera den optimala teknologin för produktion av andra generationens (2G) bioetanol och/eller bioelektricitet. Studien görs för merparten av sockerrörsbioraffinaderierna i Brasilien och utgör Artikel VI. Studien tar fullskaliga livscykelkostnader i beaktande samt utsläpp och internationell handel. Studien visar att det är värt mödan att uppgradera befintliga sockerrörsbioraffinaderier. De dominerande påverkansfaktorerna för valet av teknologi och potentialen för bioetanolhandel är energipriser, typ av kraftproduktionssystem, biobränslestöd och koldioxidskatt, samt processernas effektivitet. Kortfattat behandlar den här avhandlingen bioetanolproduktionens och bioetanolindustrins hållbarhet. Avhandlingen ger insikt i dess potentiella roll för att motverka klimatförändringar, förbättra energisäkerhet samt främja hållbar utveckling i olika nationella sammanhang. Avhandlingen bidrar dessutom med metodutveckling i hur hållbarheten av biobränsleproduktion bedöms inom ramen för energi- och klimatpolicy.
QC 20130813
Makaula, Didi Xhanti. "Comparative analysis of sorghum and other South African grains for sustainable bioethanol production". Thesis, University of the Western Cape, 2012. http://hdl.handle.net/11394/4560.
Pełny tekst źródłaThe depletion of oil reserves and the constant discharge of greenhouse gasses (GHG) that are associated with global warming have forced both political and scientific sectors to pursue alternative, renewable and sustainable fuels that will be blended with petrol and ultimately replace it as the fuel of choice. Bioethanol is a form of fuel that is obtained from natural materials such as biomass. Starch and sugar containing materials are the primary carbon sources for bioethanol production and a range of feedstocks are currently being exploited for this purpose worldwide.This study was aimed at measuring, comparing and analyzing fermentable sugars liberated by sorghum and three other grain crops (maize, barley and wheat) that are grown in South Africa and subsequently analyze ethanol yield after fermentation. Starch was extracted from sorghum, maize, barley and wheat via hot water treatment and hydrolyzed by use of !-amylase, gluco-amylase and a cocktail of both enzymes under various conditions to determine optimum hydrolysis conditions. The resultant liberated soluble sugars were measured with a pocket refractometer and High Performance Liquid Chromatography (HPLC) respectively. Hydrolysates obtained under optimum conditions were fermented with various ethanol producing microbial strains and a high-performing strain was selected. The selected high-performing strain (Saccharomyces cerevisiae NT 53) was used to ferment different grain hydrolysates (sorghum, maize, barley and wheat).The working volumes of the solutions were increased ten-fold (small-scale) and experiments were performed using sorghum grains as substrates and alcohol content was measured with an Alcolyzer Wine M instrument. The optimum hydrolysis conditions for the grain crops were determined and it was found that the enzymes performed well at 70°C and starch was hydrolyzed within the first hour.Sixty grams per litre (60 g/L) of grain solution produced a maximum of 50.8 g/L of glucose when treated with the cocktail treatment. However gluco-amylase facilitated a similar production, at 47.8 g/L glucose. Sorghum and maize produced high glucose amounts and subsequent ethanol amounts, and maximum fermentation efficiencies of 87 % and 98 % respectively when fermented with the high performing NT 53 strain. The NT 53 strain was compared with commercial baker’s yeast and they yielded similar ethanol amounts across the grain types. Under small-scale conditions, sorghum retained the consistency of yielding similar glucose amounts compared to laboratory-scale (50ml) conditions and when analyzed with the Alcolyzer, sorghum yielded a maximum alcohol content of approximately 2 % v/v. This study also showed that gluco-amylase alone was sufficient for starch hydrolysis and sorghum a more favourable and less expensive crop for ethanol production in South Africa.
Wang, Lei. "Technology development, economic feasibility and environmental sustainability of bioethanol production from waste papers". Thesis, Imperial College London, 2012. http://hdl.handle.net/10044/1/9613.
Pełny tekst źródłaMutengwe, Rudzani Ruth. "Isolation and characterisation of a xylanase producing isolate from straw-based compost". Thesis, University of the Western Cape, 2012. http://hdl.handle.net/11394/4495.
Pełny tekst źródłaLignocellulosic biomass, a waste component of the agricultural industry, is a promising source for use in bioethanol production. Due to a complex structure, the synergistic action of lignocellulosic enzymes is required to achieve complete digestion to fermentable sugars. This study aimed to isolate, identify and characterise novel lignocellulase producing bacteria from thermophilic straw-based compost (71°C). Colonies with different morphological characteristics were isolated and screened for lignocellulosic activity. A facultative aerobic isolate RZ1 showed xylanase, cellulase and lipase/esterase activity. In addition to these activities, it was also able to produce proteases, catalases, amylases and gelatinases. RZ1 cells were motile, rod-shaped, Gram positive and endospore forming. The growth temperature of isolate RZ1 ranged from 25-55°C with optimal growth at 37°C. The 16S rRNA gene sequence was 99% identical to that of Bacillus subtilis strain MSB10. Based on the biochemical and physiological characteristics and 16S rRNA gene sequence, isolate RZ1 is considered a member of the species B. subtilis. A small insert genomic library with an average insert size of 5 kb was constructed and screened for lignocellulosic activity. An E.coli plasmid clone harbouring a 4.9 kb gDNA fragment tested positive for xylanase activity. The xyl R gene was identified with the aid of transposon mutagenesis and the deduced amino acid sequence showed 99% similarity to an endo-1-4-β-xylanase from B. pumilus. High levels of xylanases were produced when isolate RZ1 was cultured (37°C) with beechwood xylan as a carbon source. On the other hand, the production of xylanases was inhibited in the presence of xylose. Marked xylanase activity was measured in the presence of sugarcane bagasse, a natural lignocellulosic substrate. While active at 50°C, higher xylanase activity was detected at 37°C. Isolate RZ1 also produced accessory enzymes such as β-xylosidases and α-L-arabinofuranosidases, able to hydrolyse hemicellulose.
Mataveia, Gracinda Andre. "The use of moringa oleifera and leucaena leucocephala tree leaves to improve smallholder goat production in Mozambique". Thesis, University of Pretoria, 2019. http://hdl.handle.net/2263/77842.
Pełny tekst źródłaThesis (PhD)--University of Pretoria, 2019.
Animal and Wildlife Sciences
PhD
Unrestricted
Chen, Wei-Jen, i 陳韋任. "Bioethanol Production from Bagasse". Thesis, 2007. http://ndltd.ncl.edu.tw/handle/23191608141211998064.
Pełny tekst źródła臺灣大學
生物產業機電工程學研究所
95
Bioethanol is a kind of clean and renewable energy which can be used directly or mixed with gasoline as fuel on vehicles. In this study, sugarcane bagasse which contained 33.34% cellulose, 22.11% semicellulose, and 6.49% lignin was pretreated by 0.25 M sulfuric acid under 95℃ and 1 atm pressure for 60 mins. After pretreatment, dried solid material was hydrolyzed by mixing enzymes of cellulase from Trichoderma reesei C2730 (Celluclast 1.5L) and cellobiase from Aspergillus niger (Novozyme 188) under conditions of pH 4.6, 50℃ in 80 rpm shaking water bath for 24 hours. Different enzyme loadings and substrate ratios were tested to find out the optimum parameters. Hydrolysate was then fermented with Saccharomyces cerevisiae BCRC 21685 under conditions of pH 4.6, 30℃ for 24-48 hours. The effect of additional glucose, sterilization, and detoxification were investigated in this step. As result, 0.52 mg/mL of glucose and 4.29 mg/mL of xylose concentrations were observed in liquid fraction and the content of solid material showed that 91.85% semicellulose and 1.46% cellulose was removed in pretreatment. In hydrolysis step, the enzyme loading of 5 mL Celluclast 1.5L plus 1 mL Novozyme 188 represented the best balance between economy and efficiency. 339.21 mg/mL of yield and 49.25% of conversion ratio were obtained under this enzyme loading with 1% substrate ratio and rising the substrate ratio did not help improving both of them. In fermentation step, without sterilization and detoxification, 26.7 g/L of glucose remains after 48 hours fermentation and ethanol yield was 0.367 g ethanol / g glucose, corresponding to 72% of theoretical ethanol yield. With sterilization and detoxification, glucose was fermented within 24 hours. The ethanol yield was 0.43 g ethanol/g glucose, , corresponding to 84% of theoretical ethanol yield. With evaporation to enhance the glucose concentration, the glucose concentration did not decrease to zero until after 30h. The ethanol concentration was 40.7 g/L, corresponding to 79% of theoretical ethanol yield.
Svoboda, Jiří. "Effect of bulk fodder beet goat milk production". Master's thesis, 2013. http://www.nusl.cz/ntk/nusl-169868.
Pełny tekst źródłaTseng, Shang-Che, i 曾上哲. "Bioethanol production from the residues of pineapple cake production". Thesis, 2012. http://ndltd.ncl.edu.tw/handle/19742793785924783346.
Pełny tekst źródła國立中興大學
食品暨應用生物科技學系所
100
Pineapple is the one of important Taiwan economic fruits which can plant in all seasons. Pulp can be used to eat and process. In our research ,pineapple cake factory can produce 48,000 kilograms pineapple peel in each day. It was wasted that peel used to regard as feed and fertilizer. Our research is anticipated to use liquid squeezed from pineapple cake category peel which were wasted to ferment bioethanol. We expect to get high bioethanol conversion rate in short time and low cost by discussing the factor which can affect fermenting efficiency. The results show that it can squeeze 800 mL liquid from each kilograms pineapple peel in experiment step. And it can also show that adding medium included 10% (v/v) Saccharomyces cerevisiae BCRC 22460 ferment 24 hour can get about 4.5~ 5% (v/v) ideal ethanol concentration in condition without controlling pH value, adding nitrogen source and maintaining room temperature. The pH value have not significantly changed in period of the experiment. Then we use small stirring fermenter to imitate the condition of producing considerable bioethanol; it show that the formula made from ethanol fermenting experiment can be suitable in stirring fermentor. And finally, due to reducing the cost to incubating new medium and consuming time, we use fermentation broth originated from previous fermented experiment. Finally results show that the method is feasible. If we use our methods, factory can produce about 700,000 liters bioethanol each day. According to all experiments, we can explain that the liquid squeezed form pineapple peel can ferment right away. Besides it have potential to develop, it can be executed to produce ethanol by larger fermentor. We expect that it can evacuate by comparing with higher efficiency continuous fermenter in future and finally it can establish low cost, higher efficiency objective model to achieve both of environmental protection and solving energy problem.
Wu, Chung-Hsan, i 吳仲翔. "Bioethanol production from Yarrowia lipolytica Po1g biomass". Thesis, 2012. http://ndltd.ncl.edu.tw/handle/scr78y.
Pełny tekst źródła國立臺灣科技大學
化學工程系
100
Bioethanol has become an important alternative energy source. Bioethanol production from the yeast Yarrowia lipolytica biomass was studied. The effects of biomass to acid solution ratio (1:8 – 1:15) temperature (90 - 150oC) and H2SO4 concentration (2 - 15% w/w) on the saccharification of biomass at a hydrolysis time of 1 h were investigated. A maximum glucose concentration of 35.89 g/L can be produced from defatted biomass, biomass to acid solution ratio equal to 1:10 and using 6% H2SO4 at 120oC. Subcritical water (SCW) pretreatment has negligible effect on maximum glucose concentration achievable. Only 14.53 g/L glucose can be produced using 6% H2SO4 at 120oC if un-defatted biomass was used. The highest ethanol concentration achieved was 13.39 g/L with a corresponding ethanol yield of 0.084 g/g dry biomass (0.38 g ethanol/g glucose).
Huang, Li-Ting, i 黃莉婷. "Modeling and Optimization of Bioethanol Production Processes". Thesis, 2013. http://ndltd.ncl.edu.tw/handle/48606236920822060799.
Pełny tekst źródła國立臺灣科技大學
化學工程系
101
Bioethanol is the most widely used biofuel for transportation. It's an approach to reduce consumption of crude oil and environmental pollution. Lignocellulosic biomass is the most promising feedstock considering its great availability and low cost. In the process of fermentation, we use the yeast Kluyveromyces marxianus UFV-3 to produce bioethanol and the fermentation of glucose and xylose simultaneously. We establish a streamlined mathematical model to simulate bioethanol production and consider the effect of the different medium status. Parameters of model were obtained by using Genetic Algorithms. The optimization of the procedure is working in the flow reactor system and using Genetic Algorithms to find the highest productivity and the amount of bioethanol.
Pereira, Luciano Francisco Borges. "Bioethanol: robust production strains for process intensification". Doctoral thesis, 2015. http://hdl.handle.net/1822/36633.
Pełny tekst źródłaThe production of bioethanol operating at high substrate loading improves the overall process productivity and reduces initial capital investment and water consumption comparing to processing at normal gravity. However, there are some inhibition issues that become more severe under these operation conditions. This thesis focused on the development of efficient 1st and 2nd generation bioethanol production processes running at high substrate concentration. Driven by the promising results obtained in 1st generation Very High Gravity (VHG) processes, an approach to the 2nd generation processes was then implemented aiming a better understanding of the physiological responses of yeast under stressful conditions. Aiming the fulfilment of Saccharomyces cereviae nutritional requirements for maximal ethanol production, a factorial design approach was successfully employed to optimize a high-level glucose medium (330 g/L) based in Corn step liquor (CSL) and other low-cost nutrients. Using the optimized medium (g/L: CSL 44.3, urea 2.3, MgSO4·7H2O 3.8 and CuSO4·5H2O 0.03), PE-2 and CA1185 isolates exhibited the best overall fermentation performance, among the eleven laboratory and industrial background strains tested. PE-2 and CA1185 isolates produced high ethanol titres (up to 19 %, v/v) with high ethanol batch productivity (> 2.3 g/Lh). These outstanding ethanol titres obtained by industrial strains were accompanied by an increased content of sterols (2 to 5- fold), glycogen (2 to 4-fold) and trehalose (1.1-fold), relatively to CEN.PK 113-7D laboratory strain, which demonstrate their robustness to cope with VHG stresses. Driven by the detailed physiological information of these industrial isolates, a VHG repeated-batch fermentation system, using the PE-2 strain, was successfully operated during fifteen consecutive cycles, attaining an average ethanol titre of 17.1% (v/v) and batch productivity of 3.51 g/Lh. To further understand how the inhibitory conditions influence the physiology and metabolism of the producing cells at the genetic level, an approach for identifying key genes common to relevant stresses in bioethanol fermentations and validating the identified genes under industrial relevant fermentation conditions, was conducted. Primarily, the intersection of chemogenomic data previous obtained in single stress phenotypic analysis allowed the identification of eight genes simultaneously involved in yeast tolerance to VHG-related stresses. Comparative VHG fermentation tests, showed that five of them are required for maximal fermentation performance: genes BUD31 and HPR1 were found to lead to the increase of both ethanol yield and fermentation rate, while PHO85, VRP1 and YGL024w genes were required for maximal ethanol production. Aiming a complementary approach to identify key genes and confirm their role in inhibitor tolerance, a genome-wide survey of S. cerevisiae genes implicated in resistance to an industrial Wheat Straw Hydrolysate (WSH) was conducted. The results highlight the genes associated to vitamin metabolism, mitochondrial and peroxisomal functions, ribosome biogenesis and microtubule biogenesis and dynamics among the newly found determinants of WSH resistance. Moreover, comparing the results of WSH fermentations, with the genes identified in WSH genome-wide survey, PRS3, VMA8, ERG2, RAV1 and RPB4 were highlighted as key genes on yeast tolerance and fermentation of industrial WSH. Robust industrial isolates were further evaluated in fermentation of Eucalyptus globulus wood hydrolysate (114 g/L glucose). PE-2 isolate was able to resourcefully degrade furfural and HMF inhibitors attaining a remarkable final ethanol titre of 6.9% (v/v) and productivity of 0.8 g/L.
A produção de bioetanol através da operação a alta concentração de substrato aumenta a produtividade global do processo e reduz o capital de investimento inicial e consumo de água comparando com o processamento a concentração normal. No entanto, existem alguns problemas de inibição que se tornam mais graves nestas condições de operação. Esta tese focou-se no desenvolvimento de processos eficientes de produção de bioetanol de primeira e segunda geração recorrendo a elevada concentração de substrato inicial. Devido aos promissores resultados obtidos nos processos “Very High Gravity, (VHG)” de primeira geração, uma abordagem aos processos de segunda geração foi então implementada visando um melhor entendimento das respostas fisiológicas da levedura em condições de stress. Com o objectivo de preencher os requisitos nutricionais da levedura Saccharomyces cerevisiae para uma máxima produção de etanol, uma metodologia de desenho factorial foi aplicada com sucesso para otimizar um meio de cultura com elevados níveis de glucose (330 g/L) baseado em “Corn steep liquor, (CSL)” e outros nutrientes de baixo custo. Usando o meio de cultura otimizado (g/L: CSL 44.3, ureia 2.3, MgSO4·7H2O 3.8 e CuSO4·5H2O 0.03), os isolados de levedura PE-2 e CA1185 apresentaram a melhor performance global de fermentação, entre as onze estirpes laboratoriais e industriais testadas. Os isolados PE-2 e CA1185 produziram elevados teores de etanol (mais de 19% v/v) com elevada produtividade (>2.3 g/Lh). Estes notáveis teores de etanol obtidos pelas estirpes industriais foram acompanhados por um aumento no teor de esteróis (2 a 5 vezes), glicogénio (2 a 4 vezes) e trealose (1.1 vezes), relativamente à estirpe laboratorial CEN.PK 113-7D, o que demonstra a sua robustez para superar o stress em condições “VHG”. Motivado pela detalhada informação fisiológica obtida destes isolados industriais, um sistema de fermentação com reciclagem de levedura em condições “VHG”, usando a estirpe PE-2, foi operado com sucesso durante quinze ciclos consecutivos, obtendo-se um teor de etanol médio de 17.1% (v/v) e produtividade de 3.51g/Lh. Para melhor compreender a forma como as condições inibitórias influenciam a fisiologia e metabolismo das células produtoras a nível genético, foi realizada uma abordagem para identificar genes chave comuns aos diferentes stresses em fermentações de bioetanol e validar os genes identificados em condições de fermentação relevantes a nível industrial. Primeiramente, o cruzamento de dados de análise quimiogenómica, previamente obtidos em análises de fenótipo a um único stress, permitiram a identificação de oito genes simultaneamente envolvidos na tolerância da levedura aos stresses relacionados com as condições “VHG”. Testes comparativos de fermentação em condições “VHG”, mostraram que cinco destes genes eram necessários para um desempenho fermentativo máximo: a presença dos genes BUD31 e HPR1 levaram ao aumento dos rendimentos em etanol e taxas de fermentação, enquanto que os genes PHO85, VRP1 e YGL024w mostraram ser necessários para uma máxima produção de etanol. Visando uma abordagem complementar para identificar genes chave e confirmar o seu papel na tolerância aos inibidores, foi realizada uma pesquisa baseada numa análise à escala do genoma de genes S. cerevisiae envolvidos na resistência a um hidrolisado de palha de trigo. Os resultados destacaram os genes associados ao metabolismo das vitaminas, funções da mitocôndria e peroxissomas, biogénese dos ribossomas e biogénese dos microtúbulos, entre os novos determinantes na resistência aos hidrolisados de palha de trigo. Além disso, comparando os resultados das fermentações em hidrolisado de palha de trigo, com os genes identificados na análise à escala do genoma, distinguiram-se os genes PRS3, VMA8, ERG2, RAV1 e RPB4 como genes chave na tolerância da levedura e fermentação de hidrolisados de palha de trigo industriais. Isolados de leveduras industriais foram avaliados na fermentação de um hidrolisado de “Eucalyptus globulus” (114 g/L). O isolado PE-2 foi capaz de degradar eficientemente os inibitórios furfural e HMF obtendo-se um notável teor de etanol final de 6.9% (v/v) e produtividade de 0.8 g/Lh.
Fundação para a Ciência e a Tecnologia PhD grant SFRH/BD/64776/2009
PROBIOETANOL PTDC/BIO/66151/2006
GlycoCBMs PTDC/AGR-FOR/3090/2012 - FCOMP-01-0124-FEDER-027948
Keshwani, Deepak Radhakrishin. "Microwave pretreatment of switchgrass for bioethanol production". 2009. http://www.lib.ncsu.edu/theses/available/etd-02062009-105444/unrestricted/etd.pdf.
Pełny tekst źródłaCheng, Yao-li, i 程耀立. "Bioethanol production from local candidate energy plants". Thesis, 2009. http://ndltd.ncl.edu.tw/handle/68060415340914548935.
Pełny tekst źródła國立臺南大學
材料科學系碩士班
97
Fermentation sugar concentrations and ethanol yield related to two kinds of energy plants, traditional agriculture wastes (bagasse and corn leaves) and local candidate plants (Pennisetum purpureum、Leersia hexandra and Phragmites communis), were investigated for their use in ethanol production. In this study, the fermentation sugar highest concentrations 9.23mg/ml from corn leaves. In addition to ethanol concentrations in Pennisetum purpureum highest then others plants because it had slightly higher ethanol yield. Traditional yeast produced 0.044g ethanol/ g raw material , corresponding to 14.19% of theoretical ethanol yield. SEM results indicated that autoclave reactor with dilute acid pretreatment increased surface area and pore size. It is postulated that these physical changes enhance fermentation sugar concentrations in the dilute acid treated raw materials.
邱振庭. "Production technology and cost analysis of bioethanol". Thesis, 2012. http://ndltd.ncl.edu.tw/handle/67340626506579899187.
Pełny tekst źródłaGabriel, Kerron Jude. "Modeling and Optimization of a Bioethanol Production Facility". Thesis, 2011. http://hdl.handle.net/1969.1/ETD-TAMU-2011-08-9953.
Pełny tekst źródła