Gotowa bibliografia na temat „Fodder and bioethanol production”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Fodder and bioethanol production”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Fodder and bioethanol production"
Kongkeitkajorn, Mallika Boonmee, Chanpim Sae-Kuay i Alissara Reungsang. "Evaluation of Napier Grass for Bioethanol Production through a Fermentation Process". Processes 8, nr 5 (11.05.2020): 567. http://dx.doi.org/10.3390/pr8050567.
Pełny tekst źródłaDanilova, Katerina, Sergey Oliynichuk i Sergey Verbytskyi. "Bioutilization of the distillery stillage of different grain species from bioethanol production". Ecological Questions 34, nr 4 (17.07.2023): 1–12. http://dx.doi.org/10.12775/eq.2023.050.
Pełny tekst źródłaFabbrin, Eliseu G., Yolanda Gogorcena, Átila F. Mogor, Idoia Garmendia i Nieves Goicoechea. "Pearl millet growth and biochemical alterations determined by mycorrhizal inoculation, water availability and atmospheric CO2 concentration". Crop and Pasture Science 66, nr 8 (2015): 831. http://dx.doi.org/10.1071/cp14089.
Pełny tekst źródłaPéter Jobbágy. "Comparison of Added Value between Bioethanol Production and the Most Important Animal Production Branches Based on Concentrated Fodder, as Potential Competitors". Acta Agraria Debreceniensis, nr 42 (22.12.2010): 111–15. http://dx.doi.org/10.34101/actaagrar/42/2669.
Pełny tekst źródłaKovtunova, N. A., i V. V. Kovtunov. "THE USE OF SWEET SORGHUM AS A SOURCE OF NUTRITIOUS SUBSTANCES FOR HUMAN (LITERATURE REVIEW)". Grain Economy of Russia, nr 3 (17.07.2019): 3–9. http://dx.doi.org/10.31367/2079-8725-2019-63-3-3-9.
Pełny tekst źródłaCui, Na, i Victor Pozzobon. "Food-Grade Cultivation of Saccharomyces cerevisiae from Potato Waste". AgriEngineering 4, nr 4 (17.10.2022): 951–68. http://dx.doi.org/10.3390/agriengineering4040061.
Pełny tekst źródłaDziugan, Piotr. "Use of ozone in production of II generation bioethanol and fodder yeast Zastosowanie ozonu w procesach produkcji bioetanolu II generacji i drożdży paszowych". PRZEMYSŁ CHEMICZNY 1, nr 7 (5.07.2016): 107–12. http://dx.doi.org/10.15199/62.2016.7.14.
Pełny tekst źródłaPravdyva, L. "Energy productivity of grain sorghum depending on the elements of cultivation technology in the Right-Bank Forest-Steppe of Ukraine". Agrobìologìâ, nr 1(163) (25.05.2021): 122–30. http://dx.doi.org/10.33245/2310-9270-2021-163-1-122-130.
Pełny tekst źródłaPalliprath, Suchithra, Najya Jabeen Poolakkalody, Kaviraj Ramesh i Chithra Manisseri. "Lignocellulosic Content and Biofuel Potential of Post-harvest Sugarcane Leaves from Commonly Cultivated Indian Varieties". Science & Technology Journal 8, nr 2 (1.07.2020): 15–23. http://dx.doi.org/10.22232/stj.2020.08.02.03.
Pełny tekst źródłaMoreira, B. R. A., R. S. Viana, L. A. M. Lisboa, P. R. M. Lopes, P. A. M. Figueiredo, S. B. Ramos, C. S. B. Bonini, V. D. R. Trindade, M. G. O. Andrade i A. May. "Classifying Hybrids of Energy Cane for Production of Bioethanol and Cogeneration of Biomass-Based Electricity by Principal Component Analysis-Linked Fuzzy C-Means Clustering Algorithm". Journal of Agricultural Science 11, nr 14 (31.08.2019): 246. http://dx.doi.org/10.5539/jas.v11n14p246.
Pełny tekst źródłaRozprawy doktorskie na temat "Fodder and bioethanol production"
Schiener, Peter. "Bioethanol production from macroalgae". Thesis, University of the Highlands and Islands, 2014. https://pure.uhi.ac.uk/portal/en/studentthesis/bioethanol-production-from-macroalgae(d1c0fd4d-3a91-4d17-be4f-0b7b2af86e11).html.
Pełny tekst źródłaEspinal, Bustos Raúl Uziel. "Hydrogen production from bioethanol using cobalt hydrotalcites". Doctoral thesis, Universitat Politècnica de Catalunya, 2013. http://hdl.handle.net/10803/134509.
Pełny tekst źródłaUncu, Oya Nihan. "Optimization Of Bioethanol Production From Kitchen Waste". Master's thesis, METU, 2010. http://etd.lib.metu.edu.tr/upload/3/12611373/index.pdf.
Pełny tekst źródłas yeast, Saccharomyces cerevisiae, was used in fermentation experiments conducted with and without fermentation medium at pH 4.5 and 30oC for 48 hours. Close values of glucose concentration were obtained from no pretreated and hot water treated samples. The fermentation results indicated that ethanol can be produced at similar concentrations in bioreactors with and without fermentation medium addition (p >
0.05). Thus, it is concluded that use of kitchen wastes as is disposed and without fermentation medium in ethanol fermentation could lower the cost to a large extent. In the second part of this study, the effects of solid load, which is proportional to the glucose concentration (10% to 20% (w/w)), inoculum level of Saccharomyces cerevisiae (5% to 15% (v/v)), and fermentation time (48 to 96 h) on production of bioethanol from kitchen waste were studied using Response Surface Methodology (RSM). A three-factor Box Behnken design was used. Ethanol concentration was used as a response in the resulting experimental design. High Pressure Liquid Chromatography (HPLC) method was used to determine ethanol and glucose concentrations. The statistical analysis of the constructed model developed by RSM suggested that linear effects of solid load, inoculum level, and fermentation time and quadratic effects of inoculum level and fermentation time were all significant (p <
0.05) on bioethanol production. The model was verified by additional runs, which were not present in the design matrix. It was found that the constructed model could be used to determine successfully the bioethanol concentration with >
90% precision. An optimum ethanol concentration of 32.16 g/L was suggested by the model with 20% (w/w) solid load, 8.85% (v/v) inoculum level and 58.8 hours of fermentation. Further study is needed to evaluate the optimal fermentation conditions in a large scale fermentation
Namthabad, Sainath, i Ramesh Chinta. "Robust Encapsulation of Yeast for Bioethanol Production". Thesis, Högskolan i Borås, Institutionen Ingenjörshögskolan, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:hb:diva-17499.
Pełny tekst źródłaProgram: Industrial Biotechnology
Le, Valant Anthony. "Production d'hydrogène par vaporeformage du bioethanol brut". Poitiers, 2008. http://theses.edel.univ-poitiers.fr/theses/2008/Le-Valant-Anthony/2008-Le-Valant-Anthony-These.pdf.
Pełny tekst źródłaThis work is devoted to the study of raw bioethanol catalytic steam reforming reaction to evidence the effect of impurities of raw alcohol on the catalyst performances. The Rh/MgAl2O4/Al2O3 catalyst uses evaluated in the ethanol steam reforming reaction, with or without impurities. The nature of the impurity plays a promoting effect or results in the decrease of the catalytic activity. This promoting effect can be explained by a blocking of active sites for C2H4 formation while the deactivation seems to be linked to coke deposition. Further, the study focused on the improvement of the catalyst formulation and an active, selective and stable catalyst (RhNi/Y-Al) for the hydrogen production from raw bioethanol was developped. Integration of rare earth oxide to alumina and addition of a second metal has improved the acid-base properties of the support, allowing the limitation of the coke production during raw bioethanol steam reforming
Khatiwada, Dilip. "Assessing the sustainability of bioethanol production in Nepal". Licentiate thesis, KTH, Energi och klimatstudier, ECS, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-25336.
Pełny tekst źródłaQC 20101029
Bansal, Sunil. "Evaluation of different agricultural biomass for bioethanol production". Thesis, Kansas State University, 2010. http://hdl.handle.net/2097/4623.
Pełny tekst źródłaDepartment of Grain Science and Industry
Praveen V. Vadlani
In our study, five different bioenergy crops: wheat straw (Triticum aestivum), forage sorghum stover (sorghum bicolor), switchgrass (Panicum virgatum), miscanthus (Miscanthus giganteus) and sweet sorghum baggase (Sorghum bicolor) were evaluated for bio-ethanol production at 20% (w/v) initial substrate concentration under separate hydrolysis and fermentation (SHF) process. The substrates were ground to pass through 600µm mesh size and treated with 2% (w/v) NaOH at 121oC for 30 minutes. The washed and neutralized pretreated residues were subjected to saccharification using cellulase and β-glucosidase enzymes (ratio 1:1.25) at concentrations of 25 filter paper unit (fpu)/g and 31.25fpu/g, respectively, in pH 5.0 citrate buffer in an orbital incubator shaker at 150 rpm for 72 h. The hydrolysate obtained was centrifuged and supernatant was collected for fermentation. Fermentation was performed in shake flasks using Saccharomyces cerevisiae at 10% (w/v) inoculum concentration at 100 rpm for 24 h. Alkali treatment was effective in delignification of all the biomass feedstocks. The highest percent removal on raw biomass basis was attained for sorghum stover BMR-DP (81.3%, w/w) followed by miscanthus (79.9%, w/w), sorghum stover BMR-RL (69.2 %, w/w), wheat straw (68.0 %, w/w), switchgrass (66.0%, w/w), and sorghum baggase (65.4%, w/w). Glucan saccharification varied from 56.4-72.6 % (w/w) corresponding to a glucose levels of 0.45-0.34 g/g of dry substrate. Highest saccharification was observed for wheat straw while lowest was observed for miscanthus after 48 hours of hydrolysis. A maximum final ethanol concentration of 4.3% (w/v) was observed for wheat straw followed by sorghum baggase (4.2%), sorghum RL-BMR (3.6%), miscanthus (3.4%), sorghum DP-BMR (3.4%), and switchgrass (3.2%). From our studies, it is evident that high substrate concentration used for enzymatic hydrolysis was able to provide high final ethanol concentration. The lignin content and its arrangement in different biomass feedstocks may have affected saccharification and subsequent ethanol production. Bulk density and flowability are the two major key parameters that should be addressed to reduce processing cost of biomass for bioethanol production. Pelleting of biomass can increase the bulk density, thereby reducing the handling and transportation costs. In addition to above study, I analyzed the changes in chemical composition due to pelletization and pretreatment, and its effect on ethanol production by comparing unpelleted and pelleted biomass ethanol production efficiency. Wheat straw and big bluestem pelleted and unpelleted biomass were compared for their ethanol production efficiency. Pelleted and unpelleted wheat straw (Triticum aestivum) and bigblue stem (Andropogon gerardii Vitman) at a substrate concentration of 10% (w/v) were subjected to 2% NaOH treatment at 1210C for 30 min and the resulting residues were analyzed for changes in chemical composition. Saccharification of residue was done at substrate concentration of 12% (w/v) for 48 h. The sugars obtained were fermented to ethanol using Saccharomyces cerevisiae. Pelletization did not significantly affect the chemical composition of biomass in terms of glucan, xylan and lignin content. Delignification of pelleted biomass was greater than unpelleted biomass. Pelletization did not influence final ethanol production for both substrates.
Voigt, Paul George. "Bioethanol production from waste paper through fungal biotechnology". Thesis, Rhodes University, 2010. http://hdl.handle.net/10962/d1013447.
Pełny tekst źródłaHemmati, Naghmeh. "Engineering yeast strains to enhance bioethanol production efficiency /". Available to subscribers only, 2008. http://proquest.umi.com/pqdweb?did=1674956301&sid=4&Fmt=2&clientId=1509&RQT=309&VName=PQD.
Pełny tekst źródłaNguyen, Thi Hong Minh, i Van Hanh Vu. "Bioethanol production from marine algae biomass: prospect and troubles". Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2012. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-99282.
Pełny tekst źródłaSự gia tăng giá nhiên liệu hóa thạch cùng với cảnh báo toàn cầu về biến đổi khí hậu hướng đến việc nghiên cứu tìm ra những nguồn năng lượng có thể tái tạo. Năng lượng sinh học là một trong những nguồn quan trọng được các nhà khoa học và doanh nghiệp quan tâm. Mặc dù ethanol sinh học đã được biết đến như là một trong những dạng năng lượng tái tạo quan trọng nhất để giảm thiểu các khí nhà kính và cảnh báo toàn cầu, nhưng chỉ có một số ít bài báo về nó. Trong bài tổng quan này, chúng tôi giới thiệu vắn tắt việc sản xuất ethanol sinh học từ tảo. Nó đưa ra cái nhìn sâu hơn về những khó khăn và tiềm năng hứa hẹn của sản xuất ethanol sinh học từ tảo
Książki na temat "Fodder and bioethanol production"
Aggarwal, Neeraj K., Naveen Kumar i Mahak Mittal. Bioethanol Production. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-05091-6.
Pełny tekst źródłaB, Erbaum Jason, red. Bioethanol: Production, benefits and economics. New York: Nova Science Publishers, 2009.
Znajdź pełny tekst źródłaErbaum, Jason B. Bioethanol production, benefits, and economics. Hauppauge NY: Nova Science Publishers, 2009.
Znajdź pełny tekst źródłaCharles, Wyman, red. Handbook on bioethanol: Production and utilization. Washington, DC: Taylor & Francis, 1996.
Znajdź pełny tekst źródłaInc, Marketing Horizons, i National Renewable Energy Laboratory (U.S.), red. Bioethanol fuel production concept study: Topline report. Golden, CO: National Renewable Energy Laboratory, 2001.
Znajdź pełny tekst źródłaSnook, Laurence C. Tagasaste, tree lucerne: High production fodder crop. Shepparton: Night Owl, 1986.
Znajdź pełny tekst źródłaFodder success story: Improved fodder crop production in the Northern Areas of Pakistan. Rome: Food and Agriculture Organization of the United Nations, 2001.
Znajdź pełny tekst źródłaNational Livestock Research Program (Bhutan) i Renewable Natural Resources Research Centre (Jakar, Bhutan), red. Fodder production in Bhutan: A handbook for extension agents. Bumthang: RNR-RC Jakar, Livestock and Extension Sector, 2001.
Znajdź pełny tekst źródłaNational Livestock Research Program (Bhutan) i Renewable Natural Resources Research Centre (Jakar, Bhutan), red. Fodder production in Bhutan: A handbook for extension agents. Bumthang: RNR-RC Jakar, Livestock and Extension Sector, 2001.
Znajdź pełny tekst źródłaCullis, Adrian. Preliminary assessment of the potential of rainwater harvesting for fodder production. Brighton, UK: Institute of Development Studies at the University of Sussex, 1993.
Znajdź pełny tekst źródłaCzęści książek na temat "Fodder and bioethanol production"
Rathore, N. S., i N. L. Panwar. "Bioethanol Production". W Biomass Production and Efficient Utilization for Energy Generation, 181–88. London: CRC Press, 2021. http://dx.doi.org/10.1201/9781003245766-9.
Pełny tekst źródłaDas, Debabrata, i Jhansi L. Varanasi. "Bioethanol". W Fundamentals of Biofuel Production Processes, 131–44. Boca Raton : Taylor & Francis, CRC Press, [2019]: CRC Press, 2019. http://dx.doi.org/10.1201/b22274-9.
Pełny tekst źródłaGloria, Miriam Soledad Valenzuela, Diana Laura Alva-Sánchez, M. P. Luévanos Escareño, Cristóbal N. Aguilar, Nagamani Balagurusamy i Ayerim Hernández-Almanza. "Physiology of Ethanol Production by Yeasts". W Bioethanol, 1–20. Boca Raton: Apple Academic Press, 2022. http://dx.doi.org/10.1201/9781003277132-1.
Pełny tekst źródłaArya, D. B., Salom Gnana Thanga Vincent i Nagamani Balagurusamy. "Physiology of Ethanol Production by Clostridium thermocellum". W Bioethanol, 43–52. Boca Raton: Apple Academic Press, 2022. http://dx.doi.org/10.1201/9781003277132-3.
Pełny tekst źródłaPérez-García, Laura Andrea, Cindy Nataly Del Rio-Arellano, David Francisco Lafuente Rincón i Norma M. De La Fuente-Salcido. "Physiology of Ethanol Production by Zymomonas mobilis". W Bioethanol, 21–42. Boca Raton: Apple Academic Press, 2022. http://dx.doi.org/10.1201/9781003277132-2.
Pełny tekst źródłaTaherzadeh, Mohammad J., Patrik R. Lennartsson, Oliver Teichert i Håkan Nordholm. "Bioethanol Production Processes". W Biofuels Production, 211–53. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118835913.ch8.
Pełny tekst źródłaSen, Ramkrishna, i Shantonu Roy. "Bioethanol Production Process". W Biofuel Production, 65–82. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003224587-4.
Pełny tekst źródłaSegovia-Hernández, Juan Gabriel, Eduardo Sanchez-Ramirez, Heriberto Alcocer-Garcia, Ana Gabriela Romero-Garcia i Juan José Quiroz-Ramirez. "Bioethanol". W Sustainable Production of Biofuels Using Intensified Processes, 25–50. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-13216-2_3.
Pełny tekst źródłaPrado, C. A., S. Sánchez-Muñoz, R. T. Terán-Hilares, L. T. Carvalho, L. G. De Arruda, M. L. Silva da Cunha, P. Abdeshahian, S. S. Da Silva, N. Balagurusamy i J. C. Santos. "Integrated Production of Ethanol from Starch and Sucrose". W Bioethanol, 271–313. Boca Raton: Apple Academic Press, 2022. http://dx.doi.org/10.1201/9781003277132-10.
Pełny tekst źródłaBajpai, Pratima. "Production of Bioethanol". W Advances in Bioethanol, 21–53. New Delhi: Springer India, 2013. http://dx.doi.org/10.1007/978-81-322-1584-4_3.
Pełny tekst źródłaStreszczenia konferencji na temat "Fodder and bioethanol production"
Ruiz Castello, Pablo, Julio Montes Ponce de Leon i Miguel Angel Sanz Bobi. "Bioethanol industrial production optimization". W 2013 International Conference on Renewable Energy Research and Applications (ICRERA). IEEE, 2013. http://dx.doi.org/10.1109/icrera.2013.6749885.
Pełny tekst źródłaTeberdiev, Dalhat, Anna Rodionova, Maria Shchannikova i Sergey Zapivalov. "Agroenergy efficiency of technologies for creating and using of long-year haymaking". W Multifunctional adaptive fodder production. ru: Federal Williams Research Center of Forage Production and Agroecology, 2021. http://dx.doi.org/10.33814/mak-2021-25-73-94-100.
Pełny tekst źródłaTikhonov, Alexander. "Weed flora in modern agrotechnical literature". W Multifunctional adaptive fodder production. ru: Federal Williams Research Center of Forage Production and Agroecology, 2021. http://dx.doi.org/10.33814/mak-2021-25-73-113-118.
Pełny tekst źródłaZolotarev, Vladimir. "Efficiency of fertilizer application on seed stands of birdsfoot trefoil". W Multifunctional adaptive fodder production. ru: Federal Williams Research Center of Forage Production and Agroecology, 2021. http://dx.doi.org/10.33814/mak-2021-25-73-50-58.
Pełny tekst źródłaKostenko, Sergey, Evgenia Malyuzhenets, Natalia Kostenko, Elena Pampura i Nadezhda Terekhova. "Hybrid of meadow fescue "VIK-5-34" for growing on high agrophones on meadows and pastures in the European part of Russia". W Multifunctional adaptive fodder production. ru: Federal Williams Research Center of Forage Production and Agroecology, 2021. http://dx.doi.org/10.33814/mak-2021-25-73-67-70.
Pełny tekst źródłaPopov, Vladimir. "Variable world of the nutritionist N. P. Volkov". W Multifunctional adaptive fodder production. ru: Federal Williams Research Center of Forage Production and Agroecology, 2021. http://dx.doi.org/10.33814/mak-2021-25-73-158-169.
Pełny tekst źródłaPobednov, Yuri. "Historical overview of the development of ensilage". W Multifunctional adaptive fodder production. ru: Federal Williams Research Center of Forage Production and Agroecology, 2021. http://dx.doi.org/10.33814/mak-2021-25-73-119-143.
Pełny tekst źródłaStepanova, Galina, i Alexandra Vorsheva. "FORMATION OF BICARPIC POPULATIONS OF BLACK MEDIC". W Multifunctional adaptive fodder production. ru: Federal Williams Research Center of Forage Production and Agroecology, 2021. http://dx.doi.org/10.33814/mak-2021-25-73-9-20.
Pełny tekst źródłaTyurin, Yuri, i Sergey Kostenko. "L3 — a new innovative variety winter vetch for the Ural and Central Chernozem regions of Russia". W Multifunctional adaptive fodder production. ru: Federal Williams Research Center of Forage Production and Agroecology, 2021. http://dx.doi.org/10.33814/mak-2021-25-73-41-44.
Pełny tekst źródłaSolozhentseva, Lyudmila. "Fungal diseases of alfalfa in the non-chernozem zone of Russia and plant resistance to them". W Multifunctional adaptive fodder production. ru: Federal Williams Research Center of Forage Production and Agroecology, 2021. http://dx.doi.org/10.33814/mak-2021-25-73-31-35.
Pełny tekst źródłaRaporty organizacyjne na temat "Fodder and bioethanol production"
Marketing Horizons, Inc. Bioethanol Fuel Production Concept Study: Topline Report. Office of Scientific and Technical Information (OSTI), listopad 2001. http://dx.doi.org/10.2172/789085.
Pełny tekst źródłaWu, M., M. Wang i H. Hong. Fuel-cycle assessment of selected bioethanol production. Office of Scientific and Technical Information (OSTI), styczeń 2007. http://dx.doi.org/10.2172/925333.
Pełny tekst źródłaMurton, Jaclyn K., James Bryce Ricken i Amy Jo Powell. Efficient breakdown of lignocellulose using mixed-microbe populations for bioethanol production. Office of Scientific and Technical Information (OSTI), listopad 2009. http://dx.doi.org/10.2172/974402.
Pełny tekst źródłaLawrence, Charles E., Lee Newberg, LeeAnn McCue i Williams Thomspon. Bayesian computational approaches for gene regulation studies of bioethanol and biohydrogen production. Office of Scientific and Technical Information (OSTI), marzec 2012. http://dx.doi.org/10.2172/1183981.
Pełny tekst źródłaNewberg, Lee, Lee Anne McCue i Patrick Van Roey. Bayesian Computational Approaches for Gene Regulation Studies of Bioethanol and Biohydrogen Production. Final Scientific/Technical Report. Office of Scientific and Technical Information (OSTI), kwiecień 2014. http://dx.doi.org/10.2172/1129075.
Pełny tekst źródłaDawson, Ian K., Sammy Carsan, Steve Franzel, Roeland Kindt, Paulo van Breugel, Lars Graudal, Jens-Peter B. Lillesø, Caleb Orwa i Ramni Jamnadass. Agroforestry, livestock, fodder production and climate change adaptation and mitigation in East Africa: issues and options. World Agroforestry Centre (ICRAF), 2014. http://dx.doi.org/10.5716/wp14050.pdf.
Pełny tekst źródłaFranzel, S., C. Wambugu, T. Nanok, T. Njau, A. Aithal, J. Muriuki i A. Kitalyi. The production and marketing of leaf meal from fodder shrubs in Tanga, Tanzania: a pro-poor enterprise for improving livestock productivity ICRAF Working Paper no. 50. World Agroforestry Centre (ICRAF), 2007. http://dx.doi.org/10.5716/wp05250.pdf.
Pełny tekst źródłaAbasse, Tougiani, Moussa Massaoudou, Habou Ribiou, Soumana Idrissa i Dan Guimbo Iro. Farmer managed natural regeneration in Niger: the state of knowledge. Tropenbos International, kwiecień 2023. http://dx.doi.org/10.55515/byiz5081.
Pełny tekst źródłaKindt, Roeland, Ian K Dawson, Jens-Peter B Lillesø, Alice Muchugi, Fabio Pedercini i James M Roshetko. The one hundred tree species prioritized for planting in the tropics and subtropics as indicated by database mining. World Agroforestry, 2021. http://dx.doi.org/10.5716/wp21001.pdf.
Pełny tekst źródła