Gotowa bibliografia na temat „Flying wing”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Flying wing”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Flying wing"
Niu, Zhong-Guo, Xiang-Hui Xu, Jian-Feng Wang, Jia-Li Jiang i Hua Liang. "Experiment on longitudinal aerodynamic characteristics of flying wing model with plasma flow control". Acta Physica Sinica 71, nr 2 (2022): 024702. http://dx.doi.org/10.7498/aps.71.20211425.
Pełny tekst źródłaOrtega Ancel, Alejandro, Rodney Eastwood, Daniel Vogt, Carter Ithier, Michael Smith, Rob Wood i Mirko Kovač. "Aerodynamic evaluation of wing shape and wing orientation in four butterfly species using numerical simulations and a low-speed wind tunnel, and its implications for the design of flying micro-robots". Interface Focus 7, nr 1 (6.02.2017): 20160087. http://dx.doi.org/10.1098/rsfs.2016.0087.
Pełny tekst źródłaElenin, D. V. "CREATION OF AN EXPERIMENTAL CONTROL BODY (ELEVON) IN THE «FLYING WING» AERODYNAMIC SCHEME". System analysis and logistics 2, nr 28 (1.06.2021): 26–32. http://dx.doi.org/10.31799/2077-5687-2021-2-26-32.
Pełny tekst źródłaPRISACARIU, Vasile. "UAV FLYING WING WITH A PHOTOVOLTAIC SYSTEM". Review of the Air Force Academy 17, nr 1 (24.05.2019): 63–70. http://dx.doi.org/10.19062/1842-9238.2019.17.1.8.
Pełny tekst źródłaPEPELEA, Dumitru, Marius-Gabriel COJOCARU, Adrian TOADER i Mihai-Leonida NICULESCU. "CFD ANALYSIS FOR UAV OF FLYING WING". SCIENTIFIC RESEARCH AND EDUCATION IN THE AIR FORCE 18, nr 1 (24.06.2016): 171–76. http://dx.doi.org/10.19062/2247-3173.2016.18.1.22.
Pełny tekst źródłaDavenport, John. "Wing-loading, stability and morphometric relationships in flying fish (Exocoetidae) from the North-eastern Atlantic". Journal of the Marine Biological Association of the United Kingdom 72, nr 1 (luty 1992): 25–39. http://dx.doi.org/10.1017/s0025315400048761.
Pełny tekst źródłaShyy, Wei, Chang-kwon Kang, Pakpong Chirarattananon, Sridhar Ravi i Hao Liu. "Aerodynamics, sensing and control of insect-scale flapping-wing flight". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 472, nr 2186 (luty 2016): 20150712. http://dx.doi.org/10.1098/rspa.2015.0712.
Pełny tekst źródłaHou, Yu, i Fang Wang. "CPG-Based Movement Control for Bionic Flapping-Wing Mechanism". Applied Mechanics and Materials 226-228 (listopad 2012): 844–49. http://dx.doi.org/10.4028/www.scientific.net/amm.226-228.844.
Pełny tekst źródłaHong, Wei Jiang, i Dong Li Ma. "Influence of Control Coupling Effect on Landing Performance of Flying Wing Aircraft". Applied Mechanics and Materials 829 (marzec 2016): 110–17. http://dx.doi.org/10.4028/www.scientific.net/amm.829.110.
Pełny tekst źródłaXie, Liang, Han, Niu, Wei, Su i Tang. "Experimental Study on Plasma Flow Control of Symmetric Flying Wing Based on Two Kinds of Scaling Models". Symmetry 11, nr 10 (9.10.2019): 1261. http://dx.doi.org/10.3390/sym11101261.
Pełny tekst źródłaRozprawy doktorskie na temat "Flying wing"
Farrell, Joseph H. "DYNAMICALLY SCALED OBLIQUE FLYING WING". Thesis, The University of Arizona, 2009. http://hdl.handle.net/10150/192337.
Pełny tekst źródłaHuang, Haidong. "Optimal design of a flying-wing aircraft inner wing structure configuration". Thesis, Cranfield University, 2012. http://dspace.lib.cranfield.ac.uk/handle/1826/7439.
Pełny tekst źródłaSaeed, Tariq Issam. "Conceptual design for a laminar-flying-wing aircraft". Thesis, University of Cambridge, 2012. https://www.repository.cam.ac.uk/handle/1810/243926.
Pełny tekst źródłaLevis, Errikos. "Design synthesis of advanced technology, flying wing seaplanes". Thesis, Imperial College London, 2012. http://hdl.handle.net/10044/1/9943.
Pełny tekst źródłaAguirre, John. "Study of 3-Dimensional Co-Flow Jet Airplane and High-Rise Building Flow Using CFD Simulation". Scholarly Repository, 2009. http://scholarlyrepository.miami.edu/oa_theses/181.
Pełny tekst źródłaZhu, Yan. "Longitudinal control laws design for a flying wing aircraft". Thesis, Cranfield University, 2012. http://dspace.lib.cranfield.ac.uk/handle/1826/7423.
Pełny tekst źródłaIglesias, Sergio. "Optimum Spanloads Incorporating Wing Structural Considerations And Formation Flying". Thesis, Virginia Tech, 2000. http://hdl.handle.net/10919/35718.
Pełny tekst źródłaFor single aircraft, a discrete vortex method which performs the calculations in the Trefftz plane has been used to calculate optimum spanloads for non-coplanar multi-surface configurations. The method includes constraints for lift coefficient, pitching moment coefficient and wing root bending moment. This wing structural constraint has been introduced such that wing geometry is not changed but the modified load distributions can be related to wing weight. Changes in wing induced drag and weight were converted to aircraft total gross weight and fuel weight benefits, so that optimum spanloads that give maximum take-off gross weight reductions can be found. Results show that a reduction in root bending moment from a lift distribution that gives minimum induced drag leads to more triangular spanloads, where the loads are shifted towards the root, reducing wing weight and increasing induced drag. A slight reduction in root bending moment is always beneficial, since the initial increase in induced drag is very small compared to the wing weight decrease. Total weight benefits were studied for a Boeing 777-200IGW type configuration, obtaining take-off gross weight improvements of about 1% for maximum range missions. When performing economical, reduced-range missions, improvements can almost double. A long range, more aerodynamically driven aircraft like the Boeing 777-200IGW will experience lower benefits as a result of increasing drag. Short to medium range aircraft will profit the most from more triangular lift distributions.
Formation flight configurations can also result in large induced drag reductions for load distributions that deviate from the elliptical one. Optimum spanloads for a group of aircraft flying in an arrow formation were studied using the same discrete vortex method, now under constraints in lift, pitching moment and rolling moment coefficients. It has been shown that large general improvements in induced drag can be obtained when the spanwise and vertical distances between aircraft are small. In certain cases, using our potential flow vortex model, this results in negative (thrust) induced drag on some airplanes in the configuration. The optimum load distributions necessary to achieve these benefits may, however, correspond to a geometry that will produce impractical lift distributions if the aircraft are flying alone. Optimum separation among airplanes in this type of formation is determined by such diverse factors as the ability to generate the required optimum load distributions or the need for collision avoidance.
Master of Science
Geyman, Matthew Kenneth. "Wing/Wall Aerodynamic Interactions in Free Flying, Maneuvering MAVs". University of Dayton / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1335113432.
Pełny tekst źródłaCheng, Yun. "Preliminary fuselage structural configuration of a flying-wing type airline". Thesis, Cranfield University, 2012. http://dspace.lib.cranfield.ac.uk/handle/1826/7419.
Pełny tekst źródłaTonti, Jacopo. "Development of a Flight Dynamics Modelof a Flying Wing Configuration". Thesis, KTH, Aerodynamik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-159873.
Pełny tekst źródłaKsiążki na temat "Flying wing"
Robert, Reese. Flying with one wing. Los Angeles, Calif: Blue Pacific Press, 1992.
Znajdź pełny tekst źródłaDavid, Hands, red. Flying wing: An autobiography. London: Stanley Paul, 1994.
Znajdź pełny tekst źródłaFlying with a broken wing. Halifax, NS: Nimbus Publishing, 2013.
Znajdź pełny tekst źródłaOn the wing. New York: St. Martin's Press, 2007.
Znajdź pełny tekst źródłaJong, Erica. Fear of flying. New York: Penguin Books, 2013.
Znajdź pełny tekst źródłaPears, Catherine Townsley. Flying with one wing: Memories of life in York Township. Toronto: Pro Familia Pub., 1989.
Znajdź pełny tekst źródłaFear of flying. New York: New American Library, 2003.
Znajdź pełny tekst źródłaFear of flying. New York: Plume, 1995.
Znajdź pełny tekst źródłaCopyright Paperback Collection (Library of Congress), red. Fear of flying. New York: New Signet, 2003.
Znajdź pełny tekst źródłaColeman, Ted. Jack Northrop and the Flying Wing: The story behind the Stealth bomber. New York: Paragon House, 1988.
Znajdź pełny tekst źródłaCzęści książek na temat "Flying wing"
Seebass, A. R. "Oblique Flying Wing Studies". W New Design Concepts for High Speed Air Transport, 317–36. Vienna: Springer Vienna, 1997. http://dx.doi.org/10.1007/978-3-7091-2658-5_20.
Pełny tekst źródłaVelden, A. "The Oblique Flying Wing Transport". W New Design Concepts for High Speed Air Transport, 291–315. Vienna: Springer Vienna, 1997. http://dx.doi.org/10.1007/978-3-7091-2658-5_19.
Pełny tekst źródłaSissingh, G. "Flying Qualities". W Göttinger Monograph N: German Research and Development on Rotary-Wing Aircraft (1939–1945), 135–73. Reston, VA: American Institute of Aeronautics and Astronautics, Inc., 2015. http://dx.doi.org/10.2514/5.9781624102738.0135.0174.
Pełny tekst źródłaNonami, Kenzo, Farid Kendoul, Satoshi Suzuki, Wei Wang i Daisuke Nakazawa. "Development of Autonomous Quad-Tilt-Wing (QTW) Unmanned Aerial Vehicle: Design, Modeling, and Control". W Autonomous Flying Robots, 77–93. Tokyo: Springer Japan, 2010. http://dx.doi.org/10.1007/978-4-431-53856-1_4.
Pełny tekst źródłaSobieczky, H., P. Li i R. Seebass. "Transonic Methods for Oblique Flying Wing SST". W IUTAM Symposium Transsonicum IV, 325–30. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-010-0017-8_49.
Pełny tekst źródłaLiu, Jihai, Yingsong Gu, Ke Xie i Pengtao Shi. "Flutter Modeling, Analysis and Test for Blended-Wing-Body Flying Wing". W Lecture Notes in Electrical Engineering, 979–84. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-3305-7_78.
Pełny tekst źródłaMardanpour, Pezhman, i Dewey H. Hodges. "Passive Morphing of Solar Powered Flying Wing Aircraft". W Fluid-Structure-Sound Interactions and Control, 351–56. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-40371-2_50.
Pełny tekst źródłaStrüber, H., i M. Hepperle. "Aerodynamic Optimisation of a Flying Wing Transport Aircraft". W New Results in Numerical and Experimental Fluid Mechanics V, 69–76. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/978-3-540-33287-9_9.
Pełny tekst źródłaFan, Lu, Yubiao Jiang, Fei Cen i Zhenyun Guo Bowen Nie. "Flight Dynamics Analysis for the Flying-Wing Configuration Aircraft". W Lecture Notes in Electrical Engineering, 1543–55. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-8155-7_129.
Pełny tekst źródłaShen, Yanjie, Chen Bu, Yanling Wang, Shuai Feng i Hao Chen. "Experimental Study on Low-Speed Wing Rock Characteristics of Low Aspect Ratio Flying Wing". W Lecture Notes in Electrical Engineering, 102–14. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-7652-0_11.
Pełny tekst źródłaStreszczenia konferencji na temat "Flying wing"
Li, Pei, Richard Seebass i Helmut Sobieczky. "Oblique flying wing aerodynamics". W Theroretical Fluid Mechanics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1996. http://dx.doi.org/10.2514/6.1996-2120.
Pełny tekst źródłaKharkov, Vitaliy P., Oleg A. Ovodkov, Olga S. Khalyutina, Albert O. Davidov i Aleksey V. Altukhov. "Electric Flying Wing Design". W 2021 IEEE 22nd International Conference of Young Professionals in Electron Devices and Materials (EDM). IEEE, 2021. http://dx.doi.org/10.1109/edm52169.2021.9507700.
Pełny tekst źródłaCrenshaw, Kent, Bill Flanagan, Kent Crenshaw i Bill Flanagan. "Testing the flying wing". W 33rd Joint Propulsion Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1997. http://dx.doi.org/10.2514/6.1997-3262.
Pełny tekst źródłaAihaitijiang, A., i Cagdas D. Onal. "Development and Experimental Evaluation of a Quad-Tilt-Wing Flying Robot Platform". W ASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/detc2019-98500.
Pełny tekst źródłaMa, Chao, i Lixin Wang. "Flying-Wing Aircraft Control Allocation". W 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2009. http://dx.doi.org/10.2514/6.2009-55.
Pełny tekst źródłaRustagi, Vishvendra, Mangal Kothari i Anindya Chatterjee. "Gyroscopic Stabilization of Flying Wing Aircraft". W 2018 AIAA Atmospheric Flight Mechanics Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2018. http://dx.doi.org/10.2514/6.2018-0530.
Pełny tekst źródłaWartojo, Bintang Samodro, i Mohammad Adhitya. "Folded wing mechanism for flying car". W RECENT PROGRESS ON: MECHANICAL, INFRASTRUCTURE AND INDUSTRIAL ENGINEERING: Proceedings of International Symposium on Advances in Mechanical Engineering (ISAME): Quality in Research 2019. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0003757.
Pełny tekst źródłaTorenbeek, E. "Aerodynamic Performance of Wing-Body Configurations and the Flying Wing". W General, Corporate & Regional Aviation Meeting & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1991. http://dx.doi.org/10.4271/911019.
Pełny tekst źródłaCzajkowski, M., Gunnar Clausen i Branko Sarh. "Telescopic Wing of an Advanced Flying Automobile". W World Aviation Congress & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1997. http://dx.doi.org/10.4271/975602.
Pełny tekst źródłaHassairi, Walid, i Mohamed Abid. "Flying Wing Drones based on Cricket Antennas". W 18th International Conference on Informatics in Control, Automation and Robotics. SCITEPRESS - Science and Technology Publications, 2021. http://dx.doi.org/10.5220/0010436903530358.
Pełny tekst źródłaRaporty organizacyjne na temat "Flying wing"
Roy, Arnab, i Anup Ghosh. Aerodynamic Investigation of Smart Flying Wing MAV. Fort Belvoir, VA: Defense Technical Information Center, listopad 2010. http://dx.doi.org/10.21236/ada532004.
Pełny tekst źródłaRoy, Arnab. Aerodynamic Investigation of Smart Flying Wing MAV. Fort Belvoir, VA: Defense Technical Information Center, listopad 2009. http://dx.doi.org/10.21236/ada511003.
Pełny tekst źródłaBrodsky, Peter, i Jim Luby. Flight Software Development for the Liberdade Flying Wing Glider. Fort Belvoir, VA: Defense Technical Information Center, grudzień 2013. http://dx.doi.org/10.21236/ada602311.
Pełny tekst źródłaStaab, Janet E., Margaret A. Kolka i Bruce S. Cadarette. Metabolic Rate and Heat Stress Associated With Flying Military Rotary-Wing Aircraft. Fort Belvoir, VA: Defense Technical Information Center, czerwiec 1998. http://dx.doi.org/10.21236/ada345641.
Pełny tekst źródłaMiller, Dorothy, John Wallin i R. C. Wooten. Environmental Assessment Use of Golden Triangle Regional Airport by 14th Flying Training Wing Aircraft. Fort Belvoir, VA: Defense Technical Information Center, marzec 2004. http://dx.doi.org/10.21236/ada609295.
Pełny tekst źródłaD'Spain, Gerald L. Flying Wing Autonomous Underwater Glider for Basic Research in Ocean Acoustics, Signal/Array Processing, Underwater Autonomous Vehicle Technology, Oceanography, Geophysics, and Marine Biological Studies. Fort Belvoir, VA: Defense Technical Information Center, marzec 2009. http://dx.doi.org/10.21236/ada496168.
Pełny tekst źródłaTorvik, Peter J. On the Maximum Range of Flying Wings. Fort Belvoir, VA: Defense Technical Information Center, wrzesień 1990. http://dx.doi.org/10.21236/ada229487.
Pełny tekst źródłaLarkin, Ronald. Are flying wildlife attracted to (or do they avoid) wind turbines? Office of Scientific and Technical Information (OSTI), marzec 2010. http://dx.doi.org/10.2172/1227698.
Pełny tekst źródła