Gotowa bibliografia na temat „Fly-ash Composites”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Fly-ash Composites”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Fly-ash Composites"
Cosnita, Mihaela, Monica Balas i Cristina Cazan. "The Influence of Fly Ash on the Mechanical Properties of Water Immersed All Waste Composites". Polymers 14, nr 10 (11.05.2022): 1957. http://dx.doi.org/10.3390/polym14101957.
Pełny tekst źródłaJuang, Shueiwan Henry, i Ching-Feng Li. "Influence of Different Addition Ratios of Fly Ash on Mechanical Properties of ADC10 Aluminum Matrix Composites". Metals 12, nr 4 (11.04.2022): 653. http://dx.doi.org/10.3390/met12040653.
Pełny tekst źródłaPritam Praharaj, Ankita, Dibakar Behera, Tapan Kumar Bastia, Prasanta Rath i Priyabrata Mohanty. "BisGMA/jute fibre/fly ash hybrid composites". Pigment & Resin Technology 43, nr 5 (26.08.2014): 263–70. http://dx.doi.org/10.1108/prt-06-2013-0089.
Pełny tekst źródłaOrsakova, Denisa, Rudolf Hela, Petr Novosad i Jaroslav Valek. "Possible Synergism of High Temperature Fly Ash and Fluidized Bed Combustion Fly Ash in Cement Composites". Advanced Materials Research 1106 (czerwiec 2015): 29–32. http://dx.doi.org/10.4028/www.scientific.net/amr.1106.29.
Pełny tekst źródłaZhang, P., Q. Li i Z. Sun. "Effect of polypropylene fibre on flexural properties of concrete composites containing fly ash and silica fume". Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications 226, nr 2 (16.02.2012): 177–81. http://dx.doi.org/10.1177/1464420712437637.
Pełny tekst źródłaRao, D. V., Shaik Chand Mabhu Subhani, N. Vijay Kumar i Ch Naveen Kumar. "To Study the Mechanical Properties of Slag and Fly Ash Reinforced As 2024 Composites". International Journal of Innovative Research in Engineering and Management 9, nr 6 (26.12.2022): 111–13. http://dx.doi.org/10.55524/ijirem.2022.9.6.19.
Pełny tekst źródłaAzhagarsamy, P., i K. Sekar. "Investigation on Mechanical and Tribological Properties of AA7075 Alloy with B4C, Gr and Fly Ash Reinforced Hybrid Composites". Materials Science Forum 979 (marzec 2020): 52–57. http://dx.doi.org/10.4028/www.scientific.net/msf.979.52.
Pełny tekst źródłaMohd Nasir, Nur Hazzarita, Fathoni Usman, Ean Lee Woen, Mohamed Nainar Mohamed Ansari, Abu Bakar Mohd Supian i Saloma Saloma. "Microstructural and Thermal Behaviour of Composite Material from Recycled Polyethylene Terephthalate and Fly Ash". Recycling 8, nr 1 (9.01.2023): 11. http://dx.doi.org/10.3390/recycling8010011.
Pełny tekst źródłaRazzaq, Alaa Mohammed, Dayang Laila Majid, Uday M. Basheer i Hakim S. Sultan Aljibori. "Research Summary on the Processing, Mechanical and Tribological Properties of Aluminium Matrix Composites as Effected by Fly Ash Reinforcement". Crystals 11, nr 10 (8.10.2021): 1212. http://dx.doi.org/10.3390/cryst11101212.
Pełny tekst źródłaŤažký, Martin, i Rudolf Hela. "Synergistic Effect of High Temperature Fly Ash with Fluidized Bed Combustion Fly Ash in Cement Composites". Key Engineering Materials 722 (grudzień 2016): 113–18. http://dx.doi.org/10.4028/www.scientific.net/kem.722.113.
Pełny tekst źródłaRozprawy doktorskie na temat "Fly-ash Composites"
Hung, Hsien-Hsin. "Properties of high volume fly ash concrete". Thesis, University of Sheffield, 1997. http://etheses.whiterose.ac.uk/14441/.
Pełny tekst źródłaZaeni, Akhmad Materials Science & Engineering Faculty of Science UNSW. "Modification of fly ash colour from grey black to near white and incoporation of fly ash in polypropylene polymer". Publisher:University of New South Wales. Materials Science & Engineering, 2009. http://handle.unsw.edu.au/1959.4/43755.
Pełny tekst źródłaFizette, Hobson H. "Development of concrete composites by synergistically using Illinois PCC Bottom Ash and Class F Fly Ash /". Available to subscribers only, 2007. http://proquest.umi.com/pqdweb?did=1328063751&sid=8&Fmt=2&clientId=1509&RQT=309&VName=PQD.
Pełny tekst źródłaKearsley, Elizabeth Paulina. "The effect of high volumes of ungraded fly ash on the properties of foamed concrete". Thesis, University of Leeds, 1999. http://etheses.whiterose.ac.uk/287/.
Pełny tekst źródłaPuri, Rajnish. "Development of High performance Concrete Composites Using Class F Fly Ash and PCC Bottom Ash, and a Statistical Model to Predict Compressive Strength of Similar Concrete Composites". OpenSIUC, 2015. https://opensiuc.lib.siu.edu/dissertations/1123.
Pełny tekst źródłaPretorius, Jan Hendrik Christoffel. "The influence of PFA particle size on the workability of cementitious pastes". Pretoria : [s.n.], 2005. http://upetd.up.ac.za/thesis/available/etd-07082005-135427/.
Pełny tekst źródłaSong, Gao. "Matrix manipulation to study ECC behaviour". Thesis, Stellenbosch : University of Stellenbosch, 2005. http://hdl.handle.net/10019.1/4647.
Pełny tekst źródła192 leaves on CD format, preliminary i-xii pages and numbered pages 1-135. Includes bibliography, list of figures and tables.
ENGLISH ABSTRACT: As a fibre reinforced material, engineered cementitious composite (ECC) has tough, strain-hardening behaviour in tension despite containing low volumes of fibres. This property can be brought about by developments in fibre, matrix and interfacial properties. Poly Vinyl Alcohol (PVA) fibre has been developed in recent years for ECC, due to its high tensile strength and elasticity modulus. However, the strong interfacial bond between fibre surface and matrix is a challenge for its application. This study focuses on the tailoring of matrix and fibre/matrix interfacial properties by cement replacement with fly ash (FA) and Ground Granulated Corex Slagment (GGCS). In this study the direct tensile test, three point bending test, micro-scale analysis, such as X-Ray Fluorescence Spectrometry analysis (XRF), Scanning Electron Microscope (SEM), are employed to investigate the influence of cement replacement, aging, Water/Binder (W/B) ratio, workability on ECC behaviour. This study has successfully achieved the aim that cement replacement by FA and GGCS helps to improve the fibre/matrix interfacial properties and therefore enhances the ECC tensile behaviour. Specifically, a high volume FA-ECC has stable high tensile strain capacity at the age of 21 days. This enables a constant matrix design for the investigation of other matrix influences. The Slag-ECC has a higher tensile strength but lower tensile strain capacity. The combination of FA and GGCS, moderate tensile strength and strain capacity is achieved Both tensile tests and Micro-scale analyses infer that the high volume FA-ECC has an adhesive type fibre/matrix interfacial interaction, as opposed to the cohesive type of normal PVA fibre-ECC. The different tensile behaviour trend of steel fibre-ECC and PVA fibre-ECC with the FA content is presented and discussed in this research. The investigations of aging influence indicate that the high volume FA-ECC has a beneficial effect on the properties of the composite at an early stage. However, at a high age, it has some difficulty to undergo multiple cracking and then leads to the reduction of tensile strain capacity. The modified mix design is made with the combination of FA and GGCS, which successfully increases the interfacial bond and, thereby, improves the shear transfer to reach the matrix crack strength. Therefore, an improved high age tensile behaviour is achieved. The W/B and fresh state workability influence investigations show that the W/B can hardly affect the tensile strain at early age. However, the workability influences on composite tensile strain significantly, because of the influence on fibre dispersion. Other investigations with regard to the hybrid fibre influences, the comparison of bending behaviours between extruded plate and cast plate, the relation between bending MOR and tensile stress, and the relation between compression strength and tensile strength contribute to understand ECC behaviour.
AFRIKAANSE OPSOMMING: As ‘n veselversterkte materiaal, het ontwerpte sementbasis saamgestelde materiale, taai vervormingsverhardingseienskappe in trek, ten spyte van lae veselinhoud. Hierdie eienskap word bewerkstellig, deur ontwikkelings in vesel, matriks en tussenveselbindingseienskappe. Poli-Viniel Alkohol (PVA) vesels is ontwikkel vir ECC, as gevolg van die hoë trekkrag en hoë modulus van hierdie veseltipe. Die sterk binding tussen die PVA-veseloppervlak en die matriks is egter ‘n uitdaging vir sy toepassing. Hierdie studie fokus op die skep van gunstige matriks en vesel/matriks tussenvesel-bindingseienskappe deur sement te vervang met vlieg-as (FA) en slagment (GGCS).In hierdie navorsing is direkte trek-toetse, drie-punt-buigtoetse, mikro-skaal analise (soos die X-straal ‘Fluorescence Spectrometry’ analise (XRF) en Skanderende Elektron Mikroskoop (SEM))toegepas. Hierdie metodes is gebruik om die invloed van sementvervanging,veroudering, water/binder (W/B)-verhouding en werkbaarheid op die meganiese gedrag van ECC te ondersoek.Die resultate van hierdie navorsing toon dat sementvervanging deur FA en GGCS help om die vesel/matriks tussenveselbindingseienskappe te verbeter. Dus is die ECC-trekgedrag ook verbeter. Veral ‘n hoë volume FA-ECC het stabiele hoë trekvervormingskapasiteit op ‘n ouderdom van 21 dae. Dit bewerkstellig ‘n konstante matriksontwerp vir die navorsing van ander matriks invloede. Die Slag-ECC het ‘n hoër treksterkte, maar laer trekvervormingskapasiteit. Deur die kombinasie van FA en GGCS word hoë treksterkte, sowel as gematigde vervormbaarheid in trek verkry. Beide trektoetse en mikro-skaal analise dui aan dat die hoë volume FA-ECC ‘n adhesie-tipe vesel/matriks tussenvesel-bindingsinteraksie het, teenoor die ‘kohesie-tipe van normale PVA vesel-ECC. Die verskille in trekgedrag van staalvesel-ECC en PVA vesel-ECC ten opsigte van die FA-inhoud is ondersoek en word bespreek in die navorsing. Die navorsing toon verder dat die hoë volume FA-ECC goeie meganiese eienskappe het op ‘n vroeë ouderdom. Op hoër ouderdom word minder krake gevorm, wat ‘n verlaging in die trekvervormingskapasiteit tot gevolg het. Met die kombinasie van FA en GGCS, word die vesel-matriksverband verhoog, waardeur ‘n verbetering in die skuifoordrag tussen vesel en matriks plaasvind. Verbeterde hoë omeganiese gedrag word daardeur tot stand gebring. Navorsing ten opsigte van die invoed van die W/B en werkbaarheid dui daarop dat die W/B slegs geringe invloed het op die trekvormbaarheid, terwyl die werkbaarheid ‘n dominerende rol speel in hierdie verband.Verdere studies sluit in die invloed van verskillende vesels, die vergelyking van die buigingsgedrag van geëkstueerde plate en gegote plate, die verhouding tussen buigsterkte en treksterkte, en die verhouding tussen druksterkte en treksterkte dra by tot beter begrip van die gedrag van ECC.
BONDARENKO, VLADIMIR. "The Synthesis and Study of TiO2/Aluminosilicate Composites as Components of Building Finishing Materials for Improvement of the Indoor Air Quality". Doctoral thesis, Università Politecnica delle Marche, 2017. http://hdl.handle.net/11566/251220.
Pełny tekst źródłaThis study offers the method for the synthesis of composite material by chemical deposition of TiO2 on aluminosilicate matrix from titanium sulfate solution (precursor). Relatively cheap and available raw materials were used during the preparation: the waste of mechanical processing of titanium (titanium shavings) for obtaining the precursor, montmorillonite, kaolinite, and fly ash as supports. The analysis of the literature sources allows assuming that such method produces the composite with a large specific surface area because of thermoacid activation and high photoactivity suitable for indoor conditions. These properties are confirmed by the experimental data for the obtained samples: Chemical contents; Morphology of surface and average particles size by SEM/optical microscopy; Adsorptive properties and parameters of porous structure, water vapor and benzene vapor adsorption capacity; X-rays analysis of phases; Photoactivity of the materials was estimated by the method of MEK removal in reactors of two different types (16 L & 0,45 L) with two types of UV-irradiation source (ULTRAVITALUX E27 lamp and DFL-5013UVC-380). The stability of the properties of the obtained composites after 3 years of storage was examine. Based on the results obtained, the recommendations for obtaining stable composites were discussed. The relative simplicity of technology allows organizing industrial production of the materials and possible upgrades of the method. Non-metal co-doping of the composites was examined as a method for providing visible light activity of the materials. The use of fly ash as matrix for composites was studied as possible way of valorization of industrial by-product. The building materials prepared with the obtained TiO2–containing component were tested by the method of methyl ethyl ketone removal.
Eckl, Ondřej. "Využití některých velkoobjemově produkovaných druhotných surovin k přípravě pojiv a kompozitů na bázi geopolymerů". Master's thesis, Vysoké učení technické v Brně. Fakulta chemická, 2009. http://www.nusl.cz/ntk/nusl-216460.
Pełny tekst źródłaBaránek, Šimon. "Elektricky vodivé kompozity na bázi druhotných surovin". Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2021. http://www.nusl.cz/ntk/nusl-433564.
Pełny tekst źródłaKsiążki na temat "Fly-ash Composites"
Ghosh, Kushal, i Partha Ghosh. Alkali Activated Fly Ash: Blast Furnace Slag Composites. Taylor & Francis Group, 2020.
Znajdź pełny tekst źródłaAlkali Activated Fly Ash: Blast Furnace Slag Composites. Taylor & Francis Group, 2020.
Znajdź pełny tekst źródłaGhosh, Kushal, i Partha Ghosh. Alkali Activated Fly Ash: Blast Furnace Slag Composites. Taylor & Francis Group, 2020.
Znajdź pełny tekst źródłaGhosh, Kushal, i Partha Ghosh. Alkali Activated Fly Ash: Blast Furnace Slag Composites. Taylor & Francis Group, 2020.
Znajdź pełny tekst źródłaDvorkin, Leonid, Vadim Zhitkovsky, Mohammed Sonebi, Vitality Marchuk i Yuri Stepasiuk. Improving Concrete and Mortar Using Modified Ash and Slag Cements. Taylor & Francis Group, 2020.
Znajdź pełny tekst źródłaDvorkin, Leonid, Vadim Zhitkovsky, Mohammed Sonebi, Vitality Marchuk i Yuri Stepasiuk. Improving Concrete and Mortar Using Modified Ash and Slag Cements. Taylor & Francis Group, 2020.
Znajdź pełny tekst źródłaDvorkin, Leonid, Vadim Zhitkovsky, Mohammed Sonebi, Vitality Marchuk i Yuri Stepasiuk. Improving Concrete and Mortar Using Modified Ash and Slag Cements. Taylor & Francis Group, 2020.
Znajdź pełny tekst źródłaKamaleddine, Fouad Fayez. developing an alternate backing system made of fly ash composite for nickel shell moulds. 2001.
Znajdź pełny tekst źródłaImpact of Ball Milled Fly Ash Nano Particles on the Strength and Microstructural Characteristics of Cement Composite Mortars. Karur, India: ASDF International, 2017.
Znajdź pełny tekst źródłaCzęści książek na temat "Fly-ash Composites"
Sobczak, J., N. Sobczak i P. K. Rohatgi. "Using Fly Ash for the Production of Light Weight Composites". W Advanced Light Alloys and Composites, 109–15. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-015-9068-6_16.
Pełny tekst źródłaDvorkin, Leonid, Vadim Zhitkovsky, Nataliya Lushnikova i Yuri Ribakov. "Metakaolin as Mineral Admixture for Cement-based Composites". W Metakaolin and Fly Ash as Mineral Admixtures for Concrete, 53–164. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003096825-4.
Pełny tekst źródłaVenkateshwaran, N., V. Santhanam i A. Alavudeen. "Feasibility Study of Fly Ash as Filler in Banana Fiber-Reinforced Hybrid Composites". W Processing of Green Composites, 31–47. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-6019-0_3.
Pełny tekst źródłaIbraheem, Shahad, Sheila Devasahayam, Owen Standard i Sri Bandyopadhyay. "Fabrication and Surface Characterization of Spherical Fly Ash Particle-Reinforced Epoxy Resin". W Spherical and Fibrous Filler Composites, 39–66. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2016. http://dx.doi.org/10.1002/9783527670222.ch2.
Pełny tekst źródłaAfroz, Mahzabin, Indubhushan Patnaikuni i Srikanth Venkatesan. "Performance Analysis of Hybrid Fiber Reinforced High Volume Fly Ash Cement Composite". W Strain-Hardening Cement-Based Composites, 203–10. Dordrecht: Springer Netherlands, 2017. http://dx.doi.org/10.1007/978-94-024-1194-2_24.
Pełny tekst źródłaPan, Huang Hsing, Chang-Keng Chiang, Rui-Hao Yang i Neng-Huei Lee. "Piezoelectric Properties of Cement-Based Piezoelectric Composites Containing Fly Ash". W Lecture Notes in Electrical Engineering, 617–26. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04573-3_77.
Pełny tekst źródłaPerera, Dan S., Eric R. Vance, David J. Cassidy, Mark G. Blackford, John V. Hanna i Rachael L. Trautman. "The Effect of Heat on Geopolymers Made Using Fly ASH and Metakaolinite". W Advances in Ceramic Matrix Composites X, 87–94. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118408353.ch8.
Pełny tekst źródłaAmirkhizi, Alireza V., Jing Qiao, Wiroj Nantasetphong, Kristin Schaaf i Sia Nemat-Nasser. "Experimental Investigation of Dynamic Mechanical Properties of Polyurea-Fly Ash Composites". W Mechanics of Time-Dependent Materials and Processes in Conventional and Multifunctional Materials, Volume 3, 149–50. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4614-0213-8_22.
Pełny tekst źródłaPatel, Sushant, G. L. Devnani i Deepesh Singh. "Effects of Additives and Treatment on Fly Ash-Based Polymer Composites". W Lecture Notes in Mechanical Engineering, 147–53. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-8341-1_12.
Pełny tekst źródłaBhandakkar, Ajit, B. Balaji, R. C. Prasad i Shankar Sastry. "Corrosion and Wear Behaviour of Aluminum Alloy 6061-Fly Ash Composites". W Supplemental Proceedings, 873–81. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118062142.ch106.
Pełny tekst źródłaStreszczenia konferencji na temat "Fly-ash Composites"
Šulc, Rostislav, Michal Himmel i Jiří Němeček. "Chloride resistance of concrete with fly ash". W SPECIAL CONCRETE AND COMPOSITES 2019: 16th International Conference. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0000385.
Pełny tekst źródłaQiao, Jing, Alireza V. Amirkhizi, Sia Nemat-Nasser i Gaohui Wu. "Ultrasonic studies of fly ash/polyurea composites". W SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring, redaktorzy Nakhiah C. Goulbourne i Hani E. Naguib. SPIE, 2013. http://dx.doi.org/10.1117/12.2012020.
Pełny tekst źródłaMeruňka, Milan, Lucia Ťažká i Rudolf Hela. "Determination of the evolution of hydration temperature when combining high-temperature fly ash and fluidized bed combustion fly ash". W SPECIAL CONCRETE AND COMPOSITES 2020: 17th International Conference. AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0041965.
Pełny tekst źródłaWilińska, Iwona, Barbara Pacewska i Wojciech Kubissa. "Investigation of Portland cement composites containing high amounts of different kinds of fly ashes". W The 13th international scientific conference “Modern Building Materials, Structures and Techniques”. Vilnius Gediminas Technical University, 2019. http://dx.doi.org/10.3846/mbmst.2019.113.
Pełny tekst źródłaChi, Maochieh, Jiang-Jhy Chang i Kuo-Lien Chen. "Strength properties of cement-based composites with CFBC fly ash and coal-fired fly ash". W 2016 International Conference on Civil, Transportation and Environment. Paris, France: Atlantis Press, 2016. http://dx.doi.org/10.2991/iccte-16.2016.23.
Pełny tekst źródłaFormáček, Petr, Rostislav Šulc i Martina Šídlová. "Behavior of a binder based on sulphocalcic fly ash". W SPECIAL CONCRETE AND COMPOSITES 2020: 17th International Conference. AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0042385.
Pełny tekst źródłaVachal, Tomas, Rostislav Sulc i Miroslav Sofron. "Modification of selected fly ash for use in concrete". W SPECIAL CONCRETE AND COMPOSITES 2020: 17th International Conference. AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0042038.
Pełny tekst źródłaRAHMAN, AKM SAMSUR, CHRIAG SHAH i NIKHIL GUPTA. "Structural Evaluation of Fly Ash Based Geopolymer Composites for High Temperature Applications". W American Society for Composites 2020. Lancaster, PA: DEStech Publications, Inc., 2020. http://dx.doi.org/10.12783/asc35/34938.
Pełny tekst źródłaFormáček, Petr, Rostislav Šulc, Denisa Vondráčková, Martina Šídlová i Adéla Polonská. "Chemical resistance of the binder based on sulfocalcic fly ash". W SPECIAL CONCRETE AND COMPOSITES 2019: 16th International Conference. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0000474.
Pełny tekst źródłaDurgadevi, S. "Experimental Investigation on Effects of Bendable Composites on Ductility". W Sustainable Materials and Smart Practices. Materials Research Forum LLC, 2022. http://dx.doi.org/10.21741/9781644901953-41.
Pełny tekst źródłaRaporty organizacyjne na temat "Fly-ash Composites"
P, Shanmughasundaram, i R. Subramanian. Aluminium - Fly Ash Composites as Light Weight Materials for Automotive Industry. Warrendale, PA: SAE International, październik 2011. http://dx.doi.org/10.4271/2011-28-0009.
Pełny tekst źródłaGolden, Dean, i Pradeep Rohatgi. Fly ash-enhanced aluminum composites for automotive parts. Report for program startup to September 30, 1997. Office of Scientific and Technical Information (OSTI), październik 1997. http://dx.doi.org/10.2172/761812.
Pełny tekst źródłaGolden, Dean, i Pradeep Rohatgi. Fly ash-enhanced aluminum composites for automotive parts. [Reports for October to December, 1997, and January to March, 1998]. Office of Scientific and Technical Information (OSTI), kwiecień 1998. http://dx.doi.org/10.2172/761813.
Pełny tekst źródłaGolden, Dean, i Pradeep Rohatgi. Fly ash-enhanced aluminum composites for automotive parts. [Reports for April to June, 1998, and July to September, 1998]. Office of Scientific and Technical Information (OSTI), październik 1998. http://dx.doi.org/10.2172/761814.
Pełny tekst źródłaWeiss, David, Robert Purgert, Richard Rhudy i P. Rohatgi. Aluminum-fly ash metal matrix composites for automotive parts. [Reports for October 1 to December 1998, and January 31 to March 31, 1999]. Office of Scientific and Technical Information (OSTI), kwiecień 1999. http://dx.doi.org/10.2172/761815.
Pełny tekst źródłaWeiss, David, Robert Purgert, Richard Rhudy i P. Rohatgi. Aluminum-fly ash metal matrix composites for automotive parts. [Reports for April 1 to June 30, 1999, and July 1 to September 30, 1999]. Office of Scientific and Technical Information (OSTI), październik 1999. http://dx.doi.org/10.2172/761817.
Pełny tekst źródłaWeiss, David, Robert Purgert, Richard Rhudy i Pradeep Rohatgi. Aluminum-fly ash metal matrix composites for automotive parts. [Reports for October 1 to December 31, 1999, and January 1 - to March 31, 2000]. Office of Scientific and Technical Information (OSTI), kwiecień 2000. http://dx.doi.org/10.2172/761818.
Pełny tekst źródła