Gotowa bibliografia na temat „Flutter Prediction”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Flutter Prediction”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Flutter Prediction"
Dimitriadis, G., i J. E. Cooper. "Flutter Prediction from Flight Flutter Test Data". Journal of Aircraft 38, nr 2 (marzec 2001): 355–67. http://dx.doi.org/10.2514/2.2770.
Pełny tekst źródłaSudha, U. P. V., G. S. Deodhare i K. Venkatraman. "A comparative assessment of flutter prediction techniques". Aeronautical Journal 124, nr 1282 (27.10.2020): 1945–78. http://dx.doi.org/10.1017/aer.2020.84.
Pełny tekst źródłaGabriela, STROE, i ANDREI Irina-Carmen. "STUDIES ON FLUTTER PREDICTION". INCAS BULLETIN 4, nr 1 (9.03.2012): 115–23. http://dx.doi.org/10.13111/2066-8201.2012.4.1.12.
Pełny tekst źródłaCANFIELD, ROBERT A., RAYMOND G. TOTH i REID MELVILLE. "VIBRATION AND TRANSONIC FLUTTER ANALYSIS FOR F-16 STORES CONFIGURATION CLEARANCE". International Journal of Structural Stability and Dynamics 06, nr 03 (wrzesień 2006): 377–95. http://dx.doi.org/10.1142/s0219455406002039.
Pełny tekst źródłaChi, R. M., i A. V. Srinivasan. "Some Recent Advances in the Understanding and Prediction of Turbomachine Subsonic Stall Flutter". Journal of Engineering for Gas Turbines and Power 107, nr 2 (1.04.1985): 408–17. http://dx.doi.org/10.1115/1.3239741.
Pełny tekst źródłaSun, Zhi Wei, i Jun Qiang Bai. "Time-Domain Aeroservoelastic Modeling and Active Flutter Suppression by Model Predictive Control". Advanced Materials Research 898 (luty 2014): 688–95. http://dx.doi.org/10.4028/www.scientific.net/amr.898.688.
Pełny tekst źródłaDimitriadis, G., i J. E. Cooper. "Comment on "Flutter Prediction from Flight Flutter Test Data"". Journal of Aircraft 43, nr 3 (maj 2006): 862–63. http://dx.doi.org/10.2514/1.c9463tc.
Pełny tekst źródłaBae, Jae-Sung, Jong-Yun Kim, In Lee, Yuji Matsuzaki i Daniel J. Inman. "Extension of Flutter Prediction Parameter for Multimode Flutter Systems". Journal of Aircraft 42, nr 1 (styczeń 2005): 285–88. http://dx.doi.org/10.2514/1.6440.
Pełny tekst źródłaArifianto, Dhany. "Flutter prediction on combined EPS and carbon sandwich structure for light aircraft wing". Journal of the Acoustical Society of America 150, nr 4 (październik 2021): A345. http://dx.doi.org/10.1121/10.0008533.
Pełny tekst źródłaZheng, Hua, Junhao Liu i Shiqiang Duan. "Novel Nonstationarity Assessment Method for Hypersonic Flutter Flight Tests". Mathematical Problems in Engineering 2018 (25.10.2018): 1–12. http://dx.doi.org/10.1155/2018/9742591.
Pełny tekst źródłaRozprawy doktorskie na temat "Flutter Prediction"
Perrocheau, Mathilde. "Flutter Prediction in Transonic Regime". Thesis, KTH, Flygdynamik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-234840.
Pełny tekst źródłaTurevskiy, Arkadiy 1974. "Flutter boundary prediction using experimental data". Thesis, Massachusetts Institute of Technology, 1998. http://hdl.handle.net/1721.1/50327.
Pełny tekst źródłaYildiz, Erdinc Nuri. "Aeroelastic Stability Prediction Using Flutter Flight Test Data". Phd thesis, METU, 2007. http://etd.lib.metu.edu.tr/upload/12608623/index.pdf.
Pełny tekst źródłaShieh, Teng-Hua. "Prediction and analysis of wing flutter at transonic speeds". Diss., The University of Arizona, 1991. http://hdl.handle.net/10150/185694.
Pełny tekst źródłaSun, Tianrui. "Improved Flutter Prediction for Turbomachinery Blades with Tip Clearance Flows". Licentiate thesis, KTH, Energiteknik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-233770.
Pełny tekst źródłaOpgenoord, Max Maria Jacques. "Transonic flutter prediction and aeroelastic tailoring for next-generation transport aircraft". Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/120380.
Pełny tekst źródłaThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 121-141) and index.
Novel commercial transport aircraft concepts feature large wing spans to increase their fuel efficiency; these wings are more flexible, leading to more potential aeroelastic problems. Furthermore, these aircraft fly in the transonic flow regime, where utter prediction is difficult. The goals for this thesis are to devise a method to reduce the computational burden of including transonic utter constraints in conceptual design tools, and to offer a potential solution for mitigating utter problems through the use of additive manufacturing techniques, specically focusing on a design methodology for lattice structures. To reduce the computational expense of considering transonic utter in conceptual aircraft design, a physics-based low-order method for transonic utter prediction is developed, which is based on small unsteady disturbances about a known steady flow solution. The states of the model are the circulation and doublet perturbations, and their evolution equation coefficients are calibrated using off-line unsteady two-dimensional flow simulations. The model is formulated for swept high-aspect ratio wings through strip theory and 3D corrections. The resulting low-order unsteady flow model is coupled to a typical-section structural model (for airfoils) or a beam model (for wings) to accurately predict utter of airfoils and wings. The method is fast enough to permit incorporation of transonic utter constraints in conceptual aircraft design calculations, as it only involves solving for the eigenvalues of small state-space systems. This model is used to describe the influence of transonic utter on next generation aircraft configurations, where it was found that transonic utter constraints can limit the eciency gains seen by better material technology. As a potential approach for mitigating utter, additively manufactured lattice structures are aeroelastically tailored to increase the flutter margin of wings. Adaptive meshing techniques are used to design the topology of the lattice to align with the load direction while adhering to manufacturing constraints, and the lattice is optimized to minimize the structural weight and to improve the flutter margin. The internal structure of a wing is aeroelastically tailored using this design strategy to increase the flutter margin, which only adds minimal weight to the structure due to the large design freedom the lattice structure offers.
by Max Maria Jacques Opgenoord.
Ph. D.
Erives, Anchondo Ruben. "Validation of non-linear time marching and time-linearised CFD solvers used for flutter prediction". Thesis, KTH, Kraft- och värmeteknologi, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-175542.
Pełny tekst źródłaDelamore-Sutcliffe, David William. "Modelling of unsteady stall aerodynamics and prediction of stall flutter boundaries for wings and propellers". Thesis, University of Bristol, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.440048.
Pełny tekst źródłaKassem, H. I. "Flutter prediction of metallic and composite wings using coupled DSM-CFD models in transonic flow". Thesis, City, University of London, 2017. http://openaccess.city.ac.uk/20404/.
Pełny tekst źródłaPerry, Brendan. "Predictions of flutter at transonic speeds". Thesis, University of Manchester, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.498853.
Pełny tekst źródłaKsiążki na temat "Flutter Prediction"
J, Brenner Martin, i United States. National Aeronautics and Space Administration., red. A worst-case approach for on-line flutter prediction. [Washington, D.C: National Aeronautics and Space Administration, 1998.
Znajdź pełny tekst źródłaJ, Brenner Martin, i United States. National Aeronautics and Space Administration., red. A worst-case approach for on-line flutter prediction. [Washington, D.C: National Aeronautics and Space Administration, 1998.
Znajdź pełny tekst źródłaA, Simons Todd, i NASA Glenn Research Center, red. Application of TURBO-AE to flutter prediction: Aeroelastic code development. [Cleveland, Ohio]: National Aeronautics and Space Administration, Glenn Research Center, 2001.
Znajdź pełny tekst źródłaA, Simons Todd, i NASA Glenn Research Center, red. Application of TURBO-AE to flutter prediction: Aeroelastic code development. [Cleveland, Ohio]: National Aeronautics and Space Administration, Glenn Research Center, 2001.
Znajdź pełny tekst źródłaA, Simons Todd, i NASA Glenn Research Center, red. Application of TURBO-AE to flutter prediction: Aeroelastic code development. [Cleveland, Ohio]: National Aeronautics and Space Administration, Glenn Research Center, 2001.
Znajdź pełny tekst źródłaV, Kaza K. R., i United States. National Aeronautics and Space Administration., red. Semi-empirical model for prediction of unsteady forces on an airfoil with application to flutter. [Washington, DC]: National Aeronautics and Space Administration, 1992.
Znajdź pełny tekst źródłaV, Kaza K. R., i United States. National Aeronautics and Space Administration., red. Semi-empirical model for prediction of unsteady forces on an airfoil with application to flutter. [Washington, DC]: National Aeronautics and Space Administration, 1992.
Znajdź pełny tekst źródłaPaduano, James D. Methods for in-flight robustness evaluation: Summary of research. [Washington, DC: National Aeronautics and Space Administration, 1995.
Znajdź pełny tekst źródła1945-, Bennett Robert M., i Langley Research Center, red. Using transonic small disturbance theory for predicting the aeroelastic stability of a flexible wind-tunnel model. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1990.
Znajdź pełny tekst źródłaEric, Feron, Brenner Marty i United States. National Aeronautics and Space Administration., red. Methods for in-flight robustness evaluation: Summary of research. [Washington, DC: National Aeronautics and Space Administration, 1995.
Znajdź pełny tekst źródłaCzęści książek na temat "Flutter Prediction"
Promio, Charles F., T. S. Varalakshmi, Pooja Bhat, G. A. Vedavathi i V. Sushma. "Unsteady aerodynamic force approximation for flutter prediction". W Aerospace and Associated Technology, 366–71. London: Routledge, 2022. http://dx.doi.org/10.1201/9781003324539-67.
Pełny tekst źródłaKumar, A. Arun, i Amit Kumar Onkar. "Robust Flutter Prediction of an Airfoil Including Uncertainties". W Lecture Notes in Mechanical Engineering, 305–14. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-9601-8_22.
Pełny tekst źródłaSévérin*, Tinmitonde, He Xuhui i Yan Lei. "Prediction of flutter velocity of long-span bridges using probabilistic approach". W Current Perspectives and New Directions in Mechanics, Modelling and Design of Structural Systems, 90–95. London: CRC Press, 2022. http://dx.doi.org/10.1201/9781003348443-14.
Pełny tekst źródłaTinmitonde, S., X. He i L. Yan. "Prediction of flutter velocity of long-span bridges using probabilistic approach". W Current Perspectives and New Directions in Mechanics, Modelling and Design of Structural Systems, 31–32. London: CRC Press, 2022. http://dx.doi.org/10.1201/9781003348450-14.
Pełny tekst źródłaBanavara, Nagaraj K., i Diliana Dimitrov. "Prediction of Transonic Flutter Behavior of a Supercritical Airfoil Using Reduced Order Methods". W Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 365–73. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-03158-3_37.
Pełny tekst źródłaHebler, Anne, i Reik Thormann. "Flutter Prediction of a Laminar Airfoil Using a Doublet Lattice Method Corrected by Experimental Data". W Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 445–55. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-27279-5_39.
Pełny tekst źródłaArena, Andrew S., i Kajal K. Gupta. "Expediting time-marching supersonic flutter prediction through a combination of CFD and aerodynamic modeling techniques". W Fifteenth International Conference on Numerical Methods in Fluid Dynamics, 268–73. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/bfb0107113.
Pełny tekst źródłaZhou, R., Y. J. Ge, Y. Yang, Y. D. Du i L. H. Zhang. "Nonlinear Wind-Induced Vibration Behaviors of Multi-tower Suspension Bridges Under Strong Wind Conditions". W Lecture Notes in Civil Engineering, 1–10. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-3330-3_1.
Pełny tekst źródłaGeorgiou, Georgia, Hamed Haddad Khodaparast i Jonathan E. Cooper. "Uncertainty Quantification of Aeroelastic Stability". W Advances in Computational Intelligence and Robotics, 329–56. IGI Global, 2014. http://dx.doi.org/10.4018/978-1-4666-4991-0.ch016.
Pełny tekst źródłaKanani, Pratik, i Mamta Chandraprakash Padole. "ECG Image Classification Using Deep Learning Approach". W Handbook of Research on Disease Prediction Through Data Analytics and Machine Learning, 343–57. IGI Global, 2021. http://dx.doi.org/10.4018/978-1-7998-2742-9.ch016.
Pełny tekst źródłaStreszczenia konferencji na temat "Flutter Prediction"
Ueda, Tetsuhiko, Masanobu IIo i Tadashige Ikeda. "Flutter Prediction Using Wavelet Transform". W 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2007. http://dx.doi.org/10.2514/6.2007-2320.
Pełny tekst źródłaLowe, Brandon, i David W. Zingg. "Flutter Prediction using Reduced-Order Modeling". W AIAA Scitech 2020 Forum. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2020. http://dx.doi.org/10.2514/6.2020-1998.
Pełny tekst źródłaTamayama, Masato, Hitoshi Arizono, Kenichi Saitoh i Norio Yoshimoto. "Development of flutter margin prediction program". W 9TH INTERNATIONAL CONFERENCE ON MATHEMATICAL PROBLEMS IN ENGINEERING, AEROSPACE AND SCIENCES: ICNPAA 2012. AIP, 2012. http://dx.doi.org/10.1063/1.4765614.
Pełny tekst źródłaPettit, Chris, i Philip Beran. "Reduced-order modeling for flutter prediction". W 41st Structures, Structural Dynamics, and Materials Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2000. http://dx.doi.org/10.2514/6.2000-1446.
Pełny tekst źródłaRaveh, Daniella E., i Matan Argaman. "Aeroelastic System Identification and Flutter Prediction". W 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2018. http://dx.doi.org/10.2514/6.2018-1440.
Pełny tekst źródłaLi, Wu, Karl Geiselhart i Jay Robinson. "Flutter Prediction for Aircraft Conceptual Design". W AIAA Scitech 2019 Forum. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2019. http://dx.doi.org/10.2514/6.2019-0174.
Pełny tekst źródłaZhou, Daheng, i Li Zhou. "Flutter boundary prediction based on CEEMDAN". W Nondestructive Characterization and Monitoring of Advanced Materials, Aerospace, Civil Infrastructure, and Transportation XVI, redaktorzy Peter J. Shull, Tzuyang Yu, Andrew L. Gyekenyesi i H. Felix Wu. SPIE, 2022. http://dx.doi.org/10.1117/12.2612246.
Pełny tekst źródłaZeng, Jie, P. C. Chen i Sunil Kukreja. "Investigation of the Prediction Error Identification for Flutter Prediction". W AIAA Atmospheric Flight Mechanics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2012. http://dx.doi.org/10.2514/6.2012-4575.
Pełny tekst źródłaHuang, Chao, Zhigang Wu, Chao Yang i Yuting Dai. "Flutter Boundary Prediction for a Flying-Wing Model Exhibiting Body Freedom Flutter". W 58th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2017. http://dx.doi.org/10.2514/6.2017-0415.
Pełny tekst źródłaMelek, Merve, i Metin O. Kaya. "Supersonic flutter prediction of functionally graded panel". W 2009 4th International Conference on Recent Advances in Space Technologies (RAST). IEEE, 2009. http://dx.doi.org/10.1109/rast.2009.5158184.
Pełny tekst źródłaRaporty organizacyjne na temat "Flutter Prediction"
Casey, J. K. Empirical Flutter Prediction Method. Fort Belvoir, VA: Defense Technical Information Center, marzec 1988. http://dx.doi.org/10.21236/ada195699.
Pełny tekst źródłaDowell, Earl H., i Kenneth C. Hall. Theoretical Prediction of Limit Cycle Oscillations in Support of Flight Flutter Testing. Fort Belvoir, VA: Defense Technical Information Center, sierpień 2003. http://dx.doi.org/10.21236/ada426408.
Pełny tekst źródłaFarhat, Charles. Real Time Predictive Flutter Analysis and Continuous Parameter Identification of Accelerating Aircraft. Fort Belvoir, VA: Defense Technical Information Center, wrzesień 1998. http://dx.doi.org/10.21236/ada361695.
Pełny tekst źródłaFarhat, Charbel. Real-Time Predictive Flutter Analysis and Continuous Parameter Identification of Accelerating Aircraft. Fort Belvoir, VA: Defense Technical Information Center, styczeń 2001. http://dx.doi.org/10.21236/ada387498.
Pełny tekst źródłaFarhat, Charbel. Real-Time Predictive Flutter Analysis and Continuous Parameter Identification of Acclerating Aircraft. Fort Belvoir, VA: Defense Technical Information Center, październik 2000. http://dx.doi.org/10.21236/ada389378.
Pełny tekst źródła