Gotowa bibliografia na temat „Fluorescent Nanoparticle”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Fluorescent Nanoparticle”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Fluorescent Nanoparticle"
Nurgaziyeva, Elmira, Sarkyt Kudaibergenov, Grigoriy Mun i Vitaliy Khutoryanskiy. "Synthesis of fluorescently-labelled poly(2-ethyl-2-oxazoline)-protected gold nanoparticles". Chemical Bulletin of Kazakh National University, nr 1 (19.03.2021): 12–20. http://dx.doi.org/10.15328/cb1185.
Pełny tekst źródłaSasaki, Isabelle, Jonathan Daniel, Sébastien Marais, Jean-Baptiste Verlhac, Michel Vaultier i Mireille Blanchard-Desce. "Soft fluorescent organic nanodots as nanocarriers for porphyrins". Journal of Porphyrins and Phthalocyanines 23, nr 11n12 (grudzień 2019): 1463–69. http://dx.doi.org/10.1142/s108842461950158x.
Pełny tekst źródłaDalavi, Dattatray K., Avinash Kamble, Dhanaji P. Bhopate, Prasad G. Mahajan, Govind B. Kolekar i Shivajirao R. Patil. "TNPs as a novel fluorescent sensor for the selective recognition of fast green FCF: a spectrofluorimetric approach". RSC Advances 5, nr 85 (2015): 69371–77. http://dx.doi.org/10.1039/c5ra09835a.
Pełny tekst źródłaSong, Xiaofang, Lifo Ruan, Tianyu Zheng, Jun Wei, Jiayu Zhang, Huiru Lu, Huiru Lu, Yi Hu, Jun Chen i Yanan Xue. "A Reduction Active Theranostic Nanoparticle for Enhanced Near-Infrared Imaging and Phototherapy by Reducing Glutathione Level in Cancer Cells". Journal of Nanoscience and Nanotechnology 21, nr 12 (1.12.2021): 5965–71. http://dx.doi.org/10.1166/jnn.2021.19514.
Pełny tekst źródłaThompson, Shelby, Mychele Jorns i Dimitri Pappas. "Synthesis and Characterization of Dye-Doped Au@SiO2 Core-Shell Nanoparticles for Super-Resolution Fluorescence Microscopy". Applied Spectroscopy 76, nr 11 (24.10.2022): 1367–74. http://dx.doi.org/10.1177/00037028221121357.
Pełny tekst źródłaAtanasova, Milka, Yavor Ivanov, Elena Zvereva, Anatoly Zherdev i Tzonka Godjevargova. "Simultaneous Determination of Penicillin G and Chloramphenicol in Milk by a Magnetic Nanoparticle-Based Fluorescent Immunoassay". Open Biotechnology Journal 14, nr 1 (16.06.2020): 59–69. http://dx.doi.org/10.2174/1874070702014010059.
Pełny tekst źródłaSingh Rana, Prem Jyoti, Pallavi Singh i Prasenjit Kar. "Carbon nanoparticles for ferric ion detection and novel HFCNs–Fe3+composite for NH3and F−estimation based on a “TURN ON” mechanism". Journal of Materials Chemistry B 4, nr 35 (2016): 5929–37. http://dx.doi.org/10.1039/c6tb00975a.
Pełny tekst źródłaHayashi, Terutake, Masaki Michihata, Yasuhiro Takaya i Kok Foong Lee. "Development of Nano Particle Sizing System Using Fluorescence Polarization". ACTA IMEKO 2, nr 2 (15.01.2014): 67. http://dx.doi.org/10.21014/acta_imeko.v2i2.108.
Pełny tekst źródłaHayashi, Terutake, Yuki Ishizaki, Masaki Michihata, Yasuhiro Takaya i Shin-ichi Tanaka. "Study on Nanoparticle Sizing Using Fluorescent Polarization Method with DNA Fluorescent Probe". International Journal of Automation Technology 9, nr 5 (5.09.2015): 534–40. http://dx.doi.org/10.20965/ijat.2015.p0534.
Pełny tekst źródłaJenie, Aisyiyah S. N., Fransiska S. H. Krismastuti, Yudia P. Ningrum, Anis Kristiani, Mutia D. Yuniati, Widi Astuti i Himawan T. B. M. Petrus. "Geothermal silica-based fluorescent nanoparticles for the visualization of latent fingerprints". Materials Express 10, nr 2 (1.02.2020): 258–66. http://dx.doi.org/10.1166/mex.2020.1551.
Pełny tekst źródłaRozprawy doktorskie na temat "Fluorescent Nanoparticle"
Kong, Yifei. "Multifunctional fluorescent nanoparticle-bioconjugates : preparation, characterisation and bioimaging applications". Thesis, University of Leeds, 2015. http://etheses.whiterose.ac.uk/12252/.
Pełny tekst źródłaLiao, Yuanyuan. "Crystals and nanoparticles of a BODIPY derivative : spectroscopy and microfluidic precipitation". Phd thesis, École normale supérieure de Cachan - ENS Cachan, 2013. http://tel.archives-ouvertes.fr/tel-00957872.
Pełny tekst źródłaThakur, Dhananjay P. "Fluorescent and Magnetic Nanocomposites for Multimodal Imaging". The Ohio State University, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=osu1274630209.
Pełny tekst źródłaPoncheri, Adam James. "Plasmonic field effects of silver nanoparticle monolayers on poly(phenylene ethynylene) fluorescent polymers of different chain length". Thesis, Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/41099.
Pełny tekst źródłaKhandelwal, P. "Understanding the nucleation and growth mechanism of metal nanoparticles and fluorescent metal quantum clusters and their applications". Thesis(Ph.D.), CSIR-National Chemical Laboratory, Pune, 2017. http://dspace.ncl.res.in:8080/xmlui/handle/20.500.12252/4518.
Pełny tekst źródłaPatel, Sandeep A. "Photophysics of fluorescent silver nanoclusters". Diss., Atlanta, Ga. : Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/28110.
Pełny tekst źródłaCommittee Chair: Dickson, Robert; Committee Member: Brown, Ken; Committee Member: Curtis, Jennifer; Committee Member: Payne, Christine; Committee Member: Perry, Joseph.
Agrawal, Amit. "Nanoparticle Probes for Ultrasensitive Biological Detection and Motor Protein Tracking inside Living Cells". Diss., Georgia Institute of Technology, 2006. http://hdl.handle.net/1853/19798.
Pełny tekst źródłaMcCracken, Christie Joy. "Toxicity of Food-Relevant Nanoparticles in Intestinal Epithelial Models". The Ohio State University, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=osu1437688702.
Pełny tekst źródłaCho, Hoon-Sung. "Design and Development of a multifunctional nano carrier system for imaging, drug delivery, and cell targeting in cancer research". University of Cincinnati / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1275936260.
Pełny tekst źródłaHajjaji, Hamza. "Nanosondes fluorescentes pour l'exploration des pressions et des températures dans les films lubrifiants". Thesis, Lyon, INSA, 2014. http://www.theses.fr/2014ISAL0076/document.
Pełny tekst źródłaThe goal of this study is the use of Si and SiC nanoparticles (NPs) as fluorescent temperature nanoprobes particularly in lubricating films. The development of these nanoprobes requires the determination of their thermal sensitivity in order to select the best prospects NPs. To achieve this goal, we presented two preparation methods used for the synthesis of 3C-SiC based nanostructures : (i) anodic etching method and (ii) chemical etching method. In the first case, the FTIR, Raman and TEM analysis of final NPs showed that the chemical nature of these NPs is formed predominantly of graphitic carbon. The detailed photoluminescence study of these NPs showed that the emission process depends on the surface chemistry of the NPs, the dispersion medium and its viscosity, the suspension concentration and temperature of the environment.. In the second case, coherent TEM, DLS and PL analyzes showed an average size of 1.8 nm in diameter with a dispersion of ±0.5 nm. The external quantum efficiency of these NPs is 4%. NPs dispersed in ethanol, did not show an exploitable fluorescence dependence on temperature for our application. On the other hand, 3C-SiC NPs produced by this way, given the narrow size distribution and the reasonably high quantum yield for an indirect bandgap material, are promising for applications such as luminophores in particular in the biology field thanks to nontoxicity of SiC. In the case of Si we studied also two different types of NPs. (i) NPs obtained by anodic etching and functionalized by alkyl groups (decene, octadecene). We have demonstrated for the first time an important red-shift in the emission energy dEg/dT with temperature from 300 to 400K. The PL lifetime measurement(T) lead to a thermal sensitivity of 0.75% /°C very interesting compared to II-VI NPs. Furthermore it has been shown that t is not depending on the concentration. (ii) NPs obtained by wet-chemical process and functionalized with n-butyl. For this type of NPs we have identified for the first time a blue-shift behavior of dEg dT in the order of -0.75 meV/K in squalane. The thermal sensitivity for the PL lifetime of these NPs is 0.2%/°C, which is lower than that of NPs obtained by anodic etching method, but much greater than that of CdSe NPs with 4 nm of diameter (0.08%/°C). Quantification of the temperature sensitivity by the position of emission peak dEg/dT and the PL lifetime dτ/dT allows us to consider the realization of temperature nanoprobes based on Si NPs with recommendations to use Si NPs obtained by anodic etching method and PL lifetime as an indicator of temperature changes
Książki na temat "Fluorescent Nanoparticle"
Wani, Waseem A., Mohammad Shahid, Afzal Hussain i Mohamed Fahad AlAjmi. Fluorescent Organic Nanoparticles. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-2655-4.
Pełny tekst źródłaGeddes, Chris D. Metal-enhanced fluorescence. Hoboken, N.J: Wiley, 2010.
Znajdź pełny tekst źródłaGeddes, Chris D. Metal-enhanced fluorescence. Hoboken, N.J: Wiley, 2010.
Znajdź pełny tekst źródłaD, Geddes Chris, red. Metal-enhanced fluorescence. Hoboken, N.J: Wiley, 2010.
Znajdź pełny tekst źródłaDemchenko, Alexander P. Advanced Fluorescence Reporters in Chemistry and Biology II: Molecular Constructions, Polymers and Nanoparticles. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2010.
Znajdź pełny tekst źródłaRaghavachari, Ramesh, i Samuel Achilefu. Reporters, markers, dyes, nanoparticles, and molecular probes for biomedical applications V: 4-6 February 2013, San Francisco, Calififornia, United States. Redaktorzy SPIE (Society), SPIE Photonics West (Conference) (2013 : San Francisco, Calif.) i Reporters, Markers, Dyes, Nanoparticles, and Molecular Probes for Biomedical Applications (Conference) (5th : 2013 : San Francisco, Calif.). Bellingham, Washington: SPIE, 2013.
Znajdź pełny tekst źródłaRaghavachari, Ramesh, i Samuel Achilefu. Reporters, markers, dyes, nanoparticles, and molecular probes for biomedical applications IV: 23-25 January 2012, San Francisco, California, United States. Redaktor SPIE (Society). Bellingham, Wash: SPIE, 2012.
Znajdź pełny tekst źródłaAchilefu, Samuel. Reporters, markers, dyes, nanoparticles, and molecular probes for biomedical applications: 26-29 January 2009, San Jose, California, United States. Bellingham, Wash: SPIE, 2009.
Znajdź pełny tekst źródła(Society), SPIE, red. Reporters, markers, dyes, nanoparticles, and molecular probes for biomedical applications: 26-29 January 2009, San Jose, California, United States. Bellingham, Wash: SPIE, 2009.
Znajdź pełny tekst źródłaRaghavachari, Ramesh, i Samuel I. Achilefu. Reporters, markers, dyes, nanoparticles, and molecular probes for biomedical applicaitons II: 25-27 January 2010, San Francisco, California, United States. Bellingham, Wash: SPIE, 2010.
Znajdź pełny tekst źródłaCzęści książek na temat "Fluorescent Nanoparticle"
Zhao, Wenjun, Lin Wang i Weihong Tan. "Fluorescent Nanoparticle for Bacteria and DNA Detection". W Bio-Applications of Nanoparticles, 129–35. New York, NY: Springer New York, 2007. http://dx.doi.org/10.1007/978-0-387-76713-0_10.
Pełny tekst źródłaSaha, Arindam, SK Basiruddin i Nikhil Ranjan Jana. "Plasmonic-Fluorescent and Magnetic-Fluorescent Composite Nanoparticle as Multifunctional Cellular Probe". W Surface Plasmon Enhanced, Coupled and Controlled Fluorescence, 1–11. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781119325161.ch1.
Pełny tekst źródłaKang, Kyung Aih, i Mai-Dung Nguyen. "Gold Nanoparticle-Based Fluorescent Contrast Agent with Enhanced Sensitivity". W Advances in Experimental Medicine and Biology, 399–407. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55231-6_52.
Pełny tekst źródłaSun, B. Q., G. Sh Yi, W. L. Xing, D. P. Chen, Y. X. Zhou i J. Cheng. "Protein Array Detection with Nanoparticle Fluorescent Probes by Laser Confocal Scanning Fluorescence Detection". W Biochips, 91–99. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-05092-7_8.
Pełny tekst źródłaWang, Jianting, Martin O’Toole, Archna Massey, Souvik Biswas, Michael Nantz, Samuel Achilefu i Kyung A. Kang. "Highly Specific, NIR Fluorescent Contrast Agent with Emission Controlled by Gold Nanoparticle". W Oxygen Transport to Tissue XXXII, 149–54. Boston, MA: Springer US, 2011. http://dx.doi.org/10.1007/978-1-4419-7756-4_21.
Pełny tekst źródłaJiang, Shan, Kornelia Gawlitza i Knut Rurack. "Dual-Fluorescent Nanoparticle Probes Consisting of a Carbon Nanodot Core and a Molecularly Imprinted Polymer Shell". W Molecularly Imprinted Polymers, 195–208. New York, NY: Springer US, 2021. http://dx.doi.org/10.1007/978-1-0716-1629-1_17.
Pełny tekst źródłaChawla, Santa. "Nanoparticles and Fluorescence". W Handbook of Nanoparticles, 961–83. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-15338-4_43.
Pełny tekst źródłaChawla, Santa. "Nanoparticles and Fluorescence". W Handbook of Nanoparticles, 1–19. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-13188-7_43-1.
Pełny tekst źródłaMondal, Somen, i Pradipta Purkayastha. "Hollow Fluorescent Carbon Nanoparticles". W Carbon Nanomaterials Sourcebook, 353–62. Boca Raton : Taylor & Francis Group, 2016. | “A CRC title.” |: CRC Press, 2018. http://dx.doi.org/10.1201/9781315371337-16.
Pełny tekst źródłaChen, Xiaokai, Xiaodong Zhang i Fu-Gen Wu. "Silicon Nanoparticles for Cell Imaging". W Fluorescent Materials for Cell Imaging, 77–95. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5062-1_4.
Pełny tekst źródłaStreszczenia konferencji na temat "Fluorescent Nanoparticle"
Heller, Michael J., Dieter Dehlinger, Sadik Esener i Benjamin Sullivan. "Electric Field Directed Fabrication of Biosensor Devices From Biomolecule Derivatized Nanoparticles". W ASME 2007 2nd Frontiers in Biomedical Devices Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/biomed2007-38093.
Pełny tekst źródłaNandy, Papiya, Debbethi Bera, Kunal Pal, Parimal Karmakar i Sukhen Das. "Highly Fluorescent Carbon Nanoparticle: An Emerging Bioimaging Intervention". W MOL2NET 2020, International Conference on Multidisciplinary Sciences, 6th edition. Basel, Switzerland: MDPI, 2020. http://dx.doi.org/10.3390/mol2net-06-06786.
Pełny tekst źródłaZhong, Xin, i Fei Duan. "Nanoparticle Motion and Deposition Pattern From Evaporating Binary Droplets". W ASME 2016 5th International Conference on Micro/Nanoscale Heat and Mass Transfer. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/mnhmt2016-6477.
Pełny tekst źródłaXue, Jianpeng, Zeqing Li, Hanmei Xu i Yang Pu. "A novel fluorescent gold nanoparticle inhibiting migration and invasion of tumor cells". W Reporters, Markers, Dyes, Nanoparticles, and Molecular Probes for Biomedical Applications XI, redaktorzy Samuel Achilefu i Ramesh Raghavachari. SPIE, 2019. http://dx.doi.org/10.1117/12.2508636.
Pełny tekst źródłaZyubin, Andrey, Vladimir Rafalskiy, Karina I. Matveeva, Ekaterina Moiseeva, Alina Tsapkova, Elizaveta Demishkevich, Ilia G. Samusev i Valery Bryukhanov. "Photophysical properties of nanoparticle-dye-protein complexes for fluorescent labeling purposes". W Plasmonics V, redaktorzy Zheyu Fang i Takuo Tanaka. SPIE, 2020. http://dx.doi.org/10.1117/12.2575386.
Pełny tekst źródłaCulhane, Kyle M., Kathrin Spendier i Anatoliy O. Pinchuk. "Functionalized fluorescent silver nanoparticle surfaces for novel sensing and imaging techniques". W SPIE Sensing Technology + Applications, redaktorzy Nibir K. Dhar i Achyut K. Dutta. SPIE, 2015. http://dx.doi.org/10.1117/12.2177195.
Pełny tekst źródłaJiang, Liwen, Xuqing Sun, Hongyao Liu, Wei Xiong, Yaqin Chen i Xinchao Lu. "Label-free imaging to single nanoparticle by using TIR-based Interface Scattering". W JSAP-OSA Joint Symposia. Washington, D.C.: Optica Publishing Group, 2017. http://dx.doi.org/10.1364/jsap.2017.8a_a409_2.
Pełny tekst źródłaChen, Kok Hao, i Jong Hyun Choi. "Nanoparticle-Aptamer: An Effective Growth Inhibitor for Human Cancer Cells". W ASME 2009 International Mechanical Engineering Congress and Exposition. ASMEDC, 2009. http://dx.doi.org/10.1115/imece2009-11966.
Pełny tekst źródłaZyubin, Andrey Y., Konstantin Alexandrov, Karina Y. Matveeva i Ilia Samusev. "Plasmon-enhanced fluorescence of nanoparticle-dye-protein complex as perspective approach for increase in fluorescent labeling effectiveness". W Nanophotonics and Micro/Nano Optics V, redaktorzy Zhiping Zhou, Kazumi Wada i Limin Tong. SPIE, 2019. http://dx.doi.org/10.1117/12.2536407.
Pełny tekst źródłaShang, Li, i Gerd Ulrich Nienhaus. "Fluorescent nanoparticle interactions with biological systems: What have we learned so far?" W SPIE BiOS, redaktorzy Wolfgang J. Parak, Marek Osinski i Xing-Jie Liang. SPIE, 2015. http://dx.doi.org/10.1117/12.2075722.
Pełny tekst źródłaRaporty organizacyjne na temat "Fluorescent Nanoparticle"
Lu, Dengwei, Enjie Tang, Supeng Yin, Yizeng Sun, Yuquan Yuan, Tingjie Yin, Zeyu Yang i Fan Zhang. Intraoperative strategies in identification and functional protection of parathyroid gland for patients with thyroidectomy: A network meta-analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, listopad 2022. http://dx.doi.org/10.37766/inplasy2022.11.0109.
Pełny tekst źródłaChiu, Sheng-Kuei. Photoluminescent Silicon Nanoparticles: Fluorescent Cellular Imaging Applications and Photoluminescence (PL) Behavior Study. Portland State University Library, styczeń 2000. http://dx.doi.org/10.15760/etd.2453.
Pełny tekst źródłaChoudhary, Ruplal, Victor Rodov, Punit Kohli, John D. Haddock i Samir Droby. Antimicrobial and antioxidant functionalized nanoparticles for enhancing food safety and quality: proof of concept. United States Department of Agriculture, wrzesień 2012. http://dx.doi.org/10.32747/2012.7597912.bard.
Pełny tekst źródła