Gotowa bibliografia na temat „Fluid physics”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Fluid physics”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Fluid physics"

1

Ilyas, Ilyas, i An Nisaa Al Mu’min Liu. "Development of Physics Learning Tools Based on Contextual Teaching And Learning in a Remote Island Area". Jurnal Pendidikan Fisika 7, nr 1 (3.02.2019): 1–8. http://dx.doi.org/10.26618/jpf.v7i1.1590.

Pełny tekst źródła
Streszczenie:
The research attempted to know the information on exam result Development of Physics learning tool for the students of eleven grade in Ende Island by using contextual teaching and learning in Fluid materials. It was viewed from the aspect of validity. Practicality and effectiveness. The kinds of research were development research that revers to ADDIE development model, analysis phase, design Development, implementation and evaluation. The Subject of the research was Physics learning device with approach learning model contextual teaching and learning to the students of Eleven Grade Ende Island Senior High School there are twenty nine students. Data collection was done in this research by using technique documentation. The data collection of research were done by using technique documentation, observations, survey and testing. The result showed that understanding the physics subject of fluid increased 82,7%, while students response showed positive response. This case showed that the reflection of the Egibilty of Development of Physics Learning tool based on Contextual Learning and teaching to increase the result of studying physic with Fluid materials.Keywords: Contextual Teaching and Learning, FluidaPenelitian ini bertujuan untuk mengetahui informasi hasil ujicoba perangkat pembelajaran fisika untuk peserta didik kelas X SMAN Pulau Ende dengan menggunakan model pembelajaran Contextual Teaching and Learning pada materi fluida ditinjau dari aspek kevalidan, kepraktisan dan keefektifan. Jenis penelitian ini adalah penelitian pengembangan yang mengacu model pengembangan ADDIE, dengan tahapan Analysis, Design, Development, Implementation, dan Evaluation. Subjek dalam penelitian ini adalah perangkat Pembelajaran fisika dengan pendekatan model pembelajran Contextual Teaching and Learning untuk peserta didik kelas XI SMAN Pulau Ende yang berjumlah 29 peserta didik. Pengumpulan data yang dilakukan dalam penelitian ini menggunakan teknik Dokumentasi, Observasi, dan Tes, Penyebaran Angket. Hasil penelitian menunjukkan bahwa pemahaman konsep fisika pokok bahasan fluida mengalami peningkatan 82,7%. Sedangkan respon siswa menunjukkan respon positif. Hal ini menunjukkan kelayakan pengembangan perangkat pembelajaran fisika Berbasis Contextual Teaching and Learning untuk meningkatkan hasil belajar fisika peserta didik materi fluidaKata kunci: Contextual Teaching and Learning, Fluida
Style APA, Harvard, Vancouver, ISO itp.
2

Ayub, Syahrial, Hikmawati Hikmawati, Ni Nyoman Sri Putu Verawati i Muhammad Zuhdi. "PENGEMBANGAN KIT FLUIDA ALTERNATIF YANG BERASAL DARI SAMPAH ANORGANIK UNTUK PEMBELAJARAN FISIKA". ORBITA: Jurnal Kajian, Inovasi dan Aplikasi Pendidikan Fisika 5, nr 2 (28.11.2019): 59. http://dx.doi.org/10.31764/orbita.v5i2.1185.

Pełny tekst źródła
Streszczenie:
ABSTRAKPenelitian ini bertujuan mengembangkan kit fluida alternatif pada pembelajaran fisika. Kit fluida alternatif ini dibuat dengan memanfaatkan sampah anorganik yang sudah tidak digunakan. Sampah anorganik adalah sampah yang dihasilkan dari bahan-bahan non-hayati, baik berupa produk sintetik maupun hasil proses teknologi pengolahan bahan tambang atau sumber daya alam dan tidak dapat diuraikan oleh alam, seperti botol plastik, tas plastik, kaleng dan lain-lain. Alat-alat yang terdapat pada kit fluida alternatif adalah alat peraga kapal selam sederhana, alat peraga aliran air, alat peraga pompa air tekanan udara, alat peraga barometer botol, alat peraga roket tekanan udara, dan alat peraga helikopter sederhana. Alat-alat peraga ini disusun dalam satu kotak dan mudah dibawa (portable). Kotak inilah yang disebut dengan kit fluida alternatif. Kit fluida ini diterapkan pada pembelajaran IPA (Fisika) di SD Negeri 6 Mataram. Respon peserta didik terhadap pembelajaran dengan integrasi kit fluida alternatif adalah 78 % menyatakan sangat setuju dan hanya 22 % yang menyatakan setuju dan tidak ada yang memilih tidak setuju. Berdasarkan data ini, disimpulkan bahwa pembelajaran IPA (fisika) di SD Negeri 6 Mataram dengan integrasi kit fluida alternatif mendapat respon baik dari peserta didik. Kata kunci: Kit Fluida Alternatif; Sampah Anorganik; Pembelajaran Fisika ABSTRACTThis research aims to develop alternative fluid kits in learning physics. This alternative fluid kit is made using inorganic waste that is not used. Inorganic waste is waste generated from non-biological materials, either in the form of synthetic products or the results of the processing technology of mining materials or natural resources and cannot be broken down by nature, such as plastic bottles, plastic bags, cans and others. The tools contained in the alternative fluid kit are simple submarine props, water flow props, air pressure water pump props, bottle barometer props, air pressure rocket props, and simple helicopter props. These props are arranged in one box and are easy and portable. This box is called the alternative fluid kit. This fluid kit is applied to learning science (physics) in SD Negeri 6 Mataram. Learners' responses to learning with the integration of alternative fluid kits is 78% stating strongly agree and only 22% who agree and no one chooses to disagree. Based on this data, it was concluded that learning science (physics) at SD Negeri 6 Mataram with the integration of alternative fluid kits received good responses from students. Keywords: Alternative Fluid Kits; Inorganic Waste; Physics Learning
Style APA, Harvard, Vancouver, ISO itp.
3

Elsaady, Wael, S. Olutunde Oyadiji i Adel Nasser. "A review on multi-physics numerical modelling in different applications of magnetorheological fluids". Journal of Intelligent Material Systems and Structures 31, nr 16 (7.07.2020): 1855–97. http://dx.doi.org/10.1177/1045389x20935632.

Pełny tekst źródła
Streszczenie:
Magnetorheological fluids involve multi-physics phenomena which are manifested by interactions between structural mechanics, electromagnetism and rheological fluid flow. In comparison with analytical models, numerical models employed for magnetorheological fluid applications are thought to be more advantageous, as they can predict more phenomena, more parameters of design, and involve fewer model assumptions. On that basis, the state-of-the-art numerical methods that investigate the multi-physics behaviour of magnetorheological fluids in different applications are reviewed in this article. Theories, characteristics, limitations and considerations employed in numerical models are discussed. Modelling of magnetic field has been found to be rather an uncomplicated affair in comparison to modelling of fluid flow field which is rather complicated. This is because, the former involves essentially one phenomenon/mechanism, whereas the latter involves a plethora of phenomena/mechanisms such as laminar versus turbulent rheological flow, incompressible versus compressible flow, and single- versus two-phase flow. Moreover, some models are shown to be still incapable of predicting the rheological nonlinear behaviour of magnetorheological fluids although they can predict the dynamic characteristics of the system.
Style APA, Harvard, Vancouver, ISO itp.
4

Cervantes, L. A., A. L. Benavides i F. del Río. "Theoretical prediction of multiple fluid-fluid transitions in monocomponent fluids". Journal of Chemical Physics 126, nr 8 (28.02.2007): 084507. http://dx.doi.org/10.1063/1.2463591.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

LIU, Jing. "Advanced Fluid Information. Magnetorheological Fluids: From Basic Physics to Application." JSME International Journal Series B 45, nr 1 (2002): 55–60. http://dx.doi.org/10.1299/jsmeb.45.55.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Neumann, John. "Physics Curriculum Needs Fluid Mechanics". Physics Today 57, nr 6 (czerwiec 2004): 14. http://dx.doi.org/10.1063/1.1784257.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Arter, W. "The physics of fluid turbulence". Computer Physics Communications 78, nr 1-2 (grudzień 1993): 218–19. http://dx.doi.org/10.1016/0010-4655(93)90157-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Fedina, Olga V., Arthur R. Zakinyan i Irina M. Agibova. "Design of science laboratory sessions with magnetic fluids". International Journal of Mechanical Engineering Education 45, nr 4 (26.05.2017): 349–59. http://dx.doi.org/10.1177/0306419017708644.

Pełny tekst źródła
Streszczenie:
Application of new achievements in science and technology to the physics laboratory sessions can ensure the advancement of physics education. One particular example of the technologies giving new opportunities in the design of physics laboratory works is the magnetic fluid. We describe the laboratory works within the scope of the general physic course for the undergraduate students. Principal feature of the laboratories presented is the use of magnetic fluids. It makes possible to design some creative laboratory works, which can help to develop skills in performing scientific experiments and to increase the understanding of the physical concepts. The sample consists of 120 third-grade university students from the Department of General and Theoretical Physics in the North Caucasus Federal University in Stavropol, Russia. These laboratories arouse students’ interest and contribute to the achievement of high quality of learning outcomes. We also show that such laboratories engage students’ interest in the scientific research work.
Style APA, Harvard, Vancouver, ISO itp.
9

Ramli, Z., Sunaryo i V. Serevina. "E-Book Static Fluid and Dynamic Fluid Web-Based with a Problem-Based Learning Model to Improve Students Physics Problem-Solving Skills". Journal of Physics: Conference Series 2019, nr 1 (1.10.2021): 012001. http://dx.doi.org/10.1088/1742-6596/2019/1/012001.

Pełny tekst źródła
Streszczenie:
Abstract This study aims to develop physics learning media in the form a static fluid and dynamic fluids e-book based on website with Problem Based Learning for students learning. The research subjects were 43 5th semester student of Jakarta State University. The research method used is Research and Development (R&D) research using the ADDIE development model (Analysis, Design, Development, Implementation, and Evaluation). The result of the instrument validation showed 90.31% for the validation of media experts, 94.94% for the validation of material experts, and 77.09% for the validation of learning experts. Based on the results of the validation of media experts, the material, and learning can show that this e-book in terms of several indicators used for validations has very decent criteria. Based on the result of trials to students, the results obtained an average score of all aspects of 88.39% with a very feasible interpretation and the impact on students Physics Problem Solving was measured. Based on the result of the effectiveness test show that there are differences in physics problem solving among students who use static fluids and dynamic fluids e-book based on Problem Based Learning and static fluids and dynamic fluids e-book based on Non-Problem Based Learning. Based on the D’Cohens test, the use of static fluids and dynamic fluids e-book based on Problem Based Learning made an effective contribution to increasing students Physics Problem Solving by 2.51 in the medium category, so it can be concluded that the developed e-book can increase the Physics Problem Solving students.
Style APA, Harvard, Vancouver, ISO itp.
10

Arrieta, Jorge, Julyan H. E. Cartwright, Emmanuelle Gouillart, Nicolas Piro, Oreste Piro i Idan Tuval. "Geometric mixing". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 378, nr 2179 (3.08.2020): 20200168. http://dx.doi.org/10.1098/rsta.2020.0168.

Pełny tekst źródła
Streszczenie:
Mixing fluids often involves a periodic action, like stirring one’s tea. But reciprocating motions in fluids at low Reynolds number, in Stokes flows where inertia is negligible, lead to periodic cycles of mixing and unmixing, because the physics, molecular diffusion excepted, is time reversible. So how can fluid be mixed in such circumstances? The answer involves a geometric phase. Geometric phases are found everywhere in physics as anholonomies, where after a closed circuit in the parameters, some system variables do not return to their original values. We discuss the geometric phase in fluid mixing: geometric mixing. This article is part of the theme issue ‘Stokes at 200 (part 2)’.
Style APA, Harvard, Vancouver, ISO itp.

Rozprawy doktorskie na temat "Fluid physics"

1

Osman, S. M. "Theoretical studies of the fluid-fluid interface". Thesis, University of East Anglia, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.382833.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Glorioso, Paolo. "Fluid dynamics in action". Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/107318.

Pełny tekst źródła
Streszczenie:
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Physics, 2016.
Cataloged from PDF version of thesis.
Includes bibliographical references (pages 207-213).
In this thesis we formulate an effective field theory for nonlinear dissipative fluid dynamics. The formalism incorporates an action principle for the classical equations of motion as well as a systematic approach to thermal and quantum fluctuations around the classical motion of fluids. The dynamical degrees of freedom are Stuckelberg-like fields associated with diffeomorphisms and gauge transformations, and are related to the conservation of the stress tensor and a U(1) current if the fluid possesses a charge. This inherently geometric construction gives rise to an emergent "fluid space-time", similar to the Lagrangian description of fluids. We develop the variational formulation based on symmetry principles defined on such fluid space-time. Through a prescribed correspondence, the dynamical fields are mapped to the standard fluid variables, such as temperature, chemical potential and velocity. This allows to recover the standard equations of fluid dynamics in the limit where fluctuations are negligible. Demanding the action to be invariant under a discrete transformation, which we call local KMS, guarantees that the correlators of the stress tensor and the current satisfy the fluctuation-dissipation theorem. Local KMS invariance also automatically ensures that the constitutive relations of the conserved quantities satisfy the standard constraints implied e.g. by the second law of thermodynamics, and leads to a new set of constraints which we call generalized Onsager relations. Requiring the above properties to hold beyond tree-level leads to introducing fermionic partners of the original degrees of freedom, and to an emergent supersymmetry. We also outline a procedure for obtaining the effective field theory for fluid dynamics by applying the holographic Wilsonian renormalization group to systems with a gravity dual.
by Paolo Glorioso.
Ph. D.
Style APA, Harvard, Vancouver, ISO itp.
3

Feudel, Fred, Norbert Seehafer i Olaf Schmidtmann. "Fluid helicity and dynamo bifurcations". Universität Potsdam, 1995. http://opus.kobv.de/ubp/volltexte/2007/1388/.

Pełny tekst źródła
Streszczenie:
The bifurcation behaviour of the 3D magnetohydrodynamic equations has been studied for external forcings of varying degree of helicity. With increasing strength of the forcing a primary non-magnetic steady state loses stability to a magnetic periodic state if the helicity exceeds a threshold value and to different non-magnetic states otherwise.
Style APA, Harvard, Vancouver, ISO itp.
4

Moe, John Einar. "Near and far-field acoustic scattering through and from two dimensional fluid-fluid rough interfaces /". Thesis, Connect to this title online; UW restricted, 1996. http://hdl.handle.net/1773/6019.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Sun, Mingqiu. "Molecular dynamics simulation of fluid systems /". The Ohio State University, 1994. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487849696964891.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Crossley, Michael James. "An action principle for dissipative fluid dynamics". Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/103242.

Pełny tekst źródła
Streszczenie:
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Physics, 2016.
Cataloged from PDF version of thesis.
Includes bibliographical references (pages 193-199).
Fluid dynamics is the universal theory of low-energy excitations around equilibrium states, governing the physics of long-lived modes associated with conserved charges. Historically, fluid dynamics has been formulated at the level of equations of motion, in terms of a local fluid velocity and thermodynamic quantities. In this thesis, we describe a new formulation of fluid dynamics in terms of a path integral, which systematically encodes the effects of thermal and quantum fluctuations. In our formulation, the dynamical degrees of freedom are Stuckelberg-type fields associated to the conserved quantities, which are subject to natural symmetry considerations, and the time evolution of the path integral is along the closed-time contour. Our formulation recovers the standard hydrodynamics, including the expected constraints from thermodynamics and the fluctuation-dissipation theorem, as well as an additional non-linear generalization of the Onsager relations. We demonstrate an emergent supersymmetry in the "classical statistical" limit of our theory. For the non-linear fluid, the formalism is encoded in a non-trivial differential geometric structure, with a non vanishing torsion tensor required to recover the correct physics of the most general fluid. Finally, we discuss progress in obtaining a holographic derivation of the action formulation at the ideal level, in which the low energy degrees of freedom emerge naturally as the relative embedding of the boundary and horizon hypersurfaces.
by Michael James Crossley.
Ph. D.
Style APA, Harvard, Vancouver, ISO itp.
7

麥民光 i Man-kwong Mak. "The relativistic static charged fluid sphere and viscous fluid cosmological model". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1998. http://hub.hku.hk/bib/B31237526.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Mak, Man-kwong. "The relativistic static charged fluid sphere and viscous fluid cosmological model /". Hong Kong : University of Hong Kong, 1998. http://sunzi.lib.hku.hk/hkuto/record.jsp?B19324352.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Sandin, Patrik. "The asymptotic states of perfect fluid cosmological models". Licentiate thesis, Karlstad : Faculty of Technology and Science, Physics, Karlstads universitet, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-4713.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Degen, Michael Merle. "Time-dependent pattern formation in fluid dynamical systems /". The Ohio State University, 1997. http://rave.ohiolink.edu/etdc/view?acc_num=osu148794815862621.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Książki na temat "Fluid physics"

1

Douglas, J. F. Fluid mechanics. Wyd. 3. Harlow: Longman, 1995.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

G, Velarde Manuel, Christov Christo I, Fluid Physics Summer School (Almería, Spain) i International Conference on Interfacial Phenomena (1994 : Madrid, Spain ), red. Fluid physics: Lecture notes of summer schools. Singapore: World Scientific Pub. Co., 1995.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

McComb, W. D. The physics of fluid turbulence. Oxford: Clarendon Press, 1991.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

The physics of fluid turbulence. Oxford: Clarendon Press, 1990.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Gallavotti, Giovanni. Foundations of Fluid Dynamics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Physics, American Institute of. Physics of fluids: Fluid dynamics : a publication of the American Institute of Physics. New York, NY: American Institute of Physics, 1989.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

The physics of pulsatile flow. New York: AIP Press, 2000.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

The physics of reservoir fluids: Discovery through downhole fluid analysis. Sugar Land, Tex: Schlumberger, 2008.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Shivamoggi, Bhimsen K. Introduction to Nonlinear Fluid-Plasma Waves. Dordrecht: Springer Netherlands, 1988.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

A, Croxton Clive, red. Fluid interfacial phenomena. Chichester [West Sussex]: Wiley, 1986.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Części książek na temat "Fluid physics"

1

Beysens, Daniel A. "Fluid Physics". W Generation and Applications of Extra-Terrestrial Environments on Earth, 193–203. New York: River Publishers, 2022. http://dx.doi.org/10.1201/9781003338277-24.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Gu, Yipeng. "Fluid". W Solving Physics Problems, 717–74. New York: Jenny Stanford Publishing, 2022. http://dx.doi.org/10.1201/9781003162544-7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Piel, Alexander. "Fluid Models". W Plasma Physics, 107–31. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-10491-6_5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Hu, W. R., i Z. M. Tang. "Microgravity Fluid Physics". W Space Science in China, 281–97. London: Routledge, 2022. http://dx.doi.org/10.1201/9780203739082-22.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Piazza, Roberto. "Fluid chords". W UNITEXT for Physics, 141–99. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-44537-3_4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Chiuderi, Claudio, i Marco Velli. "Fluid Models". W UNITEXT for Physics, 49–69. Milano: Springer Milan, 2014. http://dx.doi.org/10.1007/978-88-470-5280-2_4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Nichols, Daniel H. "Fluid Flow". W Physics for Technology, 151–66. Second edition. | Boca Raton : CRC Press, Taylor & Francis: CRC Press, 2018. http://dx.doi.org/10.1201/9781351207270-9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Fitzpatrick, Richard. "Plasma Fluid Theory". W Plasma Physics, 71–116. Wyd. 2. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003268253-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Tavoularis, Stavros. "Fluid Dynamics". W AIP Physics Desk Reference, 425–43. New York, NY: Springer New York, 2003. http://dx.doi.org/10.1007/978-1-4757-3805-6_13.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Piel, Alexander. "Fluid Models". W Graduate Texts in Physics, 113–38. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-63427-2_5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Streszczenia konferencji na temat "Fluid physics"

1

Velarde, Manuel G., i Christo I. Christov. "FLUID PHYSICS". W Summer Schools. WORLD SCIENTIFIC, 1995. http://dx.doi.org/10.1142/9789812798831.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Collicott, Steven. "Capillary Fluid Physics in Zero-Gravity". W 41st AIAA Fluid Dynamics Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2011. http://dx.doi.org/10.2514/6.2011-4046.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

HANKEY, W. "ICFD - Interdisciplinary Computational Fluid Dynamics". W 7th Computational Physics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1985. http://dx.doi.org/10.2514/6.1985-1522.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Lewalle, Jacques. "Wavelet analysis of experimental data - Some methods and the underlying physics". W Fluid Dynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1994. http://dx.doi.org/10.2514/6.1994-2281.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Bowman, Joshua, Shanti Bhushan, David S. Thompson, Daphne O'Doherty, Tim O'Doherty i Allen Mason-Jones. "A Physics-Based Actuator Disk Model for Hydrokinetic Turbines". W 2018 Fluid Dynamics Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2018. http://dx.doi.org/10.2514/6.2018-3227.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Crouch, Jeffrey. "Modeling Transition Physics for Laminar Flow Control". W 38th Fluid Dynamics Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2008. http://dx.doi.org/10.2514/6.2008-3832.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

L. Ball, Vaughn, Kevin Northey i Doug Foster. "The Rock Physics Of Seismic Fluid Attributes". W 7th International Congress of the Brazilian Geophysical Society. European Association of Geoscientists & Engineers, 2001. http://dx.doi.org/10.3997/2214-4609-pdb.217.009.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Motil, Brian, i Bhim Singh. "NASA's Microgravity Fluid Physics Strategic Research Roadmap". W 42nd AIAA Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2004. http://dx.doi.org/10.2514/6.2004-123.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Goodman, Katherine, Jean Hertzberg i Noah Finkelstein. "Aesthetics and expanding perception in fluid physics". W 2015 IEEE Frontiers in Education Conference (FIE). IEEE, 2015. http://dx.doi.org/10.1109/fie.2015.7344311.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Bamba, Kazuharu. "Inflationary Universe in Fluid Description". W 14th Regional Conference on Mathematical Physics. WORLD SCIENTIFIC, 2018. http://dx.doi.org/10.1142/9789813224971_0006.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Raporty organizacyjne na temat "Fluid physics"

1

Condie, Keith Glenn, Glenn Ernest Mc Creery i Donald Marinus McEligot. Measurements of Fundamental Fluid Physics of SNF Storage Canisters. Office of Scientific and Technical Information (OSTI), wrzesień 2001. http://dx.doi.org/10.2172/910677.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Shumlak, Uri. Physics-Based Computational Algorithm for the Multi-Fluid Plasma Model. Fort Belvoir, VA: Defense Technical Information Center, czerwiec 2014. http://dx.doi.org/10.21236/ada614448.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Long, Christopher Curtis, Mikhail Jurievich Shashkov, Ido Akkerman, Guglielmo Scovazzi, David Benson, Yuri Bazilevs i Alison Marsden. Finite Elements and Isogeometric Analysis: From Shock Physics to Fluid-Structure Interaction. Office of Scientific and Technical Information (OSTI), maj 2015. http://dx.doi.org/10.2172/1179260.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Holub, Oleksandr, Mykhailo Moiseienko i Natalia Moiseienko. Fluid Flow Modelling in Houdini. [б. в.], listopad 2020. http://dx.doi.org/10.31812/123456789/4128.

Pełny tekst źródła
Streszczenie:
The modern educational environment in the field of physics and information technology ensures the widespread use of visualization software for successful and deep memorization of material. There are many software for creating graphic objects for presentations and demonstrations, the most popular of which were analyzed. The work is devoted to the visualization of liquids with different viscosity parameters. The article describes the development of a fluid model in the form of a particle stream. The proposed methodology involves using the Houdini application to create interactive models. The developed model can be used in the educational process in the field of information technology.
Style APA, Harvard, Vancouver, ISO itp.
5

Vilim, Richard, i Thomas Esselman. Advanced Physics-Based Fluid System Performance Monitoring to Support Nuclear Power Plant Operations. Office of Scientific and Technical Information (OSTI), styczeń 2021. http://dx.doi.org/10.2172/1818124.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

D.M. McEligot, K. G. Condie, G. E. McCreery, H. M. McIlroy, R. J. Pink, L.E. Hochreiter, J.D. Jackson i in. Advanced Computational Thermal Fluid Physics (CTFP) and Its Assessment for Light Water Reactors and Supercritical Reactors. Office of Scientific and Technical Information (OSTI), październik 2005. http://dx.doi.org/10.2172/911892.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Ilya Tsvankin i Kenneth L. Larner. Inversion of multicomponent seismic data and rock-physics intepretation for evaluating lithology, fracture and fluid distribution in heterogeneous anisotropic reservoirs. Office of Scientific and Technical Information (OSTI), listopad 2004. http://dx.doi.org/10.2172/834389.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Mansour, A., i N. Chigier. The physics of non-Newtonian liquid slurry atomization. Part 2: Twin-fluid atomization of non-Newtonian liquids -- First quarterly technical report, 1 January--31 March 1994. Office of Scientific and Technical Information (OSTI), czerwiec 1994. http://dx.doi.org/10.2172/10158834.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Slawianowski, Jan J. The Two Apparently Different But Hiddenly Related Euler Achievements: Rigid Body and Ideal Fluid. Our Unifying Going Between: Affinely-Rigid Body and Affine Invariance in Physics. GIQ, 2015. http://dx.doi.org/10.7546/giq-16-2015-36-72.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Ross, M. Physics of dense fluids. Office of Scientific and Technical Information (OSTI), lipiec 1986. http://dx.doi.org/10.2172/5521881.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii