Artykuły w czasopismach na temat „Fluid flow and heat transfer”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Fluid flow and heat transfer”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Coulson, J. M., J. F. Richardson, J. R. Backhurst i J. H. Harker. "Fluid flow, heat transfer and mass transfer". Filtration & Separation 33, nr 2 (luty 1996): 102. http://dx.doi.org/10.1016/s0015-1882(96)90353-5.
Pełny tekst źródłaMakinde, O. D., R. J. Moitsheki, R. N. Jana, B. H. Bradshaw-Hajek i W. A. Khan. "Nonlinear Fluid Flow and Heat Transfer". Advances in Mathematical Physics 2014 (2014): 1–2. http://dx.doi.org/10.1155/2014/719102.
Pełny tekst źródłaMuthusamy, P., i Palanisamy Senthil Kumar. "Waste Heat Recovery Using Matrix Heat Exchanger from the Exhaust of an Automobile Engine for Heating Car’s Passenger Cabin". Advanced Materials Research 984-985 (lipiec 2014): 1132–37. http://dx.doi.org/10.4028/www.scientific.net/amr.984-985.1132.
Pełny tekst źródłaNallusamy, S. "Characterization of Al2O3/Water Nanofluid through Shell and Tube Heat Exchangers over Parallel and Counter Flow". Journal of Nano Research 45 (styczeń 2017): 155–63. http://dx.doi.org/10.4028/www.scientific.net/jnanor.45.155.
Pełny tekst źródłaRao, H. V. "Isentropic recuperative heat exchanger with regenerative work transfer". Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 214, nr 4 (1.04.2000): 609–18. http://dx.doi.org/10.1243/0954406001523948.
Pełny tekst źródłaRajavel, Rangasamy, i Kaliannagounder Saravanan. "Heat transfer studies on spiral plate heat exchanger". Thermal Science 12, nr 3 (2008): 85–90. http://dx.doi.org/10.2298/tsci0803085r.
Pełny tekst źródłaKIMURA, Fumiyoshi, i Kenzo KITAMURA. "A304 FLUID FLOW AND HEAT TRANSFER OF NATURAL CONVECTION ADJACENT TO UPWARD-FACING, INCLINED, HEATED PLATE : AIR CASE(Heat Transfer-1)". Proceedings of the International Conference on Power Engineering (ICOPE) 2009.3 (2009): _3–19_—_3–24_. http://dx.doi.org/10.1299/jsmeicope.2009.3._3-19_.
Pełny tekst źródłaZhou, Guo Fa, i Ting Peng. "Heat Transfer Enhancement of Viscoelastic Fluid in the Rectangle Microchannel with Constant Heat Fluxes". Applied Mechanics and Materials 117-119 (październik 2011): 574–81. http://dx.doi.org/10.4028/www.scientific.net/amm.117-119.574.
Pełny tekst źródłaYue, Qingwen, Xide Lai, Xiaoming Chen i Ping Hu. "Study on heat transfer characteristics of flow heat coupling of horizontal spiral tube heat exchanger". Thermal Science and Engineering 4, nr 2 (10.09.2021): 23. http://dx.doi.org/10.24294/tse.v4i2.1516.
Pełny tekst źródłaCorzo, Santiago Francisco, Damian Enrique Ramajo i Norberto Marcelo Nigro. "High-Rayleigh heat transfer flow". International Journal of Numerical Methods for Heat & Fluid Flow 27, nr 9 (4.09.2017): 1928–54. http://dx.doi.org/10.1108/hff-05-2016-0176.
Pełny tekst źródłaAjeeb, Wagd, Monica S. A. Oliveira, Nelson Martins i S. M. Sohel Murshed. "Numerical approach for fluids flow and thermal convection in microchannels". Journal of Physics: Conference Series 2116, nr 1 (1.11.2021): 012049. http://dx.doi.org/10.1088/1742-6596/2116/1/012049.
Pełny tekst źródłaZhang, Junqiang, Zhengping Zou i Chao Fu. "A Review of the Complex Flow and Heat Transfer Characteristics in Microchannels". Micromachines 14, nr 7 (19.07.2023): 1451. http://dx.doi.org/10.3390/mi14071451.
Pełny tekst źródłaGarai, Anirban, Jan Kleissl i Sutanu Sarkar. "Flow and heat transfer in convectively unstable turbulent channel flow with solid-wall heat conduction". Journal of Fluid Mechanics 757 (19.09.2014): 57–81. http://dx.doi.org/10.1017/jfm.2014.479.
Pełny tekst źródłaJaworski, Artur J. "Special Issue “Fluid Flow and Heat Transfer”". Energies 12, nr 16 (7.08.2019): 3044. http://dx.doi.org/10.3390/en12163044.
Pełny tekst źródłaMohiuddin Mala, G., Dongqing Li i J. D. Dale. "Heat transfer and fluid flow in microchannels". International Journal of Heat and Mass Transfer 40, nr 13 (wrzesień 1997): 3079–88. http://dx.doi.org/10.1016/s0017-9310(96)00356-0.
Pełny tekst źródłaKryuchkov, I. I., i R. R. Ionaitis. "Heat transfer accompanying a falling fluid flow". Soviet Atomic Energy 66, nr 1 (styczeń 1989): 20–26. http://dx.doi.org/10.1007/bf01121067.
Pełny tekst źródłaShang, Fu Min, Jian Hong Liu i Deng Ying Liu. "Experimental Investigation on the Heat Transfer Characteristics of Nanofluids in Self-Exciting Mode Oscillating-Flow Heat Pipe". Advanced Materials Research 396-398 (listopad 2011): 250–54. http://dx.doi.org/10.4028/www.scientific.net/amr.396-398.250.
Pełny tekst źródłaGunale, Rahul B., Ashish S. Gajare, Omkar D. Khollam, Aakash G. Gawade i Sanchit S. Salvi. "Experimental Evaluation of Nanofluid for Improved Cooling Efficiency in an AL Mini Channel Heat Sink". International Journal for Research in Applied Science and Engineering Technology 10, nr 5 (31.05.2022): 3400–3406. http://dx.doi.org/10.22214/ijraset.2022.43146.
Pełny tekst źródłaWen, Xiangyue, Xiting Long i Zhaoying Yang. "Numerical and Analytical Study of Fluid Flow and Thermal Transfer in a Rough Fracture". Geofluids 2022 (31.05.2022): 1–12. http://dx.doi.org/10.1155/2022/2683980.
Pełny tekst źródłaSheremet, Mikhail A., i Ioan Pop. "Natural convection combined with thermal radiation in a square cavity filled with a viscoelastic fluid". International Journal of Numerical Methods for Heat & Fluid Flow 28, nr 3 (5.03.2018): 624–40. http://dx.doi.org/10.1108/hff-02-2017-0059.
Pełny tekst źródłaGopal, Arumugam, Prabhakaran Duraisamy i Thirumarimurugan Marimuthu. "Experimental Investigation on Heat Transfer and Pressure Drop Characteristics of Food Additive in Dimple Plate Heat Exchanger". Revista de Chimie 73, nr 3 (29.07.2022): 97–109. http://dx.doi.org/10.37358/rc.22.3.8539.
Pełny tekst źródłaKumar Gaur, Rohit, Dr Shashi Kumar Jain i Dr Sukul Lomash. "Experimental Investigation on Triple Concentric Tube Heat Exchanger with Helical Baffles". SMART MOVES JOURNAL IJOSCIENCE 6, nr 11 (25.11.2020): 14–20. http://dx.doi.org/10.24113/ijoscience.v6i11.324.
Pełny tekst źródłaPasupuleti, Ravindra Kumar, Manindra Bedhapudi, Subba Reddy Jonnala i Appa Rao Kandimalla. "Computational Analysis of Conventional and Helical Finned Shell and Tube Heat Exchanger Using ANSYS-CFD". International Journal of Heat and Technology 39, nr 6 (31.12.2021): 1755–62. http://dx.doi.org/10.18280/ijht.390608.
Pełny tekst źródłaKumar, Shailesh Ranjan, i Satyendra Singh. "Experimental Study on Microchannel with Addition of Microinserts Aiming Heat Transfer Performance Improvement". Water 14, nr 20 (18.10.2022): 3291. http://dx.doi.org/10.3390/w14203291.
Pełny tekst źródłaSerizawa, Akimi, i Ziping Feng. "2.13.5 HEAT TRANSFER & FLUID FLOW IN MICROCHANNELS: Two-phase fluid flow". Heat Exchanger Design Updates 9, nr 1-2 (2002): 20. http://dx.doi.org/10.1615/heatexchdesignupd.v9.i1-2.50.
Pełny tekst źródłaZummo, Giuseppe, Zhi-Xin Li, Gian Piero Celata i Zeng-Yuan Guo. "2.13.2 HEAT TRANSFER & FLUID FLOW IN MICROCHANNELS: Single-phase fluid flow". Heat Exchanger Design Updates 9, nr 1-2 (2002): 20. http://dx.doi.org/10.1615/heatexchdesignupd.v9.i1-2.20.
Pełny tekst źródłaKumar, Shailesh Ranjan, i Satyendra Singh. "Numerical Analysis for Augmentation of Thermal Performance of Single-Phase Flow in Microchannel Heat Sink of Different Sizes with or without Micro-Inserts". Fluids 7, nr 5 (24.04.2022): 149. http://dx.doi.org/10.3390/fluids7050149.
Pełny tekst źródłaRajeh, Taha, Ping Tu, Hua Lin i Houlei Zhang. "Thermo-Fluid Characteristics of High Temperature Molten Salt Flowing in Single-Leaf Type Hollow Paddles". Entropy 20, nr 8 (7.08.2018): 581. http://dx.doi.org/10.3390/e20080581.
Pełny tekst źródłaStamenkovic, Zivojin, Milos Kocic, Jasmina Bogdanovic-Jovanovic i Jelena Petrovic. "Nano and micropolar MHD fluid flow and heat transfer in inclined channel". Thermal Science, nr 00 (2023): 170. http://dx.doi.org/10.2298/tsci230515170k.
Pełny tekst źródłaNaghavi, M. R., M. A. Akhavan-Behabadi i M. Fakoor Pakdaman. "Experimental Investigation on Heat Transfer and Pressure Drop of CNT-Base Oil Nano-Fluid Flow in Rectangular Channels under Constant Wall Temperature". Advanced Materials Research 622-623 (grudzień 2012): 806–10. http://dx.doi.org/10.4028/www.scientific.net/amr.622-623.806.
Pełny tekst źródłaDawood Jumaah, Itimad, Senaa Kh. Ali i Anees A. Khadom. "Evaluation Analysis of Double Coil Heat Exchanger for Heat Transfer Enhancement". Diyala Journal of Engineering Sciences 14, nr 1 (15.03.2021): 96–107. http://dx.doi.org/10.24237/djes.2021.14109.
Pełny tekst źródłaGorman, John, i Eph Sparrow. "Fluid flow and heat transfer for a particle-laden gas modeled as a two-phase turbulent flow". International Journal of Numerical Methods for Heat & Fluid Flow 28, nr 8 (6.08.2018): 1866–91. http://dx.doi.org/10.1108/hff-04-2018-0144.
Pełny tekst źródłaSaboya, F. E. M., i C. E. S. M. da Costa. "Minimum Irreversibility Criteria for Heat Exchanger Configurations". Journal of Energy Resources Technology 121, nr 4 (1.12.1999): 241–46. http://dx.doi.org/10.1115/1.2795989.
Pełny tekst źródłaSathish, T. "Performance Improvement of Base Fluid Heat Transfer Medium Using Nano Fluid Particles". Journal of New Materials for Electrochemical Systems 23, nr 4 (31.12.2020): 235–43. http://dx.doi.org/10.14447/jnmes.v23i4.a03.
Pełny tekst źródłaAsianuaba, Ifeoma B. "Heat Transfer Augmentation". European Journal of Engineering Research and Science 5, nr 4 (25.04.2020): 475–78. http://dx.doi.org/10.24018/ejers.2020.5.4.1869.
Pełny tekst źródłaAsianuaba, Ifeoma B. "Heat Transfer Augmentation". European Journal of Engineering and Technology Research 5, nr 4 (25.04.2020): 475–78. http://dx.doi.org/10.24018/ejeng.2020.5.4.1869.
Pełny tekst źródłaNaidu P., Sudha Brahma, i P. S. Kishore. "HEAT TRANSFER ENHANCEMENT USING CIRCUMFERENTIAL FINNED TWISTED TAPE HEAT EXCHANGER". International Journal of Research -GRANTHAALAYAH 5, nr 9 (30.09.2017): 152–63. http://dx.doi.org/10.29121/granthaalayah.v5.i9.2017.2225.
Pełny tekst źródłaGupta, Ritu, Parminder Singh i R. K. Wanchoo. "Heat Transfer Characteristics of Nano-Fluids". Materials Science Forum 757 (maj 2013): 175–95. http://dx.doi.org/10.4028/www.scientific.net/msf.757.175.
Pełny tekst źródłaKareemullah, Mohammed, K. M. Chethan, Mohammed K. Fouzan, B. V. Darshan, Abdul Razak Kaladgi, Maruthi B. H. Prashanth, Rayid Muneer i K. M. Yashawantha. "Heat Transfer Analysis of Shell and Tube Heat Exchanger Cooled Using Nanofluids". Recent Patents on Mechanical Engineering 12, nr 4 (26.12.2019): 350–56. http://dx.doi.org/10.2174/2212797612666190924183251.
Pełny tekst źródłaLu, Qun Hui, Yang Yan Zheng i Biao Yuan. "A Simulative Study on the Impact of Physical Property Parametersupon Flow and Heat Transfer in Annular Space". Advanced Materials Research 516-517 (maj 2012): 858–65. http://dx.doi.org/10.4028/www.scientific.net/amr.516-517.858.
Pełny tekst źródłaM, Vijayakumar, i Mahendra G. "Experimental Investigation of Heat Transfer Characteristics of Automobile Radiator using Tio2 Nanofluid Coolant". International Journal for Research in Applied Science and Engineering Technology 10, nr 4 (30.04.2022): 209–14. http://dx.doi.org/10.22214/ijraset.2022.41171.
Pełny tekst źródłaWang, Zhenyu, Jie Wang, Ma Yunhai i Lining Wang. "Structural optimization design and heat transfer characteristics of multi-degree-of-freedom spiral plate type agricultural machinery equipment heat exchanger". Thermal Science 23, nr 5 Part A (2019): 2525–33. http://dx.doi.org/10.2298/tsci181115140w.
Pełny tekst źródłaHartnett, J. P. "1990 Max Jakob Memorial Award Lecture: Viscoelastic Fluids: A New Challenge in Heat Transfer". Journal of Heat Transfer 114, nr 2 (1.05.1992): 296–303. http://dx.doi.org/10.1115/1.2911275.
Pełny tekst źródłaMajeed, Amer Hameed, i Yasmin Hamed Abd. "Performance of Heat Exchanger with Nanofluids". Materials Science Forum 1021 (luty 2021): 160–70. http://dx.doi.org/10.4028/www.scientific.net/msf.1021.160.
Pełny tekst źródłaSiddiqui, Abdul, Muhammad Zeb, Tahira Haroon i Qurat-ul-Ain Azim. "Exact Solution for the Heat Transfer of Two Immiscible PTT Fluids Flowing in Concentric Layers through a Pipe". Mathematics 7, nr 1 (14.01.2019): 81. http://dx.doi.org/10.3390/math7010081.
Pełny tekst źródłaChen, Hung Chien, Tzu Chen Hung i Yi Feng Chen. "Numerical Analysis of Heat Transfer in the Concentric Heat Exchanger". Applied Mechanics and Materials 275-277 (styczeń 2013): 572–75. http://dx.doi.org/10.4028/www.scientific.net/amm.275-277.572.
Pełny tekst źródłaWardhani, Adinda Shalsa Bellabunda, Alifta Titania Labumay i Erlinda Ningsih. "Influence of Fluid Inflow Rate on Performance Effectiveness of Shell and Tube Type Heat Exchanger". Journal of Mechanical Engineering, Science, and Innovation 2, nr 1 (29.05.2022): 9–15. http://dx.doi.org/10.31284/j.jmesi.2022.v2i1.2993.
Pełny tekst źródłaNingsih, Erlinda, Isa Albanna, Aita Pudji Witari i Gistanya Lindar Anggraini. "PERFORMANCE SIMULATION ON THE SHELL AND TUBE OF HEAT EXCHANGER BY ASPEN HYSYS V.10". Jurnal Rekayasa Mesin 13, nr 3 (31.12.2022): 701–6. http://dx.doi.org/10.21776/jrm.v13i3.1078.
Pełny tekst źródłaShendre, Manoj, i Sandeep Biradar. "Experimental Study on Heat Transfer and Fluid Flow Characteristcs of Shell and Tube Heat Exchanger using hiTRAN Wire Inserts". International Journal of Trend in Scientific Research and Development Volume-2, Issue-2 (28.02.2018): 572–79. http://dx.doi.org/10.31142/ijtsrd9451.
Pełny tekst źródłaYang, Wen-Jei, Shin Fann i John H. Kim. "Heat and Fluid Flow Inside Rotating Channels". Applied Mechanics Reviews 47, nr 8 (1.08.1994): 367–96. http://dx.doi.org/10.1115/1.3111084.
Pełny tekst źródła