Artykuły w czasopismach na temat „Fluid Dynamics”

Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Fluid Dynamics.

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Fluid Dynamics”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Yamagami, Shigemasa, Tetta Hashimoto i Koichi Inoue. "OS23-6 Thermo-Fluid Dynamics of Pulsating Heat Pipes for LED Lightings(Thermo-fluid dynamics(2),OS23 Thermo-fluid dynamics,FLUID AND THERMODYNAMICS)". Abstracts of ATEM : International Conference on Advanced Technology in Experimental Mechanics : Asian Conference on Experimental Mechanics 2015.14 (2015): 283. http://dx.doi.org/10.1299/jsmeatem.2015.14.283.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Tushar Shimpi, Palash. "Palash's Law of Fluid Dynamics". International Journal of Science and Research (IJSR) 12, nr 9 (5.09.2023): 1097–103. http://dx.doi.org/10.21275/sr23910212852.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Raza, Md Shamim, Nitesh Kumar i Sourav Poddar. "Combustor Characteristics under Dynamic Condition during Fuel – Air Mixingusing Computational Fluid Dynamics". Journal of Advances in Mechanical Engineering and Science 1, nr 1 (8.08.2015): 20–33. http://dx.doi.org/10.18831/james.in/2015011003.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Khare, Prashant. "Fluid Dynamics: Part 1: Classical Fluid Dynamics". Contemporary Physics 56, nr 3 (2.06.2015): 385–87. http://dx.doi.org/10.1080/00107514.2015.1048303.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Harlander, Uwe, Andreas Hense, Andreas Will i Michael Kurgansky. "New aspects of geophysical fluid dynamics". Meteorologische Zeitschrift 15, nr 4 (23.08.2006): 387–88. http://dx.doi.org/10.1127/0941-2948/2006/0144.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Ushida, Akiomi, Shuichi Ogawa, Tomiichi Hasegawa i Takatsune Narumi. "OS23-1 Pseudo-Laminarization of Dilute Polymer Solutions in Capillary Flows(Thermo-fluid dynamics(1),OS23 Thermo-fluid dynamics,FLUID AND THERMODYNAMICS)". Abstracts of ATEM : International Conference on Advanced Technology in Experimental Mechanics : Asian Conference on Experimental Mechanics 2015.14 (2015): 278. http://dx.doi.org/10.1299/jsmeatem.2015.14.278.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Kim, Youngho, i Sangho Yun. "Fluid Dynamics in an Anatomically Correct Total Cavopulmonary Connection : Flow Visualizations and Computational Fluid Dynamics(Cardiovascular Mechanics)". Proceedings of the Asian Pacific Conference on Biomechanics : emerging science and technology in biomechanics 2004.1 (2004): 57–58. http://dx.doi.org/10.1299/jsmeapbio.2004.1.57.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Sreenivasan, Katepalli R. "Chandrasekhar's Fluid Dynamics". Annual Review of Fluid Mechanics 51, nr 1 (5.01.2019): 1–24. http://dx.doi.org/10.1146/annurev-fluid-010518-040537.

Pełny tekst źródła
Streszczenie:
Subrahmanyan Chandrasekhar (1910–1995) is justly famous for his lasting contributions to topics such as white dwarfs and black holes (which led to his Nobel Prize), stellar structure and dynamics, general relativity, and other facets of astrophysics. He also devoted some dozen or so of his prime years to fluid dynamics, especially stability and turbulence, and made important contributions. Yet in most assessments of his science, far less attention is paid to his fluid dynamics work because it is dwarfed by other, more prominent work. Even within the fluid dynamics community, his extensive research on turbulence and other problems of fluid dynamics is not well known. This review is a brief assessment of that work. After a few biographical remarks, I recapitulate and assess the essential parts of this work, putting my remarks in the context of times and people with whom Chandrasekhar interacted. I offer a few comments in perspective on how he came to work on turbulence and stability problems, on how he viewed science as an aesthetic activity, and on how one's place in history gets defined.
Style APA, Harvard, Vancouver, ISO itp.
9

Wood, Heather. "Fluid dynamics". Nature Reviews Neuroscience 6, nr 2 (14.01.2005): 92. http://dx.doi.org/10.1038/nrn1613.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

REISCH, MARC S. "FLUID DYNAMICS". Chemical & Engineering News 83, nr 8 (21.02.2005): 16–18. http://dx.doi.org/10.1021/cen-v083n008.p016.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Lin, C. T., J. K. Kuo i T. H. Yen. "Quantum Fluid Dynamics and Quantum Computational Fluid Dynamics". Journal of Computational and Theoretical Nanoscience 6, nr 5 (1.05.2009): 1090–108. http://dx.doi.org/10.1166/jctn.2009.1149.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Nagura, Ryo, Kanji Kawashima, Kentaro Doi i Satoyuki Kawano. "OS23-3 Observation of Electrically Induced Flows in Highly Polarized Electrolyte Solution(Thermo-fluid dynamics(1),OS23 Thermo-fluid dynamics,FLUID AND THERMODYNAMICS)". Abstracts of ATEM : International Conference on Advanced Technology in Experimental Mechanics : Asian Conference on Experimental Mechanics 2015.14 (2015): 280. http://dx.doi.org/10.1299/jsmeatem.2015.14.280.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

YANAGISAWA, Shota, Masaru OGASAWARA, Takahiro ITO, Yoshiyuki TSUJI, Seiji YAMASHITA, Takashi BESSHO i Manabu ORIHASHI. "OS23-11 The Mechanism of Enhancing Pool Boiling Efficiency by Changing Surface Property(Thermo-fluid dynamics(3),OS23 Thermo-fluid dynamics,FLUID AND THERMODYNAMICS)". Abstracts of ATEM : International Conference on Advanced Technology in Experimental Mechanics : Asian Conference on Experimental Mechanics 2015.14 (2015): 288. http://dx.doi.org/10.1299/jsmeatem.2015.14.288.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Thabet, Senan, i Thabit H. Thabit. "Computational Fluid Dynamics: Science of the Future". International Journal of Research and Engineering 5, nr 6 (2018): 430–33. http://dx.doi.org/10.21276/ijre.2018.5.6.2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Guardone, Alberto, Piero Colonna, Matteo Pini i Andrea Spinelli. "Nonideal Compressible Fluid Dynamics of Dense Vapors and Supercritical Fluids". Annual Review of Fluid Mechanics 56, nr 1 (19.01.2024): 241–69. http://dx.doi.org/10.1146/annurev-fluid-120720-033342.

Pełny tekst źródła
Streszczenie:
The gas dynamics of single-phase nonreacting fluids whose thermodynamic states are close to vapor-liquid saturation, close to the vapor-liquid critical point, or in supercritical conditions differs quantitatively and qualitatively from the textbook gas dynamics of dilute, ideal gases. Due to nonideal fluid thermodynamic properties, unconventional gas dynamic effects are possible, including nonclassical rarefaction shock waves and the nonmonotonic variation of the Mach number along steady isentropic expansions. This review provides a comprehensive theoretical framework of the fundamentals of nonideal compressible fluid dynamics (NICFD). The relation between nonideal gas dynamics and the complexity of the fluid molecules is clarified. The theoretical, numerical, and experimental tools currently employed to investigate NICFD flows and related applications are reviewed, followed by an overview of industrial processes involving NICFD, ranging from organic Rankine and supercritical CO2 cycle power systems to supercritical processes. The future challenges facing researchers in the field are briefly outlined.
Style APA, Harvard, Vancouver, ISO itp.
16

Yamaguchi, Yukio, i Kenji Amagai. "OS23-7 Development of Binary Refrigeration System Using CO2 Coolant for Freezing Show Case(Thermo-fluid dynamics(2),OS23 Thermo-fluid dynamics,FLUID AND THERMODYNAMICS)". Abstracts of ATEM : International Conference on Advanced Technology in Experimental Mechanics : Asian Conference on Experimental Mechanics 2015.14 (2015): 284. http://dx.doi.org/10.1299/jsmeatem.2015.14.284.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

KAWAMURA, Tetuya, i Hideo TAKAMI. "Computational Fluid Dynamics". Tetsu-to-Hagane 75, nr 11 (1989): 1981–90. http://dx.doi.org/10.2355/tetsutohagane1955.75.11_1981.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Gilbert, W. M. "Amniotic Fluid Dynamics". NeoReviews 7, nr 6 (1.06.2006): e292-e299. http://dx.doi.org/10.1542/neo.7-6-e292.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Giga, Yoshikazu, Matthias Hieber i Edriss Titi. "Geophysical Fluid Dynamics". Oberwolfach Reports 10, nr 1 (2013): 521–77. http://dx.doi.org/10.4171/owr/2013/10.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Giga, Yoshikazu, Matthias Hieber i Edriss Titi. "Geophysical Fluid Dynamics". Oberwolfach Reports 14, nr 2 (27.04.2018): 1421–62. http://dx.doi.org/10.4171/owr/2017/23.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Hjertager, Bjørn. "Engineering Fluid Dynamics". Energies 10, nr 10 (22.09.2017): 1467. http://dx.doi.org/10.3390/en10101467.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Morishita, Etsuo. "Spreadsheet Fluid Dynamics". Journal of Aircraft 36, nr 4 (lipiec 1999): 720–23. http://dx.doi.org/10.2514/2.2497.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Jones, AM, MJ Moseley, SJ Halfmann, AH Heath, WJ Henkelman, J. Ciaccio i BS Bolcar. "Fluid volume dynamics". Critical Care Nurse 11, nr 4 (1.04.1991): 74–76. http://dx.doi.org/10.4037/ccn1991.11.4.74.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Czosnyka, Marek, Zofia Czosnyka, Shahan Momjian i John D. Pickard. "Cerebrospinal fluid dynamics". Physiological Measurement 25, nr 5 (7.08.2004): R51—R76. http://dx.doi.org/10.1088/0967-3334/25/5/r01.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Hibberd, S., i Bhinsen K. Shivamoggi. "Theoretical Fluid Dynamics". Mathematical Gazette 70, nr 454 (grudzień 1986): 329. http://dx.doi.org/10.2307/3616227.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

MIZOTA, Taketo. "Sports Fluid Dynamics". Wind Engineers, JAWE 2001, nr 87 (2001): 37–41. http://dx.doi.org/10.5359/jawe.2001.87_37.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Acheson, D. J. "Elementary Fluid Dynamics". Journal of the Acoustical Society of America 89, nr 6 (czerwiec 1991): 3020. http://dx.doi.org/10.1121/1.400751.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Birchall, D. "Computational fluid dynamics". British Journal of Radiology 82, special_issue_1 (styczeń 2009): S1—S2. http://dx.doi.org/10.1259/bjr/26554028.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Busse, F. H. "Geophysical Fluid Dynamics". Eos, Transactions American Geophysical Union 68, nr 50 (1987): 1666. http://dx.doi.org/10.1029/eo068i050p01666-02.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Neilsen, David W., i Matthew W. Choptuik. "Ultrarelativistic fluid dynamics". Classical and Quantum Gravity 17, nr 4 (25.01.2000): 733–59. http://dx.doi.org/10.1088/0264-9381/17/4/302.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Emanuel, George, i Daniel Bershader. "Analytical Fluid Dynamics". Physics Today 47, nr 11 (listopad 1994): 92–94. http://dx.doi.org/10.1063/1.2808705.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Hughes, Dez. "Transvascular fluid dynamics". Veterinary Anaesthesia and Analgesia 27, nr 1 (styczeń 2000): 63–69. http://dx.doi.org/10.1046/j.1467-2995.2000.00006.x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Lin, Ching-long, Merryn H. Tawhai, Geoffrey Mclennan i Eric A. Hoffman. "Computational fluid dynamics". IEEE Engineering in Medicine and Biology Magazine 28, nr 3 (maj 2009): 25–33. http://dx.doi.org/10.1109/memb.2009.932480.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Lavinio, A., Z. Czosnyka i M. Czosnyka. "Cerebrospinal fluid dynamics". European Journal of Anaesthesiology 25 (luty 2008): 137–41. http://dx.doi.org/10.1017/s0265021507003298.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Jarvis, P. D., i J. W. van Holten. "Conformal fluid dynamics". Nuclear Physics B 734, nr 3 (luty 2006): 272–86. http://dx.doi.org/10.1016/j.nuclphysb.2005.11.021.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Wrobel, L. C. "Computational fluid dynamics". Engineering Analysis with Boundary Elements 9, nr 2 (styczeń 1992): 192. http://dx.doi.org/10.1016/0955-7997(92)90070-n.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Pericleous, K. A. "Computational fluid dynamics". International Journal of Heat and Mass Transfer 32, nr 1 (styczeń 1989): 197–98. http://dx.doi.org/10.1016/0017-9310(89)90105-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Von Wendt, J. "Computational fluid dynamics". Journal of Wind Engineering and Industrial Aerodynamics 40, nr 2 (czerwiec 1992): 223. http://dx.doi.org/10.1016/0167-6105(92)90368-k.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Maxworthy, Tony. "Geophysical fluid dynamics". Tectonophysics 111, nr 1-2 (styczeń 1985): 165–66. http://dx.doi.org/10.1016/0040-1951(85)90076-9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Skrbek, L., J. J. Niemela i R. J. Donnelly. "Cryogenic fluid dynamics". Physica B: Condensed Matter 280, nr 1-4 (maj 2000): 41–42. http://dx.doi.org/10.1016/s0921-4526(99)01438-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Hamill, Nathalie. "Streamlining Fluid Dynamics". Mechanical Engineering 120, nr 03 (1.03.1998): 76–78. http://dx.doi.org/10.1115/1.1998-mar-1.

Pełny tekst źródła
Streszczenie:
More-intuitive pre-processors and advanced solvers are making computational fluid dynamics (CFD) software easier to use, more accurate, and faster. CFD techniques involve the solution of the Navier-Stokes equations that describe fluid-flow processes. Using MSC/ PATRAN as a starting point, AEA Technology plc, Harwell, Oxfordshire, England, has developed a pre-processor for its software that is fully computer-aided design (CAD)-compatible and works with native CAD databases such as CADDS 5, CATIA, Euclid3, Pro /ENG INEER, and Unigraphics. The simplicity of modeling complex geometries in CFX allows more details to be included in models, such as gangways between coaches, bogies, and even some parts of the pantograph. CFX 5's coupled solver offers a radically different approach that solves all the hydrodynamic equations as a single system. CFX 5 has demonstrated its ability to deliver much faster pre-processing and shorter run times, thus increasing productivity for its users. CFX 5.2 should be a further step forward in commercial CFD, with its mixed element types combining the accuracy of prismatic meshes adjacent to surfaces with the speed and geometric flexibility of tetrahedral elements in the remainder of the grid.
Style APA, Harvard, Vancouver, ISO itp.
42

Lax, Peter D. "Computational Fluid Dynamics". Journal of Scientific Computing 31, nr 1-2 (25.10.2006): 185–93. http://dx.doi.org/10.1007/s10915-006-9104-x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Pitarma, R. A., J. E. Ramos, M. E. Ferreira i M. G. Carvalho. "Computational fluid dynamics". Management of Environmental Quality: An International Journal 15, nr 2 (kwiecień 2004): 102–10. http://dx.doi.org/10.1108/14777830410523053.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Fox, Robert. "Information fluid dynamics". OCLC Systems & Services: International digital library perspectives 27, nr 2 (30.05.2011): 87–94. http://dx.doi.org/10.1108/10650751111135382.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Smalley, Larry L., i Jean P. Krisch. "String fluid dynamics". Classical and Quantum Gravity 13, nr 2 (1.02.1996): L19—L22. http://dx.doi.org/10.1088/0264-9381/13/2/002.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Smalley, L. L., i J. P. Krisch. "String fluid dynamics". Classical and Quantum Gravity 13, nr 5 (1.05.1996): 1277. http://dx.doi.org/10.1088/0264-9381/13/5/037.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Shivamoggi, Bhimsen K., i Stanley A. Berger. "Theoretical Fluid Dynamics". Physics Today 51, nr 11 (listopad 1998): 69–70. http://dx.doi.org/10.1063/1.882072.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Portnoy, H. D., i M. Chopp. "Intracranial Fluid Dynamics". Pediatric Neurosurgery 20, nr 1 (1994): 92–98. http://dx.doi.org/10.1159/000120771.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Donnelly, Russell J. "Cryogenic fluid dynamics". Journal of Physics: Condensed Matter 11, nr 40 (24.09.1999): 7783–834. http://dx.doi.org/10.1088/0953-8984/11/40/309.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Ajakaiye, D. E. "Geophysical fluid dynamics". Earth-Science Reviews 22, nr 3 (listopad 1985): 245. http://dx.doi.org/10.1016/0012-8252(85)90068-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii